Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import numpy as np from numba import njit, int32 @njit(int32(int32[:], int32[:]), nopython=True, cache=True) def levenshtein(seq1, seq2): size_x = seq1.shape[0] + 1 size_y = seq2.shape[0] + 1 matrix = np.zeros((size_x, size_y), dtype=np.int32) for x in range(size_x): matrix[x, 0] = x for y in range(size_y): matrix[0, y] = y for x in range(1, size_x): for y in range(1, size_y): if seq1[x - 1] == seq2[y - 1]: cost = 0 else: cost = 2 matrix[x, y] = min( matrix[x - 1, y] + 1, matrix[x, y - 1] + 1, matrix[x - 1, y - 1] + cost ) return matrix[size_x - 1, size_y - 1] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import numpy as np from numba import njit, int32 @njit(int32(int32[:], int32[:]), nopython=True, cache=True) def levenshtein(seq1, seq2): size_x = seq1.shape[0] + 1 size_y = seq2.shape[0] + 1 matrix = np.zeros((size_x, size_y), dtype=np.int32) for x in range(size_x): matrix[x, 0] = x for y in range(size_y): matrix[0, y] = y for x in range(1, size_x): for y in range(1, size_y): if seq1[x - 1] == seq2[y - 1]: cost = 0 else: cost = 2 matrix[x, y] = min( matrix[x - 1, y] + 1, matrix[x, y - 1] + 1, matrix[x - 1, y - 1] + cost ) return matrix[size_x - 1, size_y - 1] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | import numpy as np from numba import njit, int32 @njit(int32(int32[:], int32[:]), nopython=True, cache=True) def levenshtein(seq1, seq2): size_x = seq1.shape[0] + 1 size_y = seq2.shape[0] + 1 matrix = np.zeros((size_x, size_y), dtype=np.int32) for x in range(size_x): matrix[x, 0] = x for y in range(size_y): matrix[0, y] = y for x in range(1, size_x): for y in range(1, size_y): if seq1[x - 1] == seq2[y - 1]: cost = 0 else: cost = 2 matrix[x, y] = min( matrix[x - 1, y] + 1, matrix[x, y - 1] + 1, matrix[x - 1, y - 1] + cost ) return matrix[size_x - 1, size_y - 1] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
/usr/local/lib/python3.11/dist-packages/numba/core/decorators.py:250: RuntimeWarning: nopython is set for njit and is ignored
warnings.warn('nopython is set for njit and is ignored', RuntimeWarning)
Traceback (most recent call last):
File "/usr/src/app/main.py", line 33, in <module>
answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9]))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/numba/core/dispatcher.py", line 703, in _explain_matching_error
raise TypeError(msg)
TypeError: No matching definition for argument type(s) array(int64, 1d, C), array(int64, 1d, C)
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: True
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import numpy as np from numba import njit @njit(nogil=True, cache=True) def levenshtein(a: np.ndarray, b: np.ndarray) -> int: """ Compute the Levenshtein distance between two strings. Args: a: The first string. b: The second string. Returns: The Levenshtein distance between the two strings. """ n, m = len(a), len(b) d = np.zeros((n + 1, m + 1), dtype=np.int32) for i in range(n + 1): d[i, 0] = i for j in range(m + 1): d[0, j] = j for j in range(1, m + 1): for i in range(1, n + 1): if a[i - 1] == b[j - 1]: cost = 0 else: cost = 2 d[i, j] = min(d[i - 1, j] + 1, # deletion d[i, j - 1] + 1, # insertion d[i - 1, j - 1] + cost) # substitution return d[n, m] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | import numpy as np from numba import njit @njit(nogil=True, cache=True) def levenshtein(a: np.ndarray, b: np.ndarray) -> int: """ Compute the Levenshtein distance between two strings. Args: a: The first string. b: The second string. Returns: The Levenshtein distance between the two strings. """ n, m = len(a), len(b) d = np.zeros((n + 1, m + 1), dtype=np.int32) for i in range(n + 1): d[i, 0] = i for j in range(m + 1): d[0, j] = j for j in range(1, m + 1): for i in range(1, n + 1): if a[i - 1] == b[j - 1]: cost = 0 else: cost = 2 d[i, j] = min(d[i - 1, j] + 1, # deletion d[i, j - 1] + 1, # insertion d[i - 1, j - 1] + cost) # substitution return d[n, m] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | import numpy as np from numba import njit @njit(nogil=True, cache=True) def levenshtein(a: np.ndarray, b: np.ndarray) -> int: """ Compute the Levenshtein distance between two strings. Args: a: The first string. b: The second string. Returns: The Levenshtein distance between the two strings. """ n, m = len(a), len(b) d = np.zeros((n + 1, m + 1), dtype=np.int32) for i in range(n + 1): d[i, 0] = i for j in range(m + 1): d[0, j] = j for j in range(1, m + 1): for i in range(1, n + 1): if a[i - 1] == b[j - 1]: cost = 0 else: cost = 2 d[i, j] = min(d[i - 1, j] + 1, # deletion d[i, j - 1] + 1, # insertion d[i - 1, j - 1] + cost) # substitution return d[n, m] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import numpy as np from numba import njit, uint32, int32 @njit(uint32(uint32[:], uint32[:]), nogil=True, cache=True) def levenshtein(s1, s2): n, m = s1.shape[0], s2.shape[0] cost = np.zeros((n+1, m+1), dtype=int32) for i in range(1, n+1): cost[i,0] = i*2 for j in range(1, m+1): cost[0,j] = j*2 for i in range(1, n+1): for j in range(1, m+1): if s1[i-1] == s2[j-1]: cost[i,j] = cost[i-1,j-1] else: cost[i,j] = min(cost[i-1,j]+2, cost[i,j-1]+2) return cost[n,m] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import numpy as np from numba import njit, uint32, int32 @njit(uint32(uint32[:], uint32[:]), nogil=True, cache=True) def levenshtein(s1, s2): n, m = s1.shape[0], s2.shape[0] cost = np.zeros((n+1, m+1), dtype=int32) for i in range(1, n+1): cost[i,0] = i*2 for j in range(1, m+1): cost[0,j] = j*2 for i in range(1, n+1): for j in range(1, m+1): if s1[i-1] == s2[j-1]: cost[i,j] = cost[i-1,j-1] else: cost[i,j] = min(cost[i-1,j]+2, cost[i,j-1]+2) return cost[n,m] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | import numpy as np from numba import njit, uint32, int32 @njit(uint32(uint32[:], uint32[:]), nogil=True, cache=True) def levenshtein(s1, s2): n, m = s1.shape[0], s2.shape[0] cost = np.zeros((n+1, m+1), dtype=int32) for i in range(1, n+1): cost[i,0] = i*2 for j in range(1, m+1): cost[0,j] = j*2 for i in range(1, n+1): for j in range(1, m+1): if s1[i-1] == s2[j-1]: cost[i,j] = cost[i-1,j-1] else: cost[i,j] = min(cost[i-1,j]+2, cost[i,j-1]+2) return cost[n,m] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 25, in <module>
answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9]))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/numba/core/dispatcher.py", line 703, in _explain_matching_error
raise TypeError(msg)
TypeError: No matching definition for argument type(s) array(int64, 1d, C), array(int64, 1d, C)
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import numpy as np from numba import njit, int32, optional from numba.typed import List @njit(int32(int32[:], int32[:]), cache=True, nogil=True, parallel=True) def levenshtein(s1, s2): len_s1 = len(s1) len_s2 = len(s2) matrix = np.zeros((len_s1 + 1, len_s2 + 1), dtype=int32) # Initialize first row and column for i in range(len_s1 + 1): matrix[i, 0] = i for j in range(len_s2 + 1): matrix[0, j] = j # Populate the rest of the matrix for i in range(1, len_s1 + 1): for j in range(1, len_s2 + 1): cost = 1 if s1[i - 1] != s2[j - 1] else 0 matrix[i, j] = min(matrix[i - 1, j] + 1, matrix[i, j - 1] + 1, matrix[i - 1, j - 1] + cost) return matrix[len_s1, len_s2] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import numpy as np from numba import njit, int32, optional from numba.typed import List @njit(int32(int32[:], int32[:]), cache=True, nogil=True, parallel=True) def levenshtein(s1, s2): len_s1 = len(s1) len_s2 = len(s2) matrix = np.zeros((len_s1 + 1, len_s2 + 1), dtype=int32) # Initialize first