Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Creating a full-fledged Python interpreter for your custom assembly language is quite a complex task, but I can provide you with a basic idea of how to get started. Here's a simple implementation that should work for the given example program. This implementation will store prime numbers in a list.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | def evaluate(program): memory = [0] * 1000 # Initialize memory with 1000 cells registers = [0] * 10 # Initialize 10 registers with 0 labels = {} pc = 0 # Program counter def find_label(label): for i, line in enumerate(program): if line.startswith(label + ":"): return i raise Exception(f"Label '{label}' not found") def run(): nonlocal pc while True: if pc >= len(program): break line = program[pc].strip() if not line: pc += 1 continue op, _, arg = line.partition(" ") if op == "SET": dest, value = arg.split(", ") registers[int(dest[1:])] = int(value) pc += 1 elif op == "INC": dest = arg[1:] registers[int(dest)] += 1 pc += 1 elif op == "JMP": pc = find_label(arg) elif op == "JF": flag_register = registers[7] == 0 if flag_register: pc = find_label(arg) else: pc += 1 elif op == "MUL": registers[int(arg[0][1:])] = registers[int(arg[0][1:])] * registers[int(arg[1][1:])] pc += 1 elif op == "GT": registers[7] = 1 if registers[int(arg[0][1:])] > registers[int(arg[1][1:])] else 0 pc += 1 elif op == "MOD": registers[int(arg[0][1:])] = registers[int(arg[0][1:])] % registers[int(arg[1][1:])] pc += 1 elif op == "EQ": registers[7] = 1 if registers[int(arg[0][1:])] == registers[int(arg[1][1:])] else 0 pc += 1 elif op == "STORE": memory[registers[int(arg[1][1:])]] = registers[int(arg[0][1:])] pc += 1 else: raise Exception(f"Unknown operation '{op}'") run() return memory[:registers[8]] program = """ ... """ # Place your assembly program here memory = evaluate(program) print(memory[:10]) # Print first 10 prime numbers |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | def evaluate(program): memory = [0] * 1000 # Initialize memory with 1000 cells registers = [0] * 10 # Initialize 10 registers with 0 labels = {} pc = 0 # Program counter def find_label(label): for i, line in enumerate(program): if line.startswith(label + ":"): return i raise Exception(f"Label '{label}' not found") def run(): nonlocal pc while True: if pc >= len(program): break line = program[pc].strip() if not line: pc += 1 continue op, _, arg = line.partition(" ") if op == "SET": dest, value = arg.split(", ") registers[int(dest[1:])] = int(value) pc += 1 elif op == "INC": dest = arg[1:] registers[int(dest)] += 1 pc += 1 elif op == "JMP": pc = find_label(arg) elif op == "JF": flag_register = registers[7] == 0 if flag_register: pc = find_label(arg) else: pc += 1 elif op == "MUL": registers[int(arg[0][1:])] = registers[int(arg[0][1:])] * registers[int(arg[1][1:])] pc += 1 elif op == "GT": registers[7] = 1 if registers[int(arg[0][1:])] > registers[int(arg[1][1:])] else 0 pc += 1 elif op == "MOD": registers[int(arg[0][1:])] = registers[int(arg[0][1:])] % registers[int(arg[1][1:])] pc += 1 elif op == "EQ": registers[7] = 1 if registers[int(arg[0][1:])] == registers[int(arg[1][1:])] else 0 pc += 1 elif op == "STORE": memory[registers[int(arg[1][1:])]] = registers[int(arg[0][1:])] pc += 1 else: raise Exception(f"Unknown operation '{op}'") run() return memory[:registers[8]] program = """ ... """ # Place your assembly program here memory = evaluate(program) print(memory[:10]) # Print first 10 prime numbers |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | def evaluate(program): memory = [0] * 1000 # Initialize memory with 1000 cells registers = [0] * 10 # Initialize 10 registers with 0 labels = {} pc = 0 # Program counter def find_label(label): for i, line in enumerate(program): if line.startswith(label + ":"): return i raise Exception(f"Label '{label}' not found") def run(): nonlocal pc while True: if pc >= len(program): break line = program[pc].strip() if not line: pc += 1 continue op, _, arg = line.partition(" ") if op == "SET": dest, value = arg.split(", ") registers[int(dest[1:])] = int(value) pc += 1 elif op == "INC": dest = arg[1:] registers[int(dest)] += 1 pc += 1 elif op == "JMP": pc = find_label(arg) elif op == "JF": flag_register = registers[7] == 0 if flag_register: pc = find_label(arg) else: pc += 1 elif op == "MUL": registers[int(arg[0][1:])] = registers[int(arg[0][1:])] * registers[int(arg[1][1:])] pc += 1 elif op == "GT": registers[7] = 1 if registers[int(arg[0][1:])] > registers[int(arg[1][1:])] else 0 pc += 1 elif op == "MOD": registers[int(arg[0][1:])] = registers[int(arg[0][1:])] % registers[int(arg[1][1:])] pc += 1 elif op == "EQ": registers[7] = 1 if registers[int(arg[0][1:])] == registers[int(arg[1][1:])] else 0 pc += 1 elif op == "STORE": memory[registers[int(arg[1][1:])]] = registers[int(arg[0][1:])] pc += 1 else: raise Exception(f"Unknown operation '{op}'") run() return memory[:registers[8]] program = """ ... """ # Place your assembly program here memory = evaluate(program) print(memory[:10]) # Print first 10 prime numbers answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 65, in <module>
memory = evaluate(program)
File "/usr/src/app/main.py", line 58, in evaluate
run()
File "/usr/src/app/main.py", line 56, in run
raise Exception(f"Unknown operation '{op}'")
Exception: Unknown operation '.'
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Creating an interpreter for a new assembly language is a non-trivial task, and it would require a significant amount of code to implement all the necessary functionality. However, I can provide you with an example of how you might start building an interpreter for this language in Python. Here's a possible implementation of the `evaluate` function that can parse and execute the given assembly code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | def evaluate(program): # Initialize memory state and register values memory = [0] * 1000 registers = [0] * 10 labels = {} pc = 0 # Parse the program into a list of instructions instructions = [] for line in program.split('\n'): line = line.strip() if not line or line.startswith('//'): continue opcode, operands = line.split(' ', 1) operands = operands.split() if operands else [] if opcode in ('SET', 'STORE', 'JMP', 'JF', 'JT', 'INC', 'GT', 'EQ', 'MOD'): instructions.append((opcode, operands)) elif opcode == 'LABEL': labels[operands[0]] = len(instructions) # Execute the program while pc < len(instructions): opcode, operands = instructions[pc] if opcode == 'SET': registers[int(operands[1])] = int(operands[2]) elif opcode == 'STORE': memory[registers[int(operands[1])]] = registers[int(operands[2])] elif opcode == 'JMP': pc = labels[operands[0]] continue elif opcode == 'JF': if registers[int(operands[1])] == 0: pc = labels[operands[2]] continue elif opcode == 'JT': if registers[int(operands[1])] > 0: pc = labels[operands[2]] continue elif opcode == 'INC': registers[int(operands[1])] += 1 elif opcode == 'GT': registers[int(operands[1])] = 1 if registers[int(operands[2])] > registers[int(operands[3])] else 0 elif opcode == 'EQ': registers[int(operands[1])] = 1 if registers[int(operands[2])] == registers[int(operands[3])] else 0 elif opcode == 'MOD': registers[int(operands[1])] = registers[int(operands[2])] % registers[int(operands[3])] pc += 1 # Return the memory state return memory[:registers[8]] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | def evaluate(program): # Initialize memory state and register values memory = [0] * 1000 registers = [0] * 10 labels = {} pc = 0 # Parse the program into a list of instructions instructions = [] for line in program.split('\n'): line = line.strip() if not line or line.startswith('//'): continue opcode, operands = line.split(' ', 1) operands = operands.split() if operands else [] if opcode in ('SET', 'STORE', 'JMP', 'JF', 'JT', 'INC', 'GT', 'EQ', 'MOD'): instructions.append((opcode, operands)) elif opcode == 'LABEL': labels[operands[0]] = len(instructions) # Execute the program while pc < len(instructions): opcode, operands = instructions[pc] if opcode == 'SET': registers[int(operands[1])] = int(operands[2]) elif opcode == 'STORE': memory[registers[int(operands[1])]] = registers[int(operands[2])] elif opcode == 'JMP': pc = labels[operands[0]] continue elif opcode == 'JF': if registers[int(operands[1])] == 0: pc = labels[operands[2]] continue elif opcode == 'JT': if registers[int(operands[1])] > 0: pc = labels[operands[2]] continue elif opcode == 'INC': registers[int(operands[1])] += 1 elif opcode == 'GT': registers[int(operands[1])] = 1 if