Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's a Numba implementation of the Levenshtein distance using two numpy int arrays, with character swaps having a cost of 2:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(a, b): len_a, len_b = len(a), len(b) # Initialize the distance matrix with zeros dist = np.zeros((len_a + 1, len_b + 1), dtype=np.int32) # Fill in the first row and column of the distance matrix for i in range(len_a + 1): dist[i, 0] = i for j in range(len_b + 1): dist[0, j] = j # Calculate the Levenshtein distance for i in range(1, len_a + 1): for j in range(1, len_b + 1): if a[i - 1] == b[j - 1]: cost = 0 else: cost = 1 # Calculate the minimum cost for insertion, deletion, and substitution insertion = dist[i, j - 1] + 1 deletion = dist[i - 1, j] + 1 substitution = dist[i - 1, j - 1] + cost # Check if character swap is possible and calculate the cost if i > 1 and j > 1 and a[i - 1] == b[j - 2] and a[i - 2] == b[j - 1]: swap = dist[i - 2, j - 2] + 2 else: swap = np.inf # Take the minimum of insertion, deletion, substitution, and swap costs dist[i, j] = min(insertion, deletion, substitution, swap) return dist[len_a, len_b] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(a, b): len_a, len_b = len(a), len(b) # Initialize the distance matrix with zeros dist = np.zeros((len_a + 1, len_b + 1), dtype=np.int32) # Fill in the first row and column of the distance matrix for i in range(len_a + 1): dist[i, 0] = i for j in range(len_b + 1): dist[0, j] = j # Calculate the Levenshtein distance for i in range(1, len_a + 1): for j in range(1, len_b + 1): if a[i - 1] == b[j - 1]: cost = 0 else: cost = 1 # Calculate the minimum cost for insertion, deletion, and substitution insertion = dist[i, j - 1] + 1 deletion = dist[i - 1, j] + 1 substitution = dist[i - 1, j - 1] + cost # Check if character swap is possible and calculate the cost if i > 1 and j > 1 and a[i - 1] == b[j - 2] and a[i - 2] == b[j - 1]: swap = dist[i - 2, j - 2] + 2 else: swap = np.inf # Take the minimum of insertion, deletion, substitution, and swap costs dist[i, j] = min(insertion, deletion, substitution, swap) return dist[len_a, len_b] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(a, b): len_a, len_b = len(a), len(b) # Initialize the distance matrix with zeros dist = np.zeros((len_a + 1, len_b + 1), dtype=np.int32) # Fill in the first row and column of the distance matrix for i in range(len_a + 1): dist[i, 0] = i for j in range(len_b + 1): dist[0, j] = j # Calculate the Levenshtein distance for i in range(1, len_a + 1): for j in range(1, len_b + 1): if a[i - 1] == b[j - 1]: cost = 0 else: cost = 1 # Calculate the minimum cost for insertion, deletion, and substitution insertion = dist[i, j - 1] + 1 deletion = dist[i - 1, j] + 1 substitution = dist[i - 1, j - 1] + cost # Check if character swap is possible and calculate the cost if i > 1 and j > 1 and a[i - 1] == b[j - 2] and a[i - 2] == b[j - 1]: swap = dist[i - 2, j - 2] + 2 else: swap = np.inf # Take the minimum of insertion, deletion, substitution, and swap costs dist[i, j] = min(insertion, deletion, substitution, swap) return dist[len_a, len_b] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 48, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: False
Testing if the previous output contains the string nopython
: True
Testing if the previous output contains the string import numba
: True
Testing if the previous output contains the string from numba
: False
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's a Numba implementation of the Levenshtein distance that takes two NumPy integer arrays and runs in nopython mode. The cost of character swaps is set to 2:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(s1, s2): len1, len2 = len(s1), len(s2) matrix = np.zeros((len1 + 1, len2 + 1), dtype=np.int32) for i in range(len1 + 1): matrix[i, 0] = i for j in range(len2 + 1): matrix[0, j] = j for i in range(1, len1 + 1): for j in range(1, len2 + 1): if s1[i - 1] == s2[j - 1]: cost = 0 else: cost = 2 if s1[i - 1] == s2[j - 2] and s1[i - 2] == s2[j - 1] and i > 1 and j > 1 else 1 matrix[i, j] = min(matrix[i - 1, j] + 1, # deletion matrix[i, j - 1] + 1, # insertion matrix[i - 1, j - 1] + cost) # substitution return matrix[len1, len2] |
1 2 3 4 5 | s1 = np.array([1, 2, 3, 4, 5]) s2 = np.array([1, 2, 4, 3, 5]) distance = levenshtein(s1, s2) print("Levenshtein distance:", distance) |
