Initial Query

Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.

LLM Generation

Query

Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.

Output

Okay, here is a Numba implementation of the Levenshtein distance (specifically, the Damerau-Levenshtein distance variant where only *adjacent* transpositions are considered) for NumPy integer arrays, running in `nopython` mode, with a swap cost of 2.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import numba

@numba.njit # Equivalent to @numba.jit(nopython=True)
def levenshtein(a: np.ndarray, b: np.ndarray) -> int:
    """
    Calculates the Levenshtein distance between two NumPy integer arrays.

    This implementation includes adjacent transpositions (swaps) with a cost of 2.
    Standard insertions, deletions, and substitutions have a cost of 1.

    Args:
        a: The first NumPy integer array.
        b: The second NumPy integer array.

    Returns:
        The Levenshtein distance between a and b.
    """
    n = len(a)
    m = len(b)

    # Handle empty arrays
    if n == 0:
        return m
    if m == 0:
        return n

    # Initialize DP matrix (distance matrix)
    # Use np.int64 for potentially large distances and compatibility
    dp = np.zeros((n + 1, m + 1), dtype=np.int64)

    # Initialize first row and column (cost of deletions/insertions)
    for i in range(n + 1):
        dp[i, 0] = i
    for j in range(m + 1):
        dp[0, j] = j

    # Fill the DP matrix
    for i in range(1, n + 1):
        for j in range(1, m + 1):
            # Cost of substitution (0 if characters match, 1 otherwise)
            # Remember arrays are 0-indexed, dp matrix is 1-indexed conceptually
            cost = 0 if a[i - 1] == b[j - 1] else 1

            # Calculate cost based on deletion, insertion, substitution
            dp[i, j] = min(dp[i - 1, j] + 1,        # Deletion from a
                           dp[i, j - 1] + 1,        # Insertion into a
                           dp[i - 1, j - 1] + cost) # Substitution/Match

            # Check for adjacent transposition (swap)
            if i > 1 and j > 1 and a[i - 1] == b[j - 2] and a[i - 2] == b[j - 1]:
                # Cost of transposition is 2
                dp[i, j] = min(dp[i, j], dp[i - 2, j - 2] + 2)

    # The final distance is in the bottom-right corner
    return dp[n, m]

# --- Example Usage ---
if __name__ == "__main__":
    # Example 1: Simple case
    arr1 = np.array([10, 20, 30], dtype=np.int64)
    arr2 = np.array([10, 50, 30], dtype=np.int64)
    # Expected: 1 (substitute 20 for 50)
    dist1 = levenshtein(arr1, arr2)
    print(f"Array 1: {arr1}")
    print(f"Array 2: {arr2}")
    print(f"Levenshtein distance: {dist1}\n")

    # Example 2: Swap case
    arr3 = np.array([1, 2, 3, 4], dtype=np.int64)
    arr4 = np.array([1, 3, 2, 4], dtype=np.int64)
    # Expected: 2 (swap 2 and 3)
    dist2 = levenshtein(arr3, arr4)
    print(f"Array 3: {arr3}")
    print(f"Array 4: {arr4}")
    print(f"Levenshtein distance: {dist2}\n")

    # Example 3: Swap vs Substitution/Insertion/Deletion
    arr5 = np.array([5, 6], dtype=np.int64)
    arr6 = np.array([6, 5], dtype=np.int64)
    # Expected: 2 (swap 5 and 6)
    # Without swap cost 2, it would be 2 (sub 5->6, sub 6->5)
    dist3 = levenshtein(arr5, arr6)
    print(f"Array 5: {arr5}")
    print(f"Array 6: {arr6}")
    print(f"Levenshtein distance: {dist3}\n")

    # Example 4: Longer sequences
    arr7 = np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.int64)
    arr8 = np.array([1, 3, 2, 4, 5, 8, 7], dtype=np.int64)
    # Expected: 1 (swap 2,3 cost 2) + 1 (sub 6->8 cost 1) = 3
    # Let's trace:
    # 1 == 1 (cost 0)
    # 2,3 vs 3,2 -> swap (cost 2) -> state is now 1,3,2
    # 4 == 4 (cost 0) -> state is 1,3,2,4
    # 5 == 5 (cost 0) -> state is 1,3,2,4,5
    # 6 vs 8 -> sub (cost 1) -> state is 1,3,2,4,5,8
    # 7 == 7 (cost 0) -> state is 1,3,2,4,5,8,7
    # Total cost = 2 + 1 = 3
    dist4 = levenshtein(arr7, arr8)
    print(f"Array 7: {arr7}")
    print(f"Array 8: {arr8}")
    print(f"Levenshtein distance: {dist4}\n")

