Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Certainly! Below is a Python interpreter that evaluates the assembly-like program and returns the resulting memory state after running the program. The interpreter will simulate the execution of the program and maintain the state of the registers and memory. Here's the Python interpreter:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class Interpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 9)}
        self.memory = []
        self.program = []
        self.pc = 0

    def load_program(self, program):
        self.program = program.strip().split('\n')
        self.program = [line.strip() for line in self.program if line.strip() and not line.strip().startswith('//')]

    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[arg]
        return int(arg)

    def set_value(self, arg, value):
        if arg.startswith('R'):
            self.registers[arg] = value

    def execute(self):
        while self.pc < len(self.program):
            instr = self.program[self.pc].split()
            opcode = instr[0]
            if opcode == 'SET':
                self.set_value(instr[1], self.get_value(instr[2]))
            elif opcode == 'JMP':
                self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            elif opcode == 'JF':
                if not self.registers['R0']:
                    self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            elif opcode == 'JT':
                if self.registers['R0']:
                    self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            elif opcode == 'EQ':
                self.registers['R0'] = int(self.get_value(instr[1]) == self.get_value(instr[2]))
            elif opcode == 'GT':
                self.registers['R0'] = int(self.get_value(instr[1]) > self.get_value(instr[2]))
            elif opcode == 'MUL':
                self.set_value(instr[1], self.get_value(instr[2]) * self.get_value(instr[3]))
            elif opcode == 'MOD':
                self.set_value(instr[1], self.get_value(instr[2]) % self.get_value(instr[3]))
            elif opcode == 'INC':
                self.set_value(instr[1], self.get_value(instr[1]) + 1)
            elif opcode == 'STORE':
                self.memory.append(self.get_value(instr[1]))
            elif opcode == 'JMP':
                self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            else:
                raise ValueError(f"Unknown instruction: {opcode}")
            self.pc += 1

def evaluate(program):
    interpreter = Interpreter()
    interpreter.load_program(program)
    interpreter.execute()
    return interpreter.memory

# Example program
program = """
SET R1 2
start_find_primes:
JMP is_prime
ready_prime:
SET R7 1
EQ R2 R7
JF increment
STORE R1 R8
INC R8
SET R7 100
EQ R8 R7
JF increment
JMP end
increment:
INC R1
JMP start_find_primes
is_prime:
SET R2 1
SET R3 2
start_loop:
MUL R4 R3 R3
GT R4 R1
JT is_prime_end
MOD R6 R1 R3
SET R7 0
EQ R7 R6
JT not_prime
INC R3
JMP start_loop
not_prime:
SET R2 0
is_prime_end:
JMP ready_prime
end:
"""

print(evaluate(program))
This interpreter will execute the provided program step-by-step and maintain the state of the registers and memory. The `evaluate` function will return the final memory state, which should include the first 100 prime numbers.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class Interpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 9)}
        self.memory = []
        self.program = []
        self.pc = 0

    def load_program(self, program):
        self.program = program.strip().split('\n')
        self.program = [line.strip() for line in self.program if line.strip() and not line.strip().startswith('//')]

    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[arg]
        return int(arg)

    def set_value(self, arg, value):
        if arg.startswith('R'):
            self.registers[arg] = value

    def execute(self):
        while self.pc < len(self.program):
            instr = self.program[self.pc].split()
            opcode = instr[0]
            if opcode == 'SET':
                self.set_value(instr[1], self.get_value(instr[2]))
            elif opcode == 'JMP':
                self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            elif opcode == 'JF':
                if not self.registers['R0']:
                    self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            elif opcode == 'JT':
                if self.registers['R0']:
                    self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            elif opcode == 'EQ':
                self.registers['R0'] = int(self.get_value(instr[1]) == self.get_value(instr[2]))
            elif opcode == 'GT':
                self.registers['R0'] = int(self.get_value(instr[1]) > self.get_value(instr[2]))
            elif opcode == 'MUL':
                self.set_value(instr[1], self.get_value(instr[2]) * self.get_value(instr[3]))
            elif opcode == 'MOD':
                self.set_value(instr[1], self.get_value(instr[2]) % self.get_value(instr[3]))
            elif opcode == 'INC':
                self.set_value(instr[1], self.get_value(instr[1]) + 1)
            elif opcode == 'STORE':
                self.memory.append(self.get_value(instr[1]))
            elif opcode == 'JMP':
                self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            else:
                raise ValueError(f"Unknown instruction: {opcode}")
            self.pc += 1

