I have list of indexes and I want to convert it to one hot vector using jax and the function should be jittable and the function should be jitted. name the function one_hot and it should get two arguments the first one is the indexes and the second one is the number of possible labeles. Just give me the code
I have list of indexes and I want to convert it to one hot vector using jax and the function should be jittable and the function should be jitted. name the function one_hot and it should get two arguments the first one is the indexes and the second one is the number of possible labeles. Just give me the code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | import jax import jax.numpy as jnp import jax.nn as jnn # Contains the one_hot function # Define the core function implementation def _one_hot_impl(indexes, num_labels): """ Converts a list or array of indices to one-hot vectors using JAX. Args: indexes: A JAX array (or array-like, e.g., list, numpy array) of non-negative integers representing the indices. num_labels: An integer representing the total number of possible labels (the depth of the one-hot vector). Returns: A JAX array where each row corresponds to an index from the input, represented as a one-hot vector. The shape will be (len(indexes), num_labels). """ # Ensure indexes is a JAX array for potential performance benefits, # although jax.nn.one_hot often handles conversion implicitly. # indexes = jnp.asarray(indexes) # Optional explicit conversion # Use jax.nn.one_hot for efficient implementation # It automatically handles the creation of the one-hot matrix. # Default dtype is float based on jax_enable_x64 status (usually float32) return jnn.one_hot(indexes, num_classes=num_labels) # Create the jitted version of the function one_hot = jax.jit(_one_hot_impl) # --- Example Usage --- if __name__ == "__main__": # Example list of indices index_list = [0, 2, 1, 3, 0] # Can also use a jax array or numpy array # index_array = jnp.array([0, 2, 1, 3, 0]) # Number of possible labels (classes) num_classes = 5 # Convert using the jitted function # The first call will trigger JIT compilation, subsequent calls will be faster. print(f"Input Indexes: {index_list}") print(f"Number of Labels: {num_classes}") one_hot_vectors = one_hot(index_list, num_classes) # one_hot_vectors = one_hot(index_array, num_classes) # Works the same print("\nOutput One-Hot Vectors:") print(one_hot_vectors) print(f"\nOutput Shape: {one_hot_vectors.shape}") print(f"Output Dtype: {one_hot_vectors.dtype}") # Verify the output for the first index (0) print(f"\nVerification: First vector corresponds to index {index_list[0]}: {one_hot_vectors[0]}") # Verify the output for the second index (2) print(f"Verification: Second vector corresponds to index {index_list[1]}: {one_hot_vectors[1]}") # Example with different data indices_2 = jnp.array([4, 0, 2]) num_classes_2 = 6 one_hot_2 = one_hot(indices_2, num_classes_2) print("\n--- Another Example ---") print(f"Input Indexes: {indices_2}") print(f"Number of Labels: {num_classes_2}") print("Output One-Hot Vectors:") print(one_hot_2) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | import jax import jax.numpy as jnp import jax.nn as jnn # Contains the one_hot function # Define the core function implementation def _one_hot_impl(indexes, num_labels): """ Converts a list or array of indices to one-hot vectors using JAX. Args: indexes: A JAX array (or array-like, e.g., list, numpy array) of non-negative integers representing the indices. num_labels: An integer representing the total number of possible labels (the depth of the one-hot vector). Returns: A JAX array where each row corresponds to an index from the input, represented as a one-hot vector. The shape will be (len(indexes), num_labels). """ # Ensure indexes is a JAX array for potential performance benefits, # although jax.nn.one_hot often handles conversion implicitly. # indexes = jnp.asarray(indexes) # Optional explicit conversion # Use jax.nn.one_hot for efficient implementation # It automatically handles the creation of the one-hot matrix. # Default dtype is float based on jax_enable_x64 status (usually float32) return jnn.one_hot(indexes, num_classes=num_labels) # Create the jitted version of the function one_hot = jax.jit(_one_hot_impl) # --- Example Usage --- if __name__ == "__main__": # Example list of indices index_list = [0, 2, 1, 3, 0] # Can also use a jax array or numpy array # index_array = jnp.array([0, 2, 1, 3, 0]) # Number of possible labels (classes) num_classes = 5 # Convert using the jitted function # The first call will trigger JIT compilation, subsequent calls will be faster. print(f"Input Indexes: {index_list}") print(f"Number of Labels: {num_classes}") one_hot_vectors = one_hot(index_list, num_classes) # one_hot_vectors = one_hot(index_array, num_classes) # Works the same print("\nOutput One-Hot Vectors:") print(one_hot_vectors) print(f"\nOutput Shape: {one_hot_vectors.shape}") print(f"Output Dtype: {one_hot_vectors.dtype}") # Verify the output for the first index (0) print(f"\nVerification: First vector corresponds to index {index_list[0]}: {one_hot_vectors[0]}") # Verify the output for the second index (2) print(f"Verification: Second vector corresponds to index {index_list[1]}: {one_hot_vectors[1]}") # Example with different data indices_2 = jnp.array([4, 0, 2]) num_classes_2 = 6 one_hot_2 = one_hot(indices_2, num_classes_2) print("\n--- Another Example ---") print(f"Input Indexes: {indices_2}") print(f"Number of Labels: {num_classes_2}") print("Output One-Hot Vectors:") print(one_hot_2) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | import jax import jax.numpy as jnp import jax.nn as jnn # Contains the one_hot function # Define the core function implementation def _one_hot_impl(indexes, num_labels): """ Converts a list or array of indices to one-hot vectors using JAX. Args: indexes: A JAX array (or array-like, e.g., list, numpy array) of non-negative integers representing the indices. num_labels: An integer representing the total number of possible labels (the depth of the one-hot vector). Returns: A JAX array where each row corresponds to an index from the input, represented as a one-hot vector. The shape will be (len(indexes), num_labels). """ # Ensure indexes is a JAX array for potential performance benefits, # although jax.nn.one_hot often handles conversion implicitly. # indexes = jnp.asarray(indexes) # Optional explicit conversion # Use jax.nn.one_hot for efficient implementation # It automatically handles the creation of the one-hot matrix. # Default dtype is float based on jax_enable_x64 status (usually float32) return jnn.one_hot(indexes, num_classes=num_labels) # Create the jitted version of the function one_hot = jax.jit(_one_hot_impl) # --- Example Usage --- if __name__ == "__main__": # Example list of indices index_list = [0, 2, 1, 3, 0] # Can also use a jax array or numpy array # index_array = jnp.array([0, 2, 1, 3, 0]) # Number of possible labels (classes) num_classes = 5 # Convert using the jitted function # The first call will trigger JIT compilation, subsequent calls will be faster. print(f"Input Indexes: {index_list}") print(f"Number of Labels: {num_classes}") one_hot_vectors = one_hot(index_list, num_classes) # one_hot_vectors = one_hot(index_array, num_classes) # Works the same print("\nOutput One-Hot Vectors:") print(one_hot_vectors) print(f"\nOutput Shape: {one_hot_vectors.shape}") print(f"Output Dtype: {one_hot_vectors.dtype}") # Verify the output for the first index (0) print(f"\nVerification: First vector corresponds to index {index_list[0]}: {one_hot_vectors[0]}") # Verify the output for the second index (2) print(f"Verification: Second vector corresponds to index {index_list[1]}: {one_hot_vectors[1]}") # Example with different data indices_2 = jnp.array([4, 0, 2]) num_classes_2 = 6 one_hot_2 = one_hot(indices_2, num_classes_2) print("\n--- Another Example ---") print(f"Input Indexes: {indices_2}") print(f"Number of Labels: {num_classes_2}") print("Output One-Hot Vectors:") print(one_hot_2) import jax.numpy as jnp answer = str(one_hot(jnp.array([1,2,0]),5)) expected = str(jnp.array([[0.0,1.0,0.0,0.0,0.0],[0.0,0.0,1.0,0.0,0.0],[1.0,0.0,0.0,0.0,0.0]])) assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
``
Input Indexes: [0, 2, 1, 3, 0]
Number of Labels: 5
Traceback (most recent call last):
File "/usr/src/app/main.py", line 48, in <module>
one_hot_vectors = one_hot(index_list, num_classes)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 28, in _one_hot_impl
return jnn.one_hot(indexes, num_classes=num_labels)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/jax/_src/nn/functions.py", line 706, in one_hot
num_classes = core.concrete_dim_or_error(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
jax.errors.ConcretizationTypeError: Abstract tracer value encountered where concrete value is expected: traced array with shape int32[]
The error arose in jax.nn.one_hot argument
num_classes`.
The error occurred while tracing the function _one_hot_impl at /usr/src/app/main.py:7 for jit. This concrete value was not available in Python because it depends on the value of the argument num_labels.
See https://jax.readthedocs.io/en/latest/errors.html#jax.errors.ConcretizationTypeError
For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these.
1 2 | <h1>Substring Evaluation</h1> <p>Testing if the previous output contains the string <code>All tests passed</code>: False</p> |