    # Example 5: Empty array
    arr9 = np.array([1, 2, 3], dtype=np.int64)
    arr10 = np.array([], dtype=np.int64)
    # Expected: 3 (delete 1, 2, 3)
    dist5 = levenshtein(arr9, arr10)
    print(f"Array 9: {arr9}")
    print(f"Array 10: {arr10}")
    print(f"Levenshtein distance: {dist5}\n")

    # Example 6: Identical arrays
    arr11 = np.array([9, 8, 7], dtype=np.int64)
    arr12 = np.array([9, 8, 7], dtype=np.int64)
    # Expected: 0
    dist6 = levenshtein(arr11, arr12)
    print(f"Array 11: {arr11}")
    print(f"Array 12: {arr12}")
    print(f"Levenshtein distance: {dist6}\n")

    # --- Performance check (optional) ---
    # Numba compiles on first call, subsequent calls are fast
    # print("Timing...")
    # large_arr1 = np.random.randint(0, 100, size=500, dtype=np.int64)
    # large_arr2 = np.random.randint(0, 100, size=550, dtype=np.int64)
    # %timeit levenshtein(large_arr1, large_arr2) # Use in Jupyter/IPython
    # Or use timeit module for standard Python script
    # import timeit
    # setup = """
    # import numpy as np
    # from __main__ import levenshtein
    # large_arr1 = np.random.randint(0, 100, size=500, dtype=np.int64)
    # large_arr2 = np.random.randint(0, 100, size=550, dtype=np.int64)
    # levenshtein(large_arr1, large_arr2) # Run once for compilation
    # """
    # n_runs = 10
    # t = timeit.timeit("levenshtein(large_arr1, large_arr2)", setup=setup, number=n_runs)
    # print(f"Average time over {n_runs} runs: {t/n_runs:.6f} seconds")
**Explanation:** 1. **Imports:** Import `numpy` for array creation and `numba`. 2. **Decorator:** `@numba.njit` is used to compile the function in `nopython` mode. This means Numba will try to compile the function without falling back to slower object mode. If it can't, it will raise an error. Type hints (`a: np.ndarray`, `-> int`) are good practice but not strictly required for Numba inference here. 3. **Initialization:** * Get lengths `n` and `m`. * Handle the base cases where one or both arrays are empty. * Create the dynamic programming table `dp` of size `(n+1) x (m+1)`. Using `np.int64` is generally safe for the distances. * Initialize the first row and column: `dp[i, 0] = i` and `dp[0, j] = j`, representing the cost of deleting all characters from one array or inserting all characters into the other. 4. **DP Calculation:** * Iterate through the `dp` table starting from `(1, 1)`. * `cost`: Calculate the substitution cost. It's 0 if the corresponding elements `a[i-1]` and `b[j-1]` are equal, and 1 otherwise. (Remember the `i-1`/`j-1` indexing because `dp` is offset by 1 compared to the arrays). * `dp[i, j]`: Calculate the minimum cost to reach `dp[i, j]` using one of the standard operations: * `dp[i-1, j] + 1`: Deleting `a[i-1]`. * `dp[i, j-1] + 1`: Inserting `b[j-1]`. * `dp[i-1, j-1] + cost`: Substituting `a[i-1]` with `b[j-1]` (or matching if `cost` is 0). * **Transposition Check:** * If `i > 1` and `j > 1` (meaning we have at least two characters from both arrays to compare), check if the last two characters are swapped: `a[i-1] == b[j-2]` and `a[i-2] == b[j-1]`. * If they are swapped, consider the cost of reaching this state via a transposition: `dp[i-2, j-2] + 2`. The `+ 2` is the specified cost for a swap. * Update `dp[i, j]` to be the minimum of its current value and the transposition cost. 5. **Return Value:** The final distance is stored in the bottom-right cell `dp[n, m]`. 6. **Example Usage (`if __name__ == "__main__":`)**: Demonstrates how to call the function with different NumPy integer arrays and prints the results. Includes cases for substitution, swap, mixed operations, empty arrays, and identical arrays.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import numba

@numba.njit # Equivalent to @numba.jit(nopython=True)
def levenshtein(a: np.ndarray, b: np.ndarray) -> int:
    """
    Calculates the Levenshtein distance between two NumPy integer arrays.