def evaluate(program):
    interpreter = Interpreter()
    interpreter.load_program(program)
    interpreter.execute()
    return interpreter.memory

# Example program
program = """
SET R1 2
start_find_primes:
JMP is_prime
ready_prime:
SET R7 1
EQ R2 R7
JF increment
STORE R1 R8
INC R8
SET R7 100
EQ R8 R7
JF increment
JMP end
increment:
INC R1
JMP start_find_primes
is_prime:
SET R2 1
SET R3 2
start_loop:
MUL R4 R3 R3
GT R4 R1
JT is_prime_end
MOD R6 R1 R3
SET R7 0
EQ R7 R6
JT not_prime
INC R3
JMP start_loop
not_prime:
SET R2 0
is_prime_end:
JMP ready_prime
end:
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
class Interpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 9)}
        self.memory = []
        self.program = []
        self.pc = 0

    def load_program(self, program):
        self.program = program.strip().split('\n')
        self.program = [line.strip() for line in self.program if line.strip() and not line.strip().startswith('//')]

    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[arg]
        return int(arg)

    def set_value(self, arg, value):
        if arg.startswith('R'):
            self.registers[arg] = value

    def execute(self):
        while self.pc < len(self.program):
            instr = self.program[self.pc].split()
            opcode = instr[0]
            if opcode == 'SET':
                self.set_value(instr[1], self.get_value(instr[2]))
            elif opcode == 'JMP':
                self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            elif opcode == 'JF':
                if not self.registers['R0']:
                    self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            elif opcode == 'JT':
                if self.registers['R0']:
                    self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            elif opcode == 'EQ':
                self.registers['R0'] = int(self.get_value(instr[1]) == self.get_value(instr[2]))
            elif opcode == 'GT':
                self.registers['R0'] = int(self.get_value(instr[1]) > self.get_value(instr[2]))
            elif opcode == 'MUL':
                self.set_value(instr[1], self.get_value(instr[2]) * self.get_value(instr[3]))
            elif opcode == 'MOD':
                self.set_value(instr[1], self.get_value(instr[2]) % self.get_value(instr[3]))
            elif opcode == 'INC':
                self.set_value(instr[1], self.get_value(instr[1]) + 1)
            elif opcode == 'STORE':
                self.memory.append(self.get_value(instr[1]))
            elif opcode == 'JMP':
                self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc)
            else:
                raise ValueError(f"Unknown instruction: {opcode}")
            self.pc += 1

def evaluate(program):
    interpreter = Interpreter()
    interpreter.load_program(program)
    interpreter.execute()
    return interpreter.memory

# Example program
program = """
SET R1 2
start_find_primes:
JMP is_prime
ready_prime:
SET R7 1
EQ R2 R7
JF increment
STORE R1 R8
INC R8
SET R7 100
EQ R8 R7
JF increment
JMP end
increment:
INC R1
JMP start_find_primes
is_prime:
SET R2 1
SET R3 2
start_loop:
MUL R4 R3 R3
GT R4 R1
JT is_prime_end
MOD R6 R1 R3
SET R7 0
EQ R7 R6
JT not_prime
INC R3
JMP start_loop
not_prime:
SET R2 0
is_prime_end:
JMP ready_prime
end:
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 98, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 57, in evaluate interpreter.execute() File "/usr/src/app/main.py", line 51, in execute raise ValueError(f"Unknown instruction: {opcode}") ValueError: Unknown instruction: start_find_primes:

