Fix the bug in this jnp function. Write out the full correct version of the code. import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (hidden_size, input_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (output_size, hidden_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1'].T) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2'].T) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(list(y.flatten().sum(1))) # The output sum should be very close to [1, 1, 1, 1, 1]
Fix the bug in this jnp function. Write out the full correct version of the code. import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (hidden_size, input_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (output_size, hidden_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1'].T) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2'].T) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(list(y.flatten().sum(1))) # The output sum should be very close to [1, 1, 1, 1, 1]
Here's the corrected version of the code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(jnp.sum(y, axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(jnp.sum(y, axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(jnp.sum(y, axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
[0.99999994 1. 1. 1. 1. ]
Testing if the previous output contains the string 0.99999
: True
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Fix the bug in this jnp function. Write out the full correct version of the code. import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (hidden_size, input_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (output_size, hidden_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1'].T) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2'].T) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(list(y.flatten().sum(1))) # The output sum should be very close to [1, 1, 1, 1, 1]
Fix the bug in this jnp function. Write out the full correct version of the code. import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (hidden_size, input_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (output_size, hidden_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1'].T) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2'].T) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(list(y.flatten().sum(1))) # The output sum should be very close to [1, 1, 1, 1, 1]
Here's the corrected version of the code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(y.sum(axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(y.sum(axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(y.sum(axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
[0.99999994 1. 1. 1. 1. ]
Testing if the previous output contains the string 0.99999
: True
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Fix the bug in this jnp function. Write out the full correct version of the code. import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (hidden_size, input_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (output_size, hidden_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1'].T) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2'].T) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(list(y.flatten().sum(1))) # The output sum should be very close to [1, 1, 1, 1, 1]
Fix the bug in this jnp function. Write out the full correct version of the code. import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (hidden_size, input_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (output_size, hidden_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1'].T) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2'].T) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(list(y.flatten().sum(1))) # The output sum should be very close to [1, 1, 1, 1, 1]
Here's the corrected version of the code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(y.sum(axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(y.sum(axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(y.sum(axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
[0.99999994 1. 1. 1. 1. ]
Testing if the previous output contains the string 0.99999
: True
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Fix the bug in this jnp function. Write out the full correct version of the code. import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (hidden_size, input_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (output_size, hidden_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1'].T) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2'].T) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(list(y.flatten().sum(1))) # The output sum should be very close to [1, 1, 1, 1, 1]
Fix the bug in this jnp function. Write out the full correct version of the code. import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (hidden_size, input_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (output_size, hidden_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1'].T) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2'].T) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(list(y.flatten().sum(1))) # The output sum should be very close to [1, 1, 1, 1, 1]
Here's the corrected version of the code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(jnp.sum(y, axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(jnp.sum(y, axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(jnp.sum(y, axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
[0.99999994 1. 1. 1. 1. ]
Testing if the previous output contains the string 0.99999
: True
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False
Fix the bug in this jnp function. Write out the full correct version of the code. import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (hidden_size, input_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (output_size, hidden_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1'].T) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2'].T) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(list(y.flatten().sum(1))) # The output sum should be very close to [1, 1, 1, 1, 1]
Fix the bug in this jnp function. Write out the full correct version of the code. import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (hidden_size, input_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (output_size, hidden_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1'].T) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2'].T) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(list(y.flatten().sum(1))) # The output sum should be very close to [1, 1, 1, 1, 1]
Here's the corrected version of the code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(y.sum(axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(y.sum(axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import jax import jax.numpy as jnp def init_mlp_params(input_size, hidden_size, output_size, key): k1, k2 = jax.random.split(key) # Initialize weights and biases for the first linear layer w1 = jax.random.normal(k1, (input_size, hidden_size)) * jnp.sqrt(2.0 / input_size) b1 = jnp.zeros(hidden_size) # Initialize weights and biases for the second linear layer w2 = jax.random.normal(k2, (hidden_size, output_size)) * jnp.sqrt(2.0 / hidden_size) b2 = jnp.zeros(output_size) return {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2} def mlp_apply(params, x): # First linear layer x = jnp.dot(x, params['w1']) + params['b1'] # Relu activation x = jax.nn.relu(x) # Second linear layer x = jnp.dot(x, params['w2']) + params['b2'] # Softmax activation return jax.nn.softmax(x, axis=-1) # Example usage: key = jax.random.PRNGKey(0) params = init_mlp_params(10, 20, 30, key) x = jax.random.normal(key, (5, 10)) # random input similar to torch.randn y = mlp_apply(params, x) print(y.sum(axis=-1)) # The output sum should be very close to [1, 1, 1, 1, 1] |
[0.99999994 1. 1. 1. 1. ]
Testing if the previous output contains the string 0.99999
: True
Testing if the previous output contains the string 1.0
: False
Testing if the previous output contains the string 1.00000
: False
Testing if the previous output contains the string 1.0,
: False