    This implementation includes adjacent transpositions (swaps) with a cost of 2.
    Standard insertions, deletions, and substitutions have a cost of 1.

    Args:
        a: The first NumPy integer array.
        b: The second NumPy integer array.

    Returns:
        The Levenshtein distance between a and b.
    """
    n = len(a)
    m = len(b)

    # Handle empty arrays
    if n == 0:
        return m
    if m == 0:
        return n

    # Initialize DP matrix (distance matrix)
    # Use np.int64 for potentially large distances and compatibility
    dp = np.zeros((n + 1, m + 1), dtype=np.int64)

    # Initialize first row and column (cost of deletions/insertions)
    for i in range(n + 1):
        dp[i, 0] = i
    for j in range(m + 1):
        dp[0, j] = j

    # Fill the DP matrix
    for i in range(1, n + 1):
        for j in range(1, m + 1):
            # Cost of substitution (0 if characters match, 1 otherwise)
            # Remember arrays are 0-indexed, dp matrix is 1-indexed conceptually
            cost = 0 if a[i - 1] == b[j - 1] else 1

            # Calculate cost based on deletion, insertion, substitution
            dp[i, j] = min(dp[i - 1, j] + 1,        # Deletion from a
                           dp[i, j - 1] + 1,        # Insertion into a
                           dp[i - 1, j - 1] + cost) # Substitution/Match

            # Check for adjacent transposition (swap)
            if i > 1 and j > 1 and a[i - 1] == b[j - 2] and a[i - 2] == b[j - 1]:
                # Cost of transposition is 2
                dp[i, j] = min(dp[i, j], dp[i - 2, j - 2] + 2)

    # The final distance is in the bottom-right corner
    return dp[n, m]

# --- Example Usage ---
if __name__ == "__main__":
    # Example 1: Simple case
    arr1 = np.array([10, 20, 30], dtype=np.int64)
    arr2 = np.array([10, 50, 30], dtype=np.int64)
    # Expected: 1 (substitute 20 for 50)
    dist1 = levenshtein(arr1, arr2)
    print(f"Array 1: {arr1}")
    print(f"Array 2: {arr2}")
    print(f"Levenshtein distance: {dist1}\n")

    # Example 2: Swap case
    arr3 = np.array([1, 2, 3, 4], dtype=np.int64)
    arr4 = np.array([1, 3, 2, 4], dtype=np.int64)
    # Expected: 2 (swap 2 and 3)
    dist2 = levenshtein(arr3, arr4)
    print(f"Array 3: {arr3}")
    print(f"Array 4: {arr4}")
    print(f"Levenshtein distance: {dist2}\n")

    # Example 3: Swap vs Substitution/Insertion/Deletion
    arr5 = np.array([5, 6], dtype=np.int64)
    arr6 = np.array([6, 5], dtype=np.int64)
    # Expected: 2 (swap 5 and 6)
    # Without swap cost 2, it would be 2 (sub 5->6, sub 6->5)
    dist3 = levenshtein(arr5, arr6)
    print(f"Array 5: {arr5}")
    print(f"Array 6: {arr6}")
    print(f"Levenshtein distance: {dist3}\n")

    # Example 4: Longer sequences
    arr7 = np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.int64)
    arr8 = np.array([1, 3, 2, 4, 5, 8, 7], dtype=np.int64)
    # Expected: 1 (swap 2,3 cost 2) + 1 (sub 6->8 cost 1) = 3
    # Let's trace:
    # 1 == 1 (cost 0)
    # 2,3 vs 3,2 -> swap (cost 2) -> state is now 1,3,2
    # 4 == 4 (cost 0) -> state is 1,3,2,4
    # 5 == 5 (cost 0) -> state is 1,3,2,4,5
    # 6 vs 8 -> sub (cost 1) -> state is 1,3,2,4,5,8
    # 7 == 7 (cost 0) -> state is 1,3,2,4,5,8,7
    # Total cost = 2 + 1 = 3
    dist4 = levenshtein(arr7, arr8)
    print(f"Array 7: {arr7}")
    print(f"Array 8: {arr8}")
    print(f"Levenshtein distance: {dist4}\n")

    # Example 5: Empty array
    arr9 = np.array([1, 2, 3], dtype=np.int64)
    arr10 = np.array([], dtype=np.int64)
    # Expected: 3 (delete 1, 2, 3)
    dist5 = levenshtein(arr9, arr10)
    print(f"Array 9: {arr9}")
    print(f"Array 10: {arr10}")
    print(f"Levenshtein distance: {dist5}\n")

