Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's a Numba implementation of the Levenshtein distance algorithm that takes two NumPy integer arrays as input. The function is set to run in nopython mode for better performance. Character swaps are given a cost of 2, as requested.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: # Minimum of insertion, deletion, and substitution d[i, j] = min(d[i-1, j] + 1, # Deletion d[i, j-1] + 1, # Insertion d[i-1, j-1] + 1) # Substitution # Check for transposition (swap) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: d[i, j] = min(d[i, j], d[i-2, j-2] + 2) # Transposition cost is 2 return d[m, n] # Example usage if __name__ == "__main__": # Example integer sequences seq1 = np.array([1, 2, 3, 4, 5], dtype=np.int32) seq2 = np.array([1, 2, 4, 3, 5], dtype=np.int32) distance = levenshtein(seq1, seq2) print(f"Levenshtein distance: {distance}") |
1 | pip install numba numpy |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: # Minimum of insertion, deletion, and substitution d[i, j] = min(d[i-1, j] + 1, # Deletion d[i, j-1] + 1, # Insertion d[i-1, j-1] + 1) # Substitution # Check for transposition (swap) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: d[i, j] = min(d[i, j], d[i-2, j-2] + 2) # Transposition cost is 2 return d[m, n] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: # Minimum of insertion, deletion, and substitution d[i, j] = min(d[i-1, j] + 1, # Deletion d[i, j-1] + 1, # Insertion d[i-1, j-1] + 1) # Substitution # Check for transposition (swap) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: d[i, j] = min(d[i, j], d[i-2, j-2] + 2) # Transposition cost is 2 return d[m, n] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 41, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's a Numba implementation of the Levenshtein distance function that takes two NumPy integer arrays as input. It's set to run in nopython mode for better performance. Character swaps are given a cost of 2, as requested.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] |
1 2 3 4 5 6 | # Example usage seq1 = np.array([1, 2, 3, 4, 5], dtype=np.int32) seq2 = np.array([2, 3, 4, 5, 6], dtype=np.int32) distance = levenshtein(seq1, seq2) print(f"Levenshtein distance: {distance}") |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 43, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's a Numba implementation of the Levenshtein distance algorithm that takes two NumPy integer arrays as input. The function is called `levenshtein` and is set to run in nopython mode. Character swaps are assigned a cost of 2, as requested.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] |
1 2 3 4 5 6 7 8 | import numpy as np # Example usage seq1 = np.array([1, 2, 3, 4, 5], dtype=np.int32) seq2 = np.array([2, 3, 4, 5, 6], dtype=np.int32) distance = levenshtein(seq1, seq2) print(f"Levenshtein distance: {distance}") |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 43, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's a Numba implementation of the Levenshtein distance algorithm that takes two NumPy integer arrays as input. This implementation includes a cost of 2 for character swaps and runs in nopython mode for better performance:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] |
1 2 3 4 5 6 7 8 | import numpy as np # Example usage seq1 = np.array([1, 2, 3, 4, 5], dtype=np.int32) seq2 = np.array([1, 2, 4, 3, 5], dtype=np.int32) distance = levenshtein(seq1, seq2) print(f"Levenshtein distance: {distance}") |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 43, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Write me a numba implementation of levensthin distance, taking two numpy int arrays. Call it levenshtein. Run it in nopython mode. Character swaps are cost 2.
Here's a Numba implementation of the Levenshtein distance algorithm that takes two NumPy integer arrays as input. The function is designed to run in nopython mode for better performance. Character swaps are given a cost of 2, as requested.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] |
1 2 3 4 5 6 7 8 | import numpy as np # Example usage seq1 = np.array([1, 2, 3, 4, 5], dtype=np.int32) seq2 = np.array([1, 2, 4, 3, 5], dtype=np.int32) distance = levenshtein(seq1, seq2) print(f"Levenshtein distance: {distance}") |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import numpy as np from numba import njit @njit def levenshtein(seq1, seq2): m, n = len(seq1), len(seq2) # Create a matrix to store the distances d = np.zeros((m+1, n+1), dtype=np.int32) # Initialize the first row and column for i in range(m+1): d[i, 0] = i for j in range(n+1): d[0, j] = j # Fill in the rest of the matrix for i in range(1, m+1): for j in range(1, n+1): if seq1[i-1] == seq2[j-1]: d[i, j] = d[i-1, j-1] else: deletion = d[i-1, j] + 1 insertion = d[i, j-1] + 1 substitution = d[i-1, j-1] + 1 # Check for swap (transposition) if i > 1 and j > 1 and seq1[i-1] == seq2[j-2] and seq1[i-2] == seq2[j-1]: swap = d[i-2, j-2] + 2 d[i, j] = min(deletion, insertion, substitution, swap) else: d[i, j] = min(deletion, insertion, substitution) return d[m, n] answer = levenshtein(np.array([3, 5, 2, 4, 8, 7]), np.array([3, 4, 2, 4, 8, 7, 9])) expected = 3 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 43, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got 2 instead of 3
Testing if the previous output contains the string All tests passed
: False
Testing if the previous output contains the string njit
: True
Testing if the previous output contains the string nopython
: False
Testing if the previous output contains the string import numba
: False
Testing if the previous output contains the string from numba
: True