Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Sure! Here is the implementation of the Levenshtein distance function in Numba with the specified conditions:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import numpy as np from numba import njit @njit def levenshtein(s, t): m, n = len(s), len(t) dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s[i - 1] == t[j - 1] else 1 dp[i, j] = min(dp[i - 1, j] + 1, dp[i, j - 1] + 1, dp[i - 1, j - 1] + cost * 2) return dp[m, n] # Test the function s = np.array([1, 2, 3, 4, 5]) t = np.array([1, 2, 4, 3, 5]) print(levenshtein(s, t)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import numpy as np from numba import njit @njit def levenshtein(s, t): m, n = len(s), len(t) dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s[i - 1] == t[j - 1] else 1 dp[i, j] = min(dp[i - 1, j] + 1, dp[i, j - 1] + 1, dp[i - 1, j - 1] + cost * 2) return dp[m, n] # Test the function s = np.array([1, 2, 3, 4, 5]) t = np.array([1, 2, 4, 3, 5]) print(levenshtein(s, t)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np from numba import njit @njit def levenshtein(s, t): m, n = len(s), len(t) dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s[i - 1] == t[j - 1] else 1 dp[i, j] = min(dp[i - 1, j] + 1, dp[i, j - 1] + 1, dp[i - 1, j - 1] + cost * 2) return dp[m, n] # Test the function s = np.array([1, 2, 3, 4, 5]) t = np.array([1, 2, 4, 3, 5]) print(levenshtein(s, t)) answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
2
All tests passed
Testing if the previous output contains the string All tests passed
: True
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here is the numba implementation of the Levenshtein distance algorithm taking two numpy int arrays:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import numpy as np from numba import njit @njit def levenshtein(s, t): m, n = len(s), len(t) dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s[i-1] == t[j-1] else 1 dp[i, j] = min(dp[i-1, j] + 1, # deletion dp[i, j-1] + 1, # insertion dp[i-1, j-1] + cost) # substitution if i > 1 and j > 1 and s[i-1] == t[j-2] and s[i-2] == t[j-1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) # character swap return dp[m, n] # Test the implementation s = np.array([1, 2, 3, 4, 5], dtype=np.int64) t = np.array([1, 2, 4, 3, 5], dtype=np.int64) print(levenshtein(s, t)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import numpy as np from numba import njit @njit def levenshtein(s, t): m, n = len(s), len(t) dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s[i-1] == t[j-1] else 1 dp[i, j] = min(dp[i-1, j] + 1, # deletion dp[i, j-1] + 1, # insertion dp[i-1, j-1] + cost) # substitution if i > 1 and j > 1 and s[i-1] == t[j-2] and s[i-2] == t[j-1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) # character swap return dp[m, n] # Test the implementation s = np.array([1, 2, 3, 4, 5], dtype=np.int64) t = np.array([1, 2, 4, 3, 5], dtype=np.int64) print(levenshtein(s, t)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import numpy as np from numba import njit @njit def levenshtein(s, t): m, n = len(s), len(t) dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s[i-1] == t[j-1] else 1 dp[i, j] = min(dp[i-1, j] + 1, # deletion dp[i, j-1] + 1, # insertion dp[i-1, j-1] + cost) # substitution if i > 1 and j > 1 and s[i-1] == t[j-2] and s[i-2] == t[j-1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) # character swap return dp[m, n] # Test the implementation s = np.array([1, 2, 3, 4, 5], dtype=np.int64) t = np.array([1, 2, 4, 3, 5], dtype=np.int64) print(levenshtein(s, t)) answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
2
Traceback (most recent call last):
File "/usr/src/app/main.py", line 39, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's the numba implementation of the Levenshtein distance with character swaps cost of 2:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import numba as nb import numpy as np @nb.njit def levenshtein(s1, s2): m, n = len(s1), len(s2) dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s1[i - 1] == s2[j - 1] else 1 dp[i, j] = min(dp[i-1, j] + 1, # deletion dp[i, j-1] + 1, # insertion dp[i-1, j-1] + cost) # substitution if i > 1 and j > 1 and s1[i - 1] == s2[j - 2] and s1[i - 2] == s2[j - 1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) # character swap return dp[m, n] # Example usage s1 = np.array([1, 2, 3, 4], dtype=np.int64) s2 = np.array([1, 3, 2, 4], dtype=np.int64) result = levenshtein(s1, s2) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import numba as nb import numpy as np @nb.njit def levenshtein(s1, s2): m, n = len(s1), len(s2) dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s1[i - 1] == s2[j - 1] else 1 dp[i, j] = min(dp[i-1, j] + 1, # deletion dp[i, j-1] + 1, # insertion dp[i-1, j-1] + cost) # substitution if i > 1 and j > 1 and s1[i - 1] == s2[j - 2] and s1[i - 2] == s2[j - 1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) # character swap return dp[m, n] # Example usage s1 = np.array([1, 2, 3, 4], dtype=np.int64) s2 = np.array([1, 3, 2, 4], dtype=np.int64) result = levenshtein(s1, s2) print(result) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import numba as nb import numpy as np @nb.njit def levenshtein(s1, s2): m, n = len(s1), len(s2) dp = np.zeros((m + 1, n + 1), dtype=np.int64) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s1[i - 1] == s2[j - 1] else 1 dp[i, j] = min(dp[i-1, j] + 1, # deletion dp[i, j-1] + 1, # insertion dp[i-1, j-1] + cost) # substitution if i > 1 and j > 1 and s1[i - 1] == s2[j - 2] and s1[i - 2] == s2[j - 1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) # character swap return dp[m, n] # Example usage s1 = np.array([1, 2, 3, 4], dtype=np.int64) s2 = np.array([1, 3, 2, 4], dtype=np.int64) result = levenshtein(s1, s2) print(result) answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