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Sure! To create a Python interpreter for your custom assembly language, we need to implement a simple virtual machine that can execute the given instructions. Below is a Python implementation of such an interpreter. This interpreter will parse the program, execute the instructions, and return the resulting memory state after running the program.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
class VirtualMachine:
    def __init__(self):
        self.memory = {}
        self.registers = [0] * 10
        self.pc = 0
        self.instructions = []

    def load_program(self, program):
        self.instructions = program.strip().split('\n')
        self.pc = 0

    def execute(self):
        while self.pc < len(self.instructions):
            instruction = self.instructions[self.pc].strip()
            self.pc += 1
            if instruction.startswith('SET'):
                self.set(instruction)
            elif instruction.startswith('JMP'):
                self.jmp(instruction)
            elif instruction.startswith('EQ'):
                self.eq(instruction)
            elif instruction.startswith('JF'):
                self.jf(instruction)
            elif instruction.startswith('STORE'):
                self.store(instruction)
            elif instruction.startswith('INC'):
                self.inc(instruction)
            elif instruction.startswith('JT'):
                self.jt(instruction)
            elif instruction.startswith('MUL'):
                self.mul(instruction)
            elif instruction.startswith('GT'):
                self.gt(instruction)
            elif instruction.startswith('MOD'):
                self.mod(instruction)

    def set(self, instruction):
        parts = instruction.split()
        reg = int(parts[1][1])
        value = int(parts[2])
        self.registers[reg] = value

    def jmp(self, instruction):
        parts = instruction.split()
        label = parts[1]
        self.pc = self.get_label_index(label)

    def eq(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        self.registers[8] = 1 if self.registers[reg1] == self.registers[reg2] else 0

    def jf(self, instruction):
        parts = instruction.split()
        label = parts[1]
        if self.registers[8] == 0:
            self.pc = self.get_label_index(label)

    def store(self, instruction):
        parts = instruction.split()
        reg = int(parts[1][1])
        addr = self.registers[int(parts[2][1])]
        self.memory[addr] = self.registers[reg]

    def inc(self, instruction):
        parts = instruction.split()
        reg = int(parts[1][1])
        self.registers[reg] += 1

    def jt(self, instruction):
        parts = instruction.split()
        label = parts[1]
        if self.registers[8] == 1:
            self.pc = self.get_label_index(label)

    def mul(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        reg_dest = int(parts[3][1])
        self.registers[reg_dest] = self.registers[reg1] * self.registers[reg2]

    def gt(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        self.registers[8] = 1 if self.registers[reg1] > self.registers[reg2] else 0

    def mod(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        reg_dest = int(parts[3][1])
        self.registers[reg_dest] = self.registers[reg1] % self.registers[reg2]

    def get_label_index(self, label):
        for idx, instr in enumerate(self.instructions):
            if instr.endswith(f'{label}:'):
                return idx
        return None

def evaluate(program):
    vm = VirtualMachine()
    vm.load_program(program)
    vm.execute()
    return [vm.memory[i] for i in range(len(vm.memory))]

# Example usage
program = """
SET R1 2

start_find_primes:
    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))
This code defines a `VirtualMachine` class that can load, execute, and interpret the assembly instructions. The `evaluate` function initializes the virtual machine, loads the program, executes it, and returns the resulting memory state. In the example usage, the `evaluate` function is called with the provided program, and it should return the list of the first 100 prime numbers.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
class VirtualMachine:
    def __init__(self):
        self.memory = {}
        self.registers = [0] * 10
        self.pc = 0
        self.instructions = []

    def load_program(self, program):
        self.instructions = program.strip().split('\n')
        self.pc = 0