    # Example 6: Identical arrays
    arr11 = np.array([9, 8, 7], dtype=np.int64)
    arr12 = np.array([9, 8, 7], dtype=np.int64)
    # Expected: 0
    dist6 = levenshtein(arr11, arr12)
    print(f"Array 11: {arr11}")
    print(f"Array 12: {arr12}")
    print(f"Levenshtein distance: {dist6}\n")

    # --- Performance check (optional) ---
    # Numba compiles on first call, subsequent calls are fast
    # print("Timing...")
    # large_arr1 = np.random.randint(0, 100, size=500, dtype=np.int64)
    # large_arr2 = np.random.randint(0, 100, size=550, dtype=np.int64)
    # %timeit levenshtein(large_arr1, large_arr2) # Use in Jupyter/IPython
    # Or use timeit module for standard Python script
    # import timeit
    # setup = """
    # import numpy as np
    # from __main__ import levenshtein
    # large_arr1 = np.random.randint(0, 100, size=500, dtype=np.int64)
    # large_arr2 = np.random.randint(0, 100, size=550, dtype=np.int64)
    # levenshtein(large_arr1, large_arr2) # Run once for compilation
    # """
    # n_runs = 10
    # t = timeit.timeit("levenshtein(large_arr1, large_arr2)", setup=setup, number=n_runs)
    # print(f"Average time over {n_runs} runs: {t/n_runs:.6f} seconds")

Check if all of the following conditions are true:

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import numba

@numba.njit # Equivalent to @numba.jit(nopython=True)
def levenshtein(a: np.ndarray, b: np.ndarray) -> int:
    """
    Calculates the Levenshtein distance between two NumPy integer arrays.

    This implementation includes adjacent transpositions (swaps) with a cost of 2.
    Standard insertions, deletions, and substitutions have a cost of 1.

    Args:
        a: The first NumPy integer array.
        b: The second NumPy integer array.

    Returns:
        The Levenshtein distance between a and b.
    """
    n = len(a)
    m = len(b)

    # Handle empty arrays
    if n == 0:
        return m
    if m == 0:
        return n

    # Initialize DP matrix (distance matrix)
    # Use np.int64 for potentially large distances and compatibility
    dp = np.zeros((n + 1, m + 1), dtype=np.int64)

    # Initialize first row and column (cost of deletions/insertions)
    for i in range(n + 1):
        dp[i, 0] = i
    for j in range(m + 1):
        dp[0, j] = j

    # Fill the DP matrix
    for i in range(1, n + 1):
        for j in range(1, m + 1):
            # Cost of substitution (0 if characters match, 1 otherwise)
            # Remember arrays are 0-indexed, dp matrix is 1-indexed conceptually
            cost = 0 if a[i - 1] == b[j - 1] else 1

            # Calculate cost based on deletion, insertion, substitution
            dp[i, j] = min(dp[i - 1, j] + 1,        # Deletion from a
                           dp[i, j - 1] + 1,        # Insertion into a
                           dp[i - 1, j - 1] + cost) # Substitution/Match

            # Check for adjacent transposition (swap)
            if i > 1 and j > 1 and a[i - 1] == b[j - 2] and a[i - 2] == b[j - 1]:
                # Cost of transposition is 2
                dp[i, j] = min(dp[i, j], dp[i - 2, j - 2] + 2)

    # The final distance is in the bottom-right corner
    return dp[n, m]

# --- Example Usage ---
if __name__ == "__main__":
    # Example 1: Simple case
    arr1 = np.array([10, 20, 30], dtype=np.int64)
    arr2 = np.array([10, 50, 30], dtype=np.int64)
    # Expected: 1 (substitute 20 for 50)
    dist1 = levenshtein(arr1, arr2)
    print(f"Array 1: {arr1}")
    print(f"Array 2: {arr2}")
    print(f"Levenshtein distance: {dist1}\n")

    # Example 2: Swap case
    arr3 = np.array([1, 2, 3, 4], dtype=np.int64)
    arr4 = np.array([1, 3, 2, 4], dtype=np.int64)
    # Expected: 2 (swap 2 and 3)
    dist2 = levenshtein(arr3, arr4)
    print(f"Array 3: {arr3}")
    print(f"Array 4: {arr4}")
    print(f"Levenshtein distance: {dist2}\n")