registers[int(operands[2])] > registers[int(operands[3])] else 0 elif opcode == 'EQ': registers[int(operands[1])] = 1 if registers[int(operands[2])] == registers[int(operands[3])] else 0 elif opcode == 'MOD': registers[int(operands[1])] = registers[int(operands[2])] % registers[int(operands[3])] pc += 1 # Return the memory state return memory[:registers[8]] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | def evaluate(program): # Initialize memory state and register values memory = [0] * 1000 registers = [0] * 10 labels = {} pc = 0 # Parse the program into a list of instructions instructions = [] for line in program.split('\n'): line = line.strip() if not line or line.startswith('//'): continue opcode, operands = line.split(' ', 1) operands = operands.split() if operands else [] if opcode in ('SET', 'STORE', 'JMP', 'JF', 'JT', 'INC', 'GT', 'EQ', 'MOD'): instructions.append((opcode, operands)) elif opcode == 'LABEL': labels[operands[0]] = len(instructions) # Execute the program while pc < len(instructions): opcode, operands = instructions[pc] if opcode == 'SET': registers[int(operands[1])] = int(operands[2]) elif opcode == 'STORE': memory[registers[int(operands[1])]] = registers[int(operands[2])] elif opcode == 'JMP': pc = labels[operands[0]] continue elif opcode == 'JF': if registers[int(operands[1])] == 0: pc = labels[operands[2]] continue elif opcode == 'JT': if registers[int(operands[1])] > 0: pc = labels[operands[2]] continue elif opcode == 'INC': registers[int(operands[1])] += 1 elif opcode == 'GT': registers[int(operands[1])] = 1 if registers[int(operands[2])] > registers[int(operands[3])] else 0 elif opcode == 'EQ': registers[int(operands[1])] = 1 if registers[int(operands[2])] == registers[int(operands[3])] else 0 elif opcode == 'MOD': registers[int(operands[1])] = registers[int(operands[2])] % registers[int(operands[3])] pc += 1 # Return the memory state return memory[:registers[8]] answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 57, in <module>
answer = evaluate("""
File "/usr/src/app/main.py", line 15, in evaluate
opcode, operands = line.split(' ', 1)
ValueError: not enough values to unpack (expected 2, got 1)
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Creating a full-fledged assembly interpreter in Python is quite a complex task, especially since the provided assembly language is not a standard one. However, I'll try to give you an idea of how you could start implementing such an interpreter, focusing on the core functionality to run the prime number program you've provided. Here's a basic structure for the interpreter:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | class Interpreter: def __init__(self, program): self.program = program self.memory = [0] * 1000 # Initialize memory with 1000 cells self.registers = [0] * 10 # Initialize 10 registers self.pc = 0 # Program counter self.labels = self.build_labels() def build_labels(self): labels = {} for i, line in enumerate(self.program.split('\n')): label = line.split()[0] if label[0] != ';' and label != '': labels[label] = i return labels def execute(self): while self.pc < len(self.program): line = self.program.split('\n')[self.pc] self.process_line(line) self.pc += 1 def process_line(self, line): # Implement the instruction handling logic here pass def evaluate(program): interpreter = Interpreter(program) interpreter.execute() primes = [interpreter.memory[i] for i in range(len(interpreter.memory)) if interpreter.memory[i] != 0] return primes |
1 2 3 4 5 6 7 8 9 10 11 | def process_line(self, line): # Extract instruction and arguments instr, arg1, arg2 = line.split()[:3] if instr == 'SET': self.registers[int(arg1[1:])] = int(arg2) elif instr == 'JMP': self.pc = self.labels[arg1] elif instr == 'INC': self.registers[int(arg1[1:])] += 1 # ... implement the remaining instructions here |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | class Interpreter: def __init__(self, program): self.program = program self.memory = [0] * 1000 # Initialize memory with 1000 cells self.registers = [0] * 10 # Initialize 10 registers self.pc = 0 # Program counter self.labels = self.build_labels() def build_labels(self): labels = {} for i, line in enumerate(self.program.split('\n')): label = line.split()[0] if label[0] != ';' and label != '': labels[label] = i return