Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here is a possible implementation of the Levenshtein distance using numba and numpy:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | import numpy as np import numba @numba.jit(nopython=True) def levenshtein(a, b): # Create a matrix to store the distances dist = np.zeros((a.size + 1, b.size + 1), dtype=np.int32) # Initialize the first row and column dist[: ,0] = np.arange(a.size + 1) dist[0, :] = np.arange(b.size + 1) # Iterate over the matrix, computing the distances for i in range(1, a.size + 1): for j in range(1, b.size + 1): cost = 0 if a[i-1] == b[j-1] else 1 dist[i, j] = min(dist[i-1, j] + 1, dist[i, j-1] + 1, dist[i-1, j-1] + cost + (cost == 1)) return dist[a.size, b.size] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | import numpy as np import numba @numba.jit(nopython=True) def levenshtein(a, b): # Create a matrix to store the distances dist = np.zeros((a.size + 1, b.size + 1), dtype=np.int32) # Initialize the first row and column dist[: ,0] = np.arange(a.size + 1) dist[0, :] = np.arange(b.size + 1) # Iterate over the matrix, computing the distances for i in range(1, a.size + 1): for j in range(1, b.size + 1): cost = 0 if a[i-1] == b[j-1] else 1 dist[i, j] = min(dist[i-1, j] + 1, dist[i, j-1] + 1, dist[i-1, j-1] + cost + (cost == 1)) return dist[a.size, b.size] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import numpy as np import numba @numba.jit(nopython=True) def levenshtein(a, b): # Create a matrix to store the distances dist = np.zeros((a.size + 1, b.size + 1), dtype=np.int32) # Initialize the first row and column dist[: ,0] = np.arange(a.size + 1) dist[0, :] = np.arange(b.size + 1) # Iterate over the matrix, computing the distances for i in range(1, a.size + 1): for j in range(1, b.size + 1): cost = 0 if a[i-1] == b[j-1] else 1 dist[i, j] = min(dist[i-1, j] + 1, dist[i, j-1] + 1, dist[i-1, j-1] + cost + (cost == 1)) return dist[a.size, b.size] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Testing if the previous output contains the string njit
: False
Testing if the previous output contains the string nopython
: True
Testing if the previous output contains the string import numba
: True
Testing if the previous output contains the string from numba
: False
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Sure, I can help you write a Numba implementation of the Levenshtein distance algorithm, which is a string metric for measuring the difference between two sequences. Here's a function that should work for your requirements:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import numba import numpy as np @numba.njit(fastmath=True) def levenshtein(a, b): m = len(a) n = len(b) # Initialize matrix of zeros dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if a[i - 1] == b[j - 1] else 1 dp[i, j] = min( dp[i - 1, j] + 1, # deletion dp[i, j - 1] + 1, # insertion dp[i - 1, j - 1] + cost, # substitution ) # Transposition (character swap) if i > 1 and j > 1 and a[i - 1] == b[j - 2] and a[i - 2] == b[j - 1]: dp[i, j] = min(dp[i, j], dp[i - 2, j - 2] + 2) return dp[m, n] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import numba import numpy as np @numba.njit(fastmath=True) def levenshtein(a, b): m = len(a) n = len(b) # Initialize matrix of zeros dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if a[i - 1] == b[j - 1] else 1 dp[i, j] = min( dp[i - 1, j] + 1, # deletion dp[i, j - 1] + 1, # insertion dp[i - 1, j - 1] + cost, # substitution ) # Transposition (character swap) if i > 1 and j > 1 and a[i - 1] == b[j - 2] and a[i - 2] == b[j - 1]: dp[i, j] = min(dp[i, j], dp[i - 2, j - 2] + 2) return dp[m, n] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | import numba import numpy as np @numba.njit(fastmath=True) def levenshtein(a, b): m = len(a) n = len(b) # Initialize matrix of zeros dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if a[i - 1] == b[j - 1] else 1 dp[i, j] = min( dp[i - 1, j] + 1, # deletion dp[i, j - 1] + 1, # insertion dp[i - 1, j - 1] + cost, # substitution ) # Transposition (character swap) if i > 1 and j > 1 and a[i - 1] == b[j - 2] and a[i - 2] == b[j - 1]: dp[i, j] = min(dp[i, j], dp[i - 2, j - 2] + 2) return dp[m, n] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 41, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: True