    def execute(self):
        while self.pc < len(self.instructions):
            instruction = self.instructions[self.pc].strip()
            self.pc += 1
            if instruction.startswith('SET'):
                self.set(instruction)
            elif instruction.startswith('JMP'):
                self.jmp(instruction)
            elif instruction.startswith('EQ'):
                self.eq(instruction)
            elif instruction.startswith('JF'):
                self.jf(instruction)
            elif instruction.startswith('STORE'):
                self.store(instruction)
            elif instruction.startswith('INC'):
                self.inc(instruction)
            elif instruction.startswith('JT'):
                self.jt(instruction)
            elif instruction.startswith('MUL'):
                self.mul(instruction)
            elif instruction.startswith('GT'):
                self.gt(instruction)
            elif instruction.startswith('MOD'):
                self.mod(instruction)

    def set(self, instruction):
        parts = instruction.split()
        reg = int(parts[1][1])
        value = int(parts[2])
        self.registers[reg] = value

    def jmp(self, instruction):
        parts = instruction.split()
        label = parts[1]
        self.pc = self.get_label_index(label)

    def eq(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        self.registers[8] = 1 if self.registers[reg1] == self.registers[reg2] else 0

    def jf(self, instruction):
        parts = instruction.split()
        label = parts[1]
        if self.registers[8] == 0:
            self.pc = self.get_label_index(label)

    def store(self, instruction):
        parts = instruction.split()
        reg = int(parts[1][1])
        addr = self.registers[int(parts[2][1])]
        self.memory[addr] = self.registers[reg]

    def inc(self, instruction):
        parts = instruction.split()
        reg = int(parts[1][1])
        self.registers[reg] += 1

    def jt(self, instruction):
        parts = instruction.split()
        label = parts[1]
        if self.registers[8] == 1:
            self.pc = self.get_label_index(label)

    def mul(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        reg_dest = int(parts[3][1])
        self.registers[reg_dest] = self.registers[reg1] * self.registers[reg2]

    def gt(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        self.registers[8] = 1 if self.registers[reg1] > self.registers[reg2] else 0

    def mod(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        reg_dest = int(parts[3][1])
        self.registers[reg_dest] = self.registers[reg1] % self.registers[reg2]

    def get_label_index(self, label):
        for idx, instr in enumerate(self.instructions):
            if instr.endswith(f'{label}:'):
                return idx
        return None

def evaluate(program):
    vm = VirtualMachine()
    vm.load_program(program)
    vm.execute()
    return [vm.memory[i] for i in range(len(vm.memory))]

# Example usage
program = """
SET R1 2

start_find_primes:
    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
class VirtualMachine:
    def __init__(self):
        self.memory = {}
        self.registers = [0] * 10
        self.pc = 0
        self.instructions = []

    def load_program(self, program):
        self.instructions = program.strip().split('\n')
        self.pc = 0

    def execute(self):
        while self.pc < len(self.instructions):
            instruction = self.instructions[self.pc].strip()
            self.pc += 1
            if instruction.startswith('SET'):
                self.set(instruction)
            elif instruction.startswith('JMP'):
                self.jmp(instruction)
            elif instruction.startswith('EQ'):
                self.eq(instruction)
            elif instruction.startswith('JF'):
                self.jf(instruction)
            elif instruction.startswith('STORE'):
                self.store(instruction)
            elif instruction.startswith('INC'):
                self.inc(instruction)
            elif instruction.startswith('JT'):
                self.jt(instruction)
            elif instruction.startswith('MUL'):
                self.mul(instruction)
            elif instruction.startswith('GT'):
                self.gt(instruction)
            elif instruction.startswith('MOD'):
                self.mod(instruction)

    def set(self, instruction):
        parts = instruction.split()
        reg = int(parts[1][1])
        value = int(parts[2])
        self.registers[reg] = value

    def jmp(self, instruction):
        parts = instruction.split()
        label = parts[1]
        self.pc = self.get_label_index(label)

    def eq(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        self.registers[8] = 1 if self.registers[reg1] == self.registers[reg2] else 0