    # Example 3: Swap vs Substitution/Insertion/Deletion
    arr5 = np.array([5, 6], dtype=np.int64)
    arr6 = np.array([6, 5], dtype=np.int64)
    # Expected: 2 (swap 5 and 6)
    # Without swap cost 2, it would be 2 (sub 5->6, sub 6->5)
    dist3 = levenshtein(arr5, arr6)
    print(f"Array 5: {arr5}")
    print(f"Array 6: {arr6}")
    print(f"Levenshtein distance: {dist3}\n")

    # Example 4: Longer sequences
    arr7 = np.array([1, 2, 3, 4, 5, 6, 7], dtype=np.int64)
    arr8 = np.array([1, 3, 2, 4, 5, 8, 7], dtype=np.int64)
    # Expected: 1 (swap 2,3 cost 2) + 1 (sub 6->8 cost 1) = 3
    # Let's trace:
    # 1 == 1 (cost 0)
    # 2,3 vs 3,2 -> swap (cost 2) -> state is now 1,3,2
    # 4 == 4 (cost 0) -> state is 1,3,2,4
    # 5 == 5 (cost 0) -> state is 1,3,2,4,5
    # 6 vs 8 -> sub (cost 1) -> state is 1,3,2,4,5,8
    # 7 == 7 (cost 0) -> state is 1,3,2,4,5,8,7
    # Total cost = 2 + 1 = 3
    dist4 = levenshtein(arr7, arr8)
    print(f"Array 7: {arr7}")
    print(f"Array 8: {arr8}")
    print(f"Levenshtein distance: {dist4}\n")

    # Example 5: Empty array
    arr9 = np.array([1, 2, 3], dtype=np.int64)
    arr10 = np.array([], dtype=np.int64)
    # Expected: 3 (delete 1, 2, 3)
    dist5 = levenshtein(arr9, arr10)
    print(f"Array 9: {arr9}")
    print(f"Array 10: {arr10}")
    print(f"Levenshtein distance: {dist5}\n")

    # Example 6: Identical arrays
    arr11 = np.array([9, 8, 7], dtype=np.int64)
    arr12 = np.array([9, 8, 7], dtype=np.int64)
    # Expected: 0
    dist6 = levenshtein(arr11, arr12)
    print(f"Array 11: {arr11}")
    print(f"Array 12: {arr12}")
    print(f"Levenshtein distance: {dist6}\n")

    # --- Performance check (optional) ---
    # Numba compiles on first call, subsequent calls are fast
    # print("Timing...")
    # large_arr1 = np.random.randint(0, 100, size=500, dtype=np.int64)
    # large_arr2 = np.random.randint(0, 100, size=550, dtype=np.int64)
    # %timeit levenshtein(large_arr1, large_arr2) # Use in Jupyter/IPython
    # Or use timeit module for standard Python script
    # import timeit
    # setup = """
    # import numpy as np
    # from __main__ import levenshtein
    # large_arr1 = np.random.randint(0, 100, size=500, dtype=np.int64)
    # large_arr2 = np.random.randint(0, 100, size=550, dtype=np.int64)
    # levenshtein(large_arr1, large_arr2) # Run once for compilation
    # """
    # n_runs = 10
    # t = timeit.timeit("levenshtein(large_arr1, large_arr2)", setup=setup, number=n_runs)
    # print(f"Average time over {n_runs} runs: {t/n_runs:.6f} seconds")






answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9]))
expected = 3
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Array 1: [10 20 30] Array 2: [10 50 30] Levenshtein distance: 1 Array 3: [1 2 3 4] Array 4: [1 3 2 4] Levenshtein distance: 2 Array 5: [5 6] Array 6: [6 5] Levenshtein distance: 2 Array 7: [1 2 3 4 5 6 7] Array 8: [1 3 2 4 5 8 7] Levenshtein distance: 3 Array 9: [1 2 3] Array 10: [] Levenshtein distance: 3 Array 11: [9 8 7] Array 12: [9 8 7] Levenshtein distance: 0 Traceback (most recent call last): File "/usr/src/app/main.py", line 150, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got 2 instead of 3

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string njit: True

Substring Evaluation

Testing if the previous output contains the string nopython: True

Final Answer: True

Check if any of the following conditions are true:

Substring Evaluation

Testing if the previous output contains the string import numba: True

Substring Evaluation

Testing if the previous output contains the string from numba: False

Final Answer: True

Final Answer: False