Testing if the previous output contains the string from numba
: False
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Sure, I can help you write a NumBA implementation of the Levenshtein distance function. Here it is:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import numpy as np import numba @numba.jit(nopython=True) def levenshtein(s1, s2): m, n = s1.shape[0], s2.shape[0] # Create a matrix to store the edit distances. dp = np.zeros((m + 1, n + 1), dtype=np.int32) # Initialize the first row and column. for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j # Fill in the rest of the matrix. for i in range(1, m + 1): for j in range(1, n + 1): cost = 2 if s1[i - 1] != s2[j - 1] else 0 # Minimum of insertion, deletion, and substitution. dp[i, j] = min(dp[i - 1, j] + 1, dp[i, j - 1] + 1, dp[i - 1, j - 1] + cost) # Transposition cost if the characters match and the previous ones don't. if i > 1 and j > 1 and s1[i - 1] == s2[j - 2] and s1[i - 2] != s2[j - 1]: dp[i, j] = min(dp[i, j], dp[i - 2, j - 2] + cost) return dp[m, n] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import numpy as np import numba @numba.jit(nopython=True) def levenshtein(s1, s2): m, n = s1.shape[0], s2.shape[0] # Create a matrix to store the edit distances. dp = np.zeros((m + 1, n + 1), dtype=np.int32) # Initialize the first row and column. for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j # Fill in the rest of the matrix. for i in range(1, m + 1): for j in range(1, n + 1): cost = 2 if s1[i - 1] != s2[j - 1] else 0 # Minimum of insertion, deletion, and substitution. dp[i, j] = min(dp[i - 1, j] + 1, dp[i, j - 1] + 1, dp[i - 1, j - 1] + cost) # Transposition cost if the characters match and the previous ones don't. if i > 1 and j > 1 and s1[i - 1] == s2[j - 2] and s1[i - 2] != s2[j - 1]: dp[i, j] = min(dp[i, j], dp[i - 2, j - 2] + cost) return dp[m, n] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | import numpy as np import numba @numba.jit(nopython=True) def levenshtein(s1, s2): m, n = s1.shape[0], s2.shape[0] # Create a matrix to store the edit distances. dp = np.zeros((m + 1, n + 1), dtype=np.int32) # Initialize the first row and column. for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j # Fill in the rest of the matrix. for i in range(1, m + 1): for j in range(1, n + 1): cost = 2 if s1[i - 1] != s2[j - 1] else 0 # Minimum of insertion, deletion, and substitution. dp[i, j] = min(dp[i - 1, j] + 1, dp[i, j - 1] + 1, dp[i - 1, j - 1] + cost) # Transposition cost if the characters match and the previous ones don't. if i > 1 and j > 1 and s1[i - 1] == s2[j - 2] and s1[i - 2] != s2[j - 1]: dp[i, j] = min(dp[i, j], dp[i - 2, j - 2] + cost) return dp[m, n] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Testing if the previous output contains the string njit
: False
Testing if the previous output contains the string nopython
: True
Testing if the previous output contains the string import numba
: True
Testing if the previous output contains the string from numba
: False
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's a Numba implementation of the Levenshtein distance with character swaps having a cost of 2. This implementation takes two NumPy int arrays as input and runs in nopython mode.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import numpy as np import numba @numba.njit(cache=True) def levenshtein(arr1, arr2): m, n = arr1.shape[0], arr2.shape[0] # Initialize the distance matrix distance_matrix = np.zeros((m + 1, n + 1), dtype=np.int32) for i in range(m + 1): distance_matrix[i, 0] = i for j in range(n + 1): distance_matrix[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): if arr1[i - 1] == arr2[j - 1]: cost = 0 elif arr1[i - 1] != arr2[j - 1] and (i > 1 and j > 1 and arr1[i - 1] == arr2[j - 2] and arr1[i - 2] == arr2[j - 1]): cost = 2 else: cost = 1 distance_matrix[i, j] = min( distance_matrix[i - 1, j] + 1, # deletion distance_matrix[i, j - 1] + 1, # insertion distance_matrix[i - 1, j - 1] + cost # substitution or swap ) return distance_matrix[m, n] # Example usage: arr1 = np.array([1, 2, 3]) arr2 = np.array([3, 2, 1]) distance = levenshtein(arr1, arr2) print(distance) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import numpy as np import numba @numba.njit(cache=True) def levenshtein(arr1, arr2): m, n = arr1.shape[0], arr2.shape[0] # Initialize the distance matrix distance_matrix = np.zeros((m + 1, n + 1), dtype=np.int32) for i in range(m + 1): distance_matrix[i, 0] = i for j in range(n + 1): distance_matrix[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): if arr1[i - 1] == arr2[j - 1]: cost = 0 elif arr1[i - 1] != arr2[j - 1] and (i > 1 and j > 1 and arr1[i - 1] == arr2[j - 2] and arr1[i - 2] == arr2[j - 1]): cost = 2 else: cost = 1 distance_matrix[i, j] = min( distance_matrix[i - 1, j] + 1, # deletion distance_matrix[i, j - 1] + 1, # insertion distance_matrix[i - 1, j - 1] + cost # substitution or swap ) return distance_matrix[m, n] # Example usage: arr1 = np.array([1, 2, 3]) arr2 = np.array([3, 2, 1]) distance = levenshtein(arr1, arr2) print(distance) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | import numpy as np import numba @numba.njit(cache=True) def levenshtein(arr1, arr2): m, n = arr1.shape[0], arr2.shape[0] # Initialize the distance matrix distance_matrix = np.zeros((m + 1, n + 1), dtype=np.int32) for i in range(m + 1): distance_matrix[i, 0] = i for j in range(n + 1): distance_matrix[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): if arr1[i - 1] == arr2[j - 1]: cost = 0 elif arr1[i - 1] != arr2[j - 1] and (i > 1 and j > 1 and arr1[i - 1] == arr2[j - 2] and arr1[i - 2] == arr2[j - 1]): cost = 2 else: cost = 1 distance_matrix[i, j] = min( distance_matrix[i - 1, j] + 1, # deletion distance_matrix[i, j - 1] + 1, # insertion distance_matrix[i - 1, j - 1] + cost # substitution or swap ) return distance_matrix[m, n] # Example usage: arr1 = np.array([1, 2, 3]) arr2 = np.array([3, 2, 1]) distance = levenshtein(arr1, arr2) print(distance) answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
2
Traceback (most recent call last):
File "/usr/src/app/main.py", line 46, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: True
Testing if the previous output contains the string from numba
: False
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Sure, here is a Numba implementation of the Levenshtein distance algorithm with the specified conditions:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import numpy as np import numba @numba.njit(fastmath=True) def levenshtein(a, b): a = np.ascontiguousarray(a) b = np.ascontiguousarray(b) m = a.size n = b.size matrix = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): matrix[i, 0] = i for j in range(n + 1): matrix[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): if a[i - 1] == b[j - 1]: substitution_cost = 0 elif a[i - 1] != b[j - 1]: substitution_cost = 2 deletion_cost = matrix[i - 1, j] + 1 insertion_cost = matrix[i, j - 1] + 1 substitution_cost = matrix[i - 1, j - 1] + substitution_cost matrix[i, j] = min(insertion_cost, deletion_cost, substitution_cost) return matrix[m, n] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | import numpy as np import numba @numba.njit(fastmath=True) def levenshtein(a, b): a = np.ascontiguousarray(a) b = np.ascontiguousarray(b) m = a.size n = b.size matrix = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): matrix[i, 0] = i for j in range(n + 1): matrix[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): if a[i - 1] == b[j - 1]: substitution_cost = 0 elif a[i - 1] != b[j - 1]: substitution_cost = 2 deletion_cost = matrix[i - 1, j] + 1 insertion_cost = matrix[i, j - 1] + 1 substitution_cost = matrix[i - 1, j - 1] + substitution_cost matrix[i, j] = min(insertion_cost, deletion_cost, substitution_cost) return matrix[m, n] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import numpy as np import numba @numba.njit(fastmath=True) def levenshtein(a, b): a = np.ascontiguousarray(a) b = np.ascontiguousarray(b) m = a.size n = b.size matrix = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): matrix[i, 0] = i for j in range(n + 1): matrix[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): if a[i - 1] == b[j - 1]: substitution_cost = 0 elif a[i - 1] != b[j - 1]: substitution_cost = 2 deletion_cost = matrix[i - 1, j] + 1 insertion_cost = matrix[i, j - 1] + 1 substitution_cost = matrix[i - 1, j - 1] + substitution_cost matrix[i, j] = min(insertion_cost, deletion_cost, substitution_cost) return matrix[m, n] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: True
Testing if the previous output contains the string from numba
: False