labels def execute(self): while self.pc < len(self.program): line = self.program.split('\n')[self.pc] self.process_line(line) self.pc += 1 def process_line(self, line): # Implement the instruction handling logic here instr, arg1, arg2 = line.split()[:3] if instr == 'SET': self.registers[int(arg1[1:])] = int(arg2) elif instr == 'JMP': self.pc = self.labels[arg1] elif instr == 'INC': self.registers[int(arg1[1:])] += 1 elif instr == 'EQ': if self.registers[int(arg1[1:])] == int(arg2): self.pc += 1 else: self.pc += int(arg2) elif instr == 'JF': if not self.registers[int(arg1[1:])]: self.pc = self.labels[arg1] elif instr == 'STORE': self.memory[int(arg1)] = self.registers[int(arg2[1:])] elif instr == 'LOAD': self.registers[int(arg1[1:])] = self.memory[int(arg2)] elif instr == 'GT': if self.registers[int(arg1[1:])] > self.registers[int(arg2[1:])]: self.registers[int(arg3[1:])] = 1 else: self.registers[int(arg3[1:])] = 0 elif instr == 'MOD': self.registers[int(arg1[1:])] = self.registers[int(arg1[1:])] % self.registers[int(arg2[1:])] elif instr == 'MUL': self.registers[int(arg1[1:])] = self.registers[int(arg1[1:])] * self.registers[int(arg2[1:])] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | class Interpreter: def __init__(self, program): self.program = program self.memory = [0] * 1000 # Initialize memory with 1000 cells self.registers = [0] * 10 # Initialize 10 registers self.pc = 0 # Program counter self.labels = self.build_labels() def build_labels(self): labels = {} for i, line in enumerate(self.program.split('\n')): label = line.split()[0] if label[0] != ';' and label != '': labels[label] = i return labels def execute(self): while self.pc < len(self.program): line = self.program.split('\n')[self.pc] self.process_line(line) self.pc += 1 def process_line(self, line): # Implement the instruction handling logic here instr, arg1, arg2 = line.split()[:3] if instr == 'SET': self.registers[int(arg1[1:])] = int(arg2) elif instr == 'JMP': self.pc = self.labels[arg1] elif instr == 'INC': self.registers[int(arg1[1:])] += 1 elif instr == 'EQ': if self.registers[int(arg1[1:])] == int(arg2): self.pc += 1 else: self.pc += int(arg2) elif instr == 'JF': if not self.registers[int(arg1[1:])]: self.pc = self.labels[arg1] elif instr == 'STORE': self.memory[int(arg1)] = self.registers[int(arg2[1:])] elif instr == 'LOAD': self.registers[int(arg1[1:])] = self.memory[int(arg2)] elif instr == 'GT': if self.registers[int(arg1[1:])] > self.registers[int(arg2[1:])]: self.registers[int(arg3[1:])] = 1 else: self.registers[int(arg3[1:])] = 0 elif instr == 'MOD': self.registers[int(arg1[1:])] = self.registers[int(arg1[1:])] % self.registers[int(arg2[1:])] elif instr == 'MUL': self.registers[int(arg1[1:])] = self.registers[int(arg1[1:])] * self.registers[int(arg2[1:])] answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 60, in <module>
answer = evaluate("""
NameError: name 'evaluate' is not defined
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Creating a Python interpreter for your custom assembly language is a non-trivial task, as it involves parsing the code, creating a runtime environment, and implementing each instruction in a way that accurately reflects your assembly language semantics. Here's a rough outline of how you might approach this problem: 1. Parse the assembly code into an abstract syntax tree (AST). 2. Create a runtime environment, including a memory model, register set, and instruction pointer. 3. Implement each instruction in your assembly language as a Python function. 4. Execute the program by traversing the AST and calling the appropriate instruction functions. Here's a possible implementation of the `evaluate` function based on the above outline:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | import ast # Memory model and register set memory = {} registers = { 'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0, } instruction_pointer = 0 # Instruction implementations def set(register, value): registers[register] = value def inc(register): registers[register] += 1 def jmp(label): global instruction_pointer instruction_pointer = labels[label] def jf(label): if not flags['Z']: jmp(label) def jt(label): if flags['C']: jmp(label) def eq(register1, register2): flags['Z'] = registers[register1] == registers[register2] flags['C'] = False