1 | Levenshtein distance: 2 |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(s1, s2): len1, len2 = len(s1), len(s2) matrix = np.zeros((len1 + 1, len2 + 1), dtype=np.int32) for i in range(len1 + 1): matrix[i, 0] = i for j in range(len2 + 1): matrix[0, j] = j for i in range(1, len1 + 1): for j in range(1, len2 + 1): if s1[i - 1] == s2[j - 1]: cost = 0 else: cost = 2 if s1[i - 1] == s2[j - 2] and s1[i - 2] == s2[j - 1] and i > 1 and j > 1 else 1 matrix[i, j] = min(matrix[i - 1, j] + 1, # deletion matrix[i, j - 1] + 1, # insertion matrix[i - 1, j - 1] + cost) # substitution return matrix[len1, len2] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(s1, s2): len1, len2 = len(s1), len(s2) matrix = np.zeros((len1 + 1, len2 + 1), dtype=np.int32) for i in range(len1 + 1): matrix[i, 0] = i for j in range(len2 + 1): matrix[0, j] = j for i in range(1, len1 + 1): for j in range(1, len2 + 1): if s1[i - 1] == s2[j - 1]: cost = 0 else: cost = 2 if s1[i - 1] == s2[j - 2] and s1[i - 2] == s2[j - 1] and i > 1 and j > 1 else 1 matrix[i, j] = min(matrix[i - 1, j] + 1, # deletion matrix[i, j - 1] + 1, # insertion matrix[i - 1, j - 1] + cost) # substitution return matrix[len1, len2] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 34, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: False
Testing if the previous output contains the string nopython
: True
Testing if the previous output contains the string import numba
: True
Testing if the previous output contains the string from numba
: False
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's a Numba implementation of the Levenshtein distance algorithm that takes two NumPy integer arrays and calculates the Levenshtein distance between them, with character swaps having a cost of 2:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import numpy as np from numba import njit @njit def levenshtein(a, b): n = len(a) m = len(b) # Initialize the distance matrix with zeros dist = np.zeros((n+1, m+1), dtype=np.int64) # Fill in the first row and column of the distance matrix for i in range(1, n+1): dist[i, 0] = i for j in range(1, m+1): dist[0, j] = j # Calculate the Levenshtein distance for i in range(1, n+1): for j in range(1, m+1): if a[i-1] == b[j-1]: cost = 0 else: cost = 1 deletion = dist[i-1, j] + 1 insertion = dist[i, j-1] + 1 substitution = dist[i-1, j-1] + cost if i > 1 and j > 1 and a[i-1] == b[j-2] and a[i-2] == b[j-1]: swap = dist[i-2, j-2] + 2 else: swap = np.inf dist[i, j] = min(deletion, insertion, substitution, swap) return dist[n, m] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import numpy as np from numba import njit @njit def levenshtein(a, b): n = len(a) m = len(b) # Initialize the distance matrix with zeros dist = np.zeros((n+1, m+1), dtype=np.int64) # Fill in the first row and column of the distance matrix for i in range(1, n+1): dist[i, 0] = i for j in range(1, m+1): dist[0, j] = j # Calculate the Levenshtein distance for i in range(1, n+1): for j in range(1, m+1): if a[i-1] == b[j-1]: cost = 0 else: cost = 1 deletion = dist[i-1, j] + 1 insertion = dist[i, j-1] + 1 substitution = dist[i-1, j-1] + cost if i > 1 and j > 1 and a[i-1] == b[j-2] and a[i-2] == b[j-1]: swap = dist[i-2, j-2] + 2 else: swap = np.inf dist[i, j] = min(deletion, insertion, substitution, swap) return dist[n, m] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | import numpy as np from numba import njit @njit def levenshtein(a, b): n = len(a) m = len(b) # Initialize the distance matrix with zeros dist = np.zeros((n+1, m+1), dtype=np.int64) # Fill in the first row and column of the distance matrix for i in range(1, n+1): dist[i, 0] = i for j in range(1, m+1): dist[0, j] = j # Calculate the Levenshtein distance for i in range(1, n+1): for j in range(1, m+1): if a[i-1] == b[j-1]: cost = 0 else: cost = 1 deletion = dist[i-1, j] + 1 insertion = dist[i, j-1] + 1 substitution = dist[i-1, j-1] + cost if i > 1 and j > 1 and a[i-1] == b[j-2] and a[i-2] == b[j-1]: swap = dist[i-2, j-2] + 2 else: swap = np.inf dist[i, j] = min(deletion, insertion, substitution, swap) return dist[n, m] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 46, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's the Numba implementation of the Levenshtein distance, taking two NumPy integer arrays and running in nopython mode with character swap cost of 2:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(a, b): m, n = len(a), len(b) # Initialize the distance matrix dist = np.zeros((m + 1, n + 1), dtype=np.int32) # Fill the first