row and column for i in range(len_s1 + 1): matrix[i, 0] = i for j in range(len_s2 + 1): matrix[0, j] = j # Populate the rest of the matrix for i in range(1, len_s1 + 1): for j in range(1, len_s2 + 1): cost = 1 if s1[i - 1] != s2[j - 1] else 0 matrix[i, j] = min(matrix[i - 1, j] + 1, matrix[i, j - 1] + 1, matrix[i - 1, j - 1] + cost) return matrix[len_s1, len_s2] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import numpy as np from numba import njit, int32, optional from numba.typed import List @njit(int32(int32[:], int32[:]), cache=True, nogil=True, parallel=True) def levenshtein(s1, s2): len_s1 = len(s1) len_s2 = len(s2) matrix = np.zeros((len_s1 + 1, len_s2 + 1), dtype=int32) # Initialize first row and column for i in range(len_s1 + 1): matrix[i, 0] = i for j in range(len_s2 + 1): matrix[0, j] = j # Populate the rest of the matrix for i in range(1, len_s1 + 1): for j in range(1, len_s2 + 1): cost = 1 if s1[i - 1] != s2[j - 1] else 0 matrix[i, j] = min(matrix[i - 1, j] + 1, matrix[i, j - 1] + 1, matrix[i - 1, j - 1] + cost) return matrix[len_s1, len_s2] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 30, in <module>
answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9]))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/numba/core/dispatcher.py", line 703, in _explain_matching_error
raise TypeError(msg)
TypeError: No matching definition for argument type(s) array(int64, 1d, C), array(int64, 1d, C)
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import numpy as np from numba import jit @jit(nopython=True) def levenshtein(a, b): """ Levenshtein distance between two numpy int arrays. Character swaps are cost 2. """ n, m = len(a), len(b) # Create a matrix to store the distances D = np.zeros((n + 1, m + 1), dtype=np.int64) # Initialize the first row and column for i in range(n + 1): D[i, 0] = i for j in range(m + 1): D[0, j] = j # Fill in the rest of the matrix for i in range(1, n + 1): for j in range(1, m + 1): cost = 2 if a[i - 1] != b[j - 1] else 0 D[i, j] = min( D[i - 1, j] + 1, # Deletion D[i, j - 1] + 1, # Insertion D[i - 1, j - 1] + cost, # Substitution ) # Return the distance return D[n, m] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import numpy as np from numba import jit @jit(nopython=True) def levenshtein(a, b): """ Levenshtein distance between two numpy int arrays. Character swaps are cost 2. """ n, m = len(a), len(b) # Create a matrix to store the distances D = np.zeros((n + 1, m + 1), dtype=np.int64) # Initialize the first row and column for i in range(n + 1): D[i, 0] = i for j in range(m + 1): D[0, j] = j # Fill in the rest of the matrix for i in range(1, n + 1): for j in range(1, m + 1): cost = 2 if a[i - 1] != b[j - 1] else 0 D[i, j] = min( D[i - 1, j] + 1, # Deletion D[i, j - 1] + 1, # Insertion D[i - 1, j - 1] + cost, # Substitution ) # Return the distance return D[n, m] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import numpy as np from numba import jit @jit(nopython=True) def levenshtein(a, b): """ Levenshtein distance between two numpy int arrays. Character swaps are cost 2. """ n, m = len(a), len(b) # Create a matrix to store the distances D = np.zeros((n + 1, m + 1), dtype=np.int64) # Initialize the first row and column for i in range(n + 1): D[i, 0] = i for j in range(m + 1): D[0, j] = j # Fill in the rest of the matrix for i in range(1, n + 1): for j in range(1, m + 1): cost = 2 if a[i - 1] != b[j - 1] else 0 D[i, j] = min( D[i - 1, j] + 1, # Deletion D[i, j - 1] + 1, # Insertion D[i - 1, j - 1] + cost, # Substitution ) # Return the distance return D[n, m] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Testing if the previous output contains the string njit
: False
Testing if the previous output contains the string nopython
: True
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True