def gt(register1, register2): flags['Z'] = registers[register1] > registers[register2] flags['C'] = False def mul(register1, register2, register3): registers[register3] = registers[register1] * registers[register2] def mod(register1, register2, register3): registers[register3] = registers[register1] % registers[register2] # Parsing and execution def evaluate(program): global labels, instructions # Parse the program into an AST tree = ast.parse(program) # Extract labels and instructions from the AST labels = {} instructions = [] for node in ast.walk(tree): if isinstance(node, ast.Label): labels[node.target.id] = len(instructions) elif isinstance(node, ast.Expr): instructions.append(node.value) # Initialize flags flags = {'Z': False, 'C': False} # Execute the program while instruction_pointer < len(instructions): instruction = instructions[instruction_pointer] opcode = instruction[0] operands = instruction[1:] if opcode == 'SET': set(operands[0], operands[1]) elif opcode == 'INC': inc(operands[0]) elif opcode == 'JMP': jmp(operands[0]) elif opcode == 'JF': jf(operands[0]) elif opcode == 'JT': jt(operands[0]) elif opcode == 'EQ': eq(operands[0], operands[1]) elif opcode == 'GT': gt(operands[0], operands[1]) elif opcode == 'MUL': mul(operands[0], operands[1], operands[2]) elif opcode == 'MOD': mod(operands[0], operands[1], operands[2]) else: raise ValueError(f'Unknown opcode: {opcode}') instruction_pointer += 1 # Extract prime numbers from memory primes = [] for i in range(100): primes.append(memory[i]) return primes |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | import ast # Memory model and register set memory = {} registers = { 'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0, } instruction_pointer = 0 # Instruction implementations def set(register, value): registers[register] = value def inc(register): registers[register] += 1 def jmp(label): global instruction_pointer instruction_pointer = labels[label] def jf(label): if not flags['Z']: jmp(label) def jt(label): if flags['C']: jmp(label) def eq(register1, register2): flags['Z'] = registers[register1] == registers[register2] flags['C'] = False def gt(register1, register2): flags['Z'] = registers[register1] > registers[register2] flags['C'] = False def mul(register1, register2, register3): registers[register3] = registers[register1] * registers[register2] def mod(register1, register2, register3): registers[register3] = registers[register1] % registers[register2] # Parsing and execution def evaluate(program): global labels, instructions # Parse the program into an AST tree = ast.parse(program) # Extract labels and instructions from the AST labels = {} instructions = [] for node in ast.walk(tree): if isinstance(node, ast.Label): labels[node.target.id] = len(instructions) elif isinstance(node, ast.Expr): instructions.append(node.value) # Initialize flags flags = {'Z': False, 'C': False} # Execute the program while instruction_pointer < len(instructions): instruction = instructions[instruction_pointer] opcode = instruction[0] operands = instruction[1:] if opcode == 'SET': set(operands[0], operands[1]) elif opcode == 'INC': inc(operands[0]) elif opcode == 'JMP': jmp(operands[0]) elif opcode == 'JF': jf(operands[0]) elif opcode == 'JT': jt(operands[0]) elif opcode == 'EQ': eq(operands[0], operands[1]) elif opcode == 'GT': gt(operands[0], operands[1]) elif opcode == 'MUL': mul(operands[0], operands[1], operands[2]) elif opcode == 'MOD': mod(operands[0], operands[1], operands[2]) else: raise ValueError(f'Unknown opcode: {opcode}') instruction_pointer += 1 # Extract prime numbers from memory primes = [] for i in range(100): primes.append(memory[i]) return primes |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | import ast # Memory model and register set memory = {} registers = { 'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0, } instruction_pointer = 0 # Instruction implementations def set(register, value): registers[register] = value def inc(register): registers[register] += 1 def jmp(label): global instruction_pointer instruction_pointer = labels[label] def jf(label): if not flags['Z']: jmp(label) def jt(label): if flags['C']: jmp(label) def eq(register1, register2): flags['Z'] = registers[register1] == registers[register2] flags['C'] = False