row and column of the distance matrix for i in range(m + 1): dist[i, 0] = i for j in range(n + 1): dist[0, j] = j # Calculate the Levenshtein distance for i in range(1, m + 1): for j in range(1, n + 1): if a[i - 1] == b[j - 1]: cost = 0 else: cost = 2 # Character swap cost dist[i, j] = min(dist[i - 1, j] + 1, # Deletion dist[i, j - 1] + 1, # Insertion dist[i - 1, j - 1] + cost) # Substitution return dist[m, n] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(a, b): m, n = len(a), len(b) # Initialize the distance matrix dist = np.zeros((m + 1, n + 1), dtype=np.int32) # Fill the first row and column of the distance matrix for i in range(m + 1): dist[i, 0] = i for j in range(n + 1): dist[0, j] = j # Calculate the Levenshtein distance for i in range(1, m + 1): for j in range(1, n + 1): if a[i - 1] == b[j - 1]: cost = 0 else: cost = 2 # Character swap cost dist[i, j] = min(dist[i - 1, j] + 1, # Deletion dist[i, j - 1] + 1, # Insertion dist[i - 1, j - 1] + cost) # Substitution return dist[m, n] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(a, b): m, n = len(a), len(b) # Initialize the distance matrix dist = np.zeros((m + 1, n + 1), dtype=np.int32) # Fill the first row and column of the distance matrix for i in range(m + 1): dist[i, 0] = i for j in range(n + 1): dist[0, j] = j # Calculate the Levenshtein distance for i in range(1, m + 1): for j in range(1, n + 1): if a[i - 1] == b[j - 1]: cost = 0 else: cost = 2 # Character swap cost dist[i, j] = min(dist[i - 1, j] + 1, # Deletion dist[i, j - 1] + 1, # Insertion dist[i - 1, j - 1] + cost) # Substitution return dist[m, n] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Testing if the previous output contains the string njit
: False
Testing if the previous output contains the string nopython
: True
Testing if the previous output contains the string import numba
: True
Testing if the previous output contains the string from numba
: False
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's a Numba implementation of the Levenshtein distance algorithm, taking two numpy integer arrays as input and running in nopython mode. In this implementation, character swaps have a cost of 2:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(a, b): n = len(a) m = len(b) # Initialize the distance matrix dist = np.zeros((n+1, m+1), dtype=np.int64) # Fill the first row and column of the distance matrix for i in range(1, n+1): dist[i, 0] = i for j in range(1, m+1): dist[0, j] = j # Fill the rest of the distance matrix for i in range(1, n+1): for j in range(1, m+1): if a[i-1] == b[j-1]: cost = 0 else: cost = 2 if i > 1 and j > 1 and a[i-1] == b[j-2] and a[i-2] == b[j-1] else 1 dist[i, j] = min(dist[i-1, j] + 1, # Deletion dist[i, j-1] + 1, # Insertion dist[i-1, j-1] + cost) # Substitution or swap return dist[n, m] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(a, b): n = len(a) m = len(b) # Initialize the distance matrix dist = np.zeros((n+1, m+1), dtype=np.int64) # Fill the first row and column of the distance matrix for i in range(1, n+1): dist[i, 0] = i for j in range(1, m+1): dist[0, j] = j # Fill the rest of the distance matrix for i in range(1, n+1): for j in range(1, m+1): if a[i-1] == b[j-1]: cost = 0 else: cost = 2 if i > 1 and j > 1 and a[i-1] == b[j-2] and a[i-2] == b[j-1] else 1 dist[i, j] = min(dist[i-1, j] + 1, # Deletion dist[i, j-1] + 1, # Insertion dist[i-1, j-1] + cost) # Substitution or swap return dist[n, m] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import numpy as np import numba as nb @nb.jit(nopython=True) def levenshtein(a, b): n = len(a) m = len(b) # Initialize the distance matrix dist = np.zeros((n+1, m+1), dtype=np.int64) # Fill the first row and column of the distance matrix for i in range(1, n+1): dist[i, 0] = i for j in range(1, m+1): dist[0, j] = j # Fill the rest of the distance matrix for i in range(1, n+1): for j in range(1, m+1): if a[i-1] == b[j-1]: cost = 0 else: cost = 2 if i > 1 and j > 1 and a[i-1] == b[j-2] and a[i-2] == b[j-1] else 1 dist[i, j] = min(dist[i-1, j] + 1, # Deletion dist[i, j-1] + 1, # Insertion dist[i-1, j-1] + cost) # Substitution or swap return dist[n, m] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 39, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: False
Testing if the previous output contains the string nopython
: True
Testing if the previous output contains the string import numba
: True
Testing if the previous output contains the string from numba
: False