2
Traceback (most recent call last):
File "/usr/src/app/main.py", line 42, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: True
Testing if the previous output contains the string from numba
: False
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Sure, here is the numba implementation of the Levenshtein distance algorithm with character swaps having a cost of 2:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import numpy as np from numba import njit @njit def levenshtein(s1, s2): m, n = len(s1), len(s2) dp = np.zeros((m+1, n+1), dtype=np.int64) for i in range(m+1): dp[i, 0] = i for j in range(n+1): dp[0, j] = j for i in range(1, m+1): for j in range(1, n+1): cost = 0 if s1[i-1] == s2[j-1] else 1 dp[i, j] = min(dp[i-1, j] + 1, dp[i, j-1] + 1, dp[i-1, j-1] + cost) if i > 1 and j > 1 and s1[i-1] == s2[j-2] and s1[i-2] == s2[j-1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) return dp[m, n] # Test the function s1 = np.array([1, 2, 3, 4, 5], dtype=np.int32) s2 = np.array([1, 2, 4, 3, 5], dtype=np.int32) print(levenshtein(s1, s2)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import numpy as np from numba import njit @njit def levenshtein(s1, s2): m, n = len(s1), len(s2) dp = np.zeros((m+1, n+1), dtype=np.int64) for i in range(m+1): dp[i, 0] = i for j in range(n+1): dp[0, j] = j for i in range(1, m+1): for j in range(1, n+1): cost = 0 if s1[i-1] == s2[j-1] else 1 dp[i, j] = min(dp[i-1, j] + 1, dp[i, j-1] + 1, dp[i-1, j-1] + cost) if i > 1 and j > 1 and s1[i-1] == s2[j-2] and s1[i-2] == s2[j-1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) return dp[m, n] # Test the function s1 = np.array([1, 2, 3, 4, 5], dtype=np.int32) s2 = np.array([1, 2, 4, 3, 5], dtype=np.int32) print(levenshtein(s1, s2)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import numpy as np from numba import njit @njit def levenshtein(s1, s2): m, n = len(s1), len(s2) dp = np.zeros((m+1, n+1), dtype=np.int64) for i in range(m+1): dp[i, 0] = i for j in range(n+1): dp[0, j] = j for i in range(1, m+1): for j in range(1, n+1): cost = 0 if s1[i-1] == s2[j-1] else 1 dp[i, j] = min(dp[i-1, j] + 1, dp[i, j-1] + 1, dp[i-1, j-1] + cost) if i > 1 and j > 1 and s1[i-1] == s2[j-2] and s1[i-2] == s2[j-1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) return dp[m, n] # Test the function s1 = np.array([1, 2, 3, 4, 5], dtype=np.int32) s2 = np.array([1, 2, 4, 3, 5], dtype=np.int32) print(levenshtein(s1, s2)) answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
2
Traceback (most recent call last):
File "/usr/src/app/main.py", line 37, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here is the implementation of Levenshtein distance in Numba:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import numpy as np from numba import njit @njit def levenshtein(s, t): m, n = len(s), len(t) dp = np.zeros((m + 1, n + 1), dtype=np.int32) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s[i-1] == t[j-1] else 1 dp[i, j] = min(dp[i-1, j] + 1, dp[i, j-1] + 1, dp[i-1, j-1] + cost) if i > 1 and j > 1 and s[i-1] == t[j-2] and s[i-2] == t[j-1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) return dp[m, n] # Test the function s = np.array([1, 2, 3, 4], dtype=np.int32) t = np.array([1, 3, 2, 4], dtype=np.int32) result = levenshtein(s, t) print("Levenshtein distance:", result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import numpy as np from numba import njit @njit def levenshtein(s, t): m, n = len(s), len(t) dp = np.zeros((m + 1, n + 1), dtype=np.int32) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s[i-1] == t[j-1] else 1 dp[i, j] = min(dp[i-1, j] + 1, dp[i, j-1] + 1, dp[i-1, j-1] + cost) if i > 1 and j > 1 and s[i-1] == t[j-2] and s[i-2] == t[j-1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) return dp[m, n] # Test the function s = np.array([1, 2, 3, 4], dtype=np.int32) t = np.array([1, 3, 2, 4], dtype=np.int32) result = levenshtein(s, t) print("Levenshtein distance:", result) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import numpy as np from numba import njit @njit def levenshtein(s, t): m, n = len(s), len(t) dp = np.zeros((m + 1, n + 1), dtype=np.int32) for i in range(m + 1): dp[i, 0] = i for j in range(n + 1): dp[0, j] = j for i in range(1, m + 1): for j in range(1, n + 1): cost = 0 if s[i-1] == t[j-1] else 1 dp[i, j] = min(dp[i-1, j] + 1, dp[i, j-1] + 1, dp[i-1, j-1] + cost) if i > 1 and j > 1 and s[i-1] == t[j-2] and s[i-2] == t[j-1]: dp[i, j] = min(dp[i, j], dp[i-2, j-2] + 2) return dp[m, n] # Test the function s = np.array([1, 2, 3, 4], dtype=np.int32) t = np.array([1, 3, 2, 4], dtype=np.int32) result = levenshtein(s, t) print("Levenshtein distance:", result) answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Levenshtein distance: 2
Traceback (most recent call last):
File "/usr/src/app/main.py", line 39, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True