def gt(register1, register2): flags['Z'] = registers[register1] > registers[register2] flags['C'] = False def mul(register1, register2, register3): registers[register3] = registers[register1] * registers[register2] def mod(register1, register2, register3): registers[register3] = registers[register1] % registers[register2] # Parsing and execution def evaluate(program): global labels, instructions # Parse the program into an AST tree = ast.parse(program) # Extract labels and instructions from the AST labels = {} instructions = [] for node in ast.walk(tree): if isinstance(node, ast.Label): labels[node.target.id] = len(instructions) elif isinstance(node, ast.Expr): instructions.append(node.value) # Initialize flags flags = {'Z': False, 'C': False} # Execute the program while instruction_pointer < len(instructions): instruction = instructions[instruction_pointer] opcode = instruction[0] operands = instruction[1:] if opcode == 'SET': set(operands[0], operands[1]) elif opcode == 'INC': inc(operands[0]) elif opcode == 'JMP': jmp(operands[0]) elif opcode == 'JF': jf(operands[0]) elif opcode == 'JT': jt(operands[0]) elif opcode == 'EQ': eq(operands[0], operands[1]) elif opcode == 'GT': gt(operands[0], operands[1]) elif opcode == 'MUL': mul(operands[0], operands[1], operands[2]) elif opcode == 'MOD': mod(operands[0], operands[1], operands[2]) else: raise ValueError(f'Unknown opcode: {opcode}') instruction_pointer += 1 # Extract prime numbers from memory primes = [] for i in range(100): primes.append(memory[i]) return primes answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 109, in <module>
answer = evaluate("""
File "/usr/src/app/main.py", line 55, in evaluate
tree = ast.parse(program)
File "/usr/lib/python3.10/ast.py", line 50, in parse
return compile(source, filename, mode, flags,
File "<unknown>", line 2
SET R1 0
IndentationError: unexpected indent
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Creating a full Python interpreter for your custom assembly language is quite a complex task and would require a significant amount of code. However, I can provide you with a basic example of how you might start implementing such an interpreter, using the program you provided as a reference. This example will not be a complete interpreter, but it should give you an idea of how to approach the problem.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | def evaluate(program): memory = [0] * 1000 # Reserve memory for storing prime numbers registers = { 'R1': 2, # Initialize registers based on the program's starting state 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0, } instructions = { 'SET': set_register, 'JMP': jump, 'JF': jump_if_false, 'JT': jump_if_true, 'INC': increment_register, 'EQ': equal, 'GT': greater_than, 'MOD': modulo, 'STORE': store, } current_instruction_index = 0 def execute_instruction(): opcode, operand1, operand2 = program[current_instruction_index].split() instructions[opcode](operand1, operand2) def set_register(register, value): registers[register] = int(value) current_instruction_index += 1 def jump(label): target_index = program.index(f'{label}:') current_instruction_index = target_index def jump_if_false(register, label): if not registers[register]: target_index = program.index(f'{label}:') current_instruction_index = target_index else: current_instruction_index += 1 def jump_if_true(register, label): if registers[register]: target_index = program.index(f'{label}:') current_instruction_index = target_index else: current_instruction_index += 1 def increment_register(register): registers[register] += 1 current_instruction_index += 1 def equal(register1, register2): registers[register1] = int(registers[register2] == registers[register1]) current_instruction_index += 1 def greater_than(register1, register2): registers[register1] = int(registers[register2] > registers[register1]) current_instruction_index += 1 def modulo(register1, register2): registers[register1] = registers[register2] % registers[register2] current_instruction_index += 1 def store(value, address): memory[registers[address]] = registers[value] current_instruction_index += 1 while current_instruction_index < len(program): execute_instruction() return memory[:registers['R8']] program = [...] # Your assembly language program as a list of lines print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | def evaluate(program): memory = [0] * 1000 # Reserve memory for storing prime numbers registers = { 'R1': 2, # Initialize registers based on the program's starting state 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0, } instructions = { 'SET': set_register, 'JMP': jump, 'JF': jump_if_false, 'JT': jump_if_true, 'INC': increment_register, 'EQ': equal, 'GT': greater_than, 'MOD': modulo, 'STORE': store, } current_instruction_index = 0 def execute_instruction(): opcode, operand1, operand2 = program[current_instruction_index].split() instructions[opcode](operand1, operand2) def set_register(register, value): registers[register] = int(value) current_instruction_index += 1 def jump(label): target_index = program.index(f'{label}:') current_instruction_index = target_index def jump_if_false(register, label): if not registers[register]: target_index = program.index(f'{label}:') current_instruction_index = target_index else: current_instruction_index += 1 def jump_if_true(register, label): if registers[register]: target_index = program.index(f'{label}:') current_instruction_index = target_index else: current_instruction_index += 1 def increment_register(register): registers[register] += 1 current_instruction_index += 1 def equal(register1, register2): registers[register1] = int(registers[register2] == registers[register1]) current_instruction_index += 1 def greater_than(register1, register2): registers[register1] = int(registers[register2] > registers[register1]) current_instruction_index += 1 def modulo(register1, register2): registers[register1] = registers[register2] % registers[register2] current_instruction_index += 1 def store(value, address): memory[registers[address]] = registers[value] current_instruction_index += 1 while current_instruction_index < len(program): execute_instruction() return memory[:registers['R8']] program = [...] # Your assembly language program as a list of lines print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | def evaluate(program): memory = [0] * 1000 # Reserve memory for storing prime numbers registers = { 'R1': 2, # Initialize registers based on the program's starting state 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0, } instructions = { 'SET': set_register, 'JMP': jump, 'JF': jump_if_false, 'JT': jump_if_true, 'INC': increment_register, 'EQ': equal, 'GT': greater_than, 'MOD': modulo, 'STORE': store, } current_instruction_index = 0 def execute_instruction(): opcode, operand1, operand2 = program[current_instruction_index].split() instructions[opcode](operand1, operand2) def set_register(register, value): registers[register] = int(value) current_instruction_index += 1 def jump(label): target_index = program.index(f'{label}:') current_instruction_index = target_index def jump_if_false(register, label): if not registers[register]: target_index = program.index(f'{label}:') current_instruction_index = target_index else: current_instruction_index += 1 def jump_if_true(register, label): if registers[register]: target_index = program.index(f'{label}:') current_instruction_index = target_index else: current_instruction_index += 1 def increment_register(register): registers[register] += 1 current_instruction_index += 1 def equal(register1, register2): registers[register1] = int(registers[register2] == registers[register1]) current_instruction_index += 1 def greater_than(register1, register2): registers[register1] = int(registers[register2] > registers[register1]) current_instruction_index += 1 def modulo(register1, register2): registers[register1] = registers[register2] % registers[register2] current_instruction_index += 1 def store(value, address): memory[registers[address]] = registers[value] current_instruction_index += 1 while current_instruction_index < len(program): execute_instruction() return memory[:registers['R8']] program = [...] # Your assembly language program as a list of lines print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 78, in <module>
print(evaluate(program))
File "/usr/src/app/main.py", line 14, in evaluate
'SET': set_register,
UnboundLocalError: local variable 'set_register' referenced before assignment
Testing if the previous output contains the string All tests passed
: False