    def jf(self, instruction):
        parts = instruction.split()
        label = parts[1]
        if self.registers[8] == 0:
            self.pc = self.get_label_index(label)

    def store(self, instruction):
        parts = instruction.split()
        reg = int(parts[1][1])
        addr = self.registers[int(parts[2][1])]
        self.memory[addr] = self.registers[reg]

    def inc(self, instruction):
        parts = instruction.split()
        reg = int(parts[1][1])
        self.registers[reg] += 1

    def jt(self, instruction):
        parts = instruction.split()
        label = parts[1]
        if self.registers[8] == 1:
            self.pc = self.get_label_index(label)

    def mul(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        reg_dest = int(parts[3][1])
        self.registers[reg_dest] = self.registers[reg1] * self.registers[reg2]

    def gt(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        self.registers[8] = 1 if self.registers[reg1] > self.registers[reg2] else 0

    def mod(self, instruction):
        parts = instruction.split()
        reg1 = int(parts[1][1])
        reg2 = int(parts[2][1])
        reg_dest = int(parts[3][1])
        self.registers[reg_dest] = self.registers[reg1] % self.registers[reg2]

    def get_label_index(self, label):
        for idx, instr in enumerate(self.instructions):
            if instr.endswith(f'{label}:'):
                return idx
        return None

def evaluate(program):
    vm = VirtualMachine()
    vm.load_program(program)
    vm.execute()
    return [vm.memory[i] for i in range(len(vm.memory))]

# Example usage
program = """
SET R1 2

start_find_primes:
    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Timeout: function took too long to complete

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Certainly! To create a Python interpreter for your custom assembly language, we'll need to define a set of instructions and a function `evaluate` that can parse and execute the program. Below is the implementation:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def evaluate(program):
    # Initialize registers and memory
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = []

    # Parse the program lines
    lines = program.strip().split('\n')
    program_counter = 0
    labels = {}

    # First pass: store the labels
    for i, line in enumerate(lines):
        if line.strip().endswith(':'):
            label = line.strip()[:-1]
            labels[label] = i

    # Instruction set handlers
    def set_register(reg, value):
        registers[reg] = value

    def jump(label):
        nonlocal program_counter
        program_counter = labels[label]

    def jump_if_true(label):
        nonlocal program_counter
        if register_values['flag']:
            program_counter = labels[label]

    def jump_if_false(label):
        nonlocal program_counter
        if not register_values['flag']:
            program_counter = labels[label]

    def equal(reg1, reg2):
        register_values['flag'] = registers[reg1] == registers[reg2]

    def greater_than(reg1, reg2):
        register_values['flag'] = registers[reg1] > registers[reg2]

    def modulo(reg1, reg2, reg3):
        registers[reg1] = registers[reg2] % registers[reg3]

    def multiply(reg1, reg2, reg3):
        registers[reg1] = registers[reg2] * registers[reg3]

    def increment(reg):
        registers[reg] += 1

    def store(reg1, reg2):
        memory.append(registers[reg1])
        registers[reg2] += 1

    # Register values and flags
    register_values = {'flag': False}

    # Execute instructions
    while program_counter < len(lines):
        line = lines[program_counter].strip()
        if line == "":
            program_counter += 1
            continue
        parts = line.split()
        instruction = parts[0]

        if instruction == "SET":
            set_register(parts[1], int(parts[2]))
        elif instruction == "JMP":
            jump(parts[1])
        elif instruction == "JT":
            jump_if_true(parts[1])
        elif instruction == "JF":
            jump_if_false(parts[1])
        elif instruction == "EQ":
            equal(parts[1], parts[2])
        elif instruction == "GT":
            greater_than(parts[1], parts[2])
        elif instruction == "MOD":
            modulo(parts[1], parts[2], parts[3])
        elif instruction == "MUL":
            multiply(parts[1], parts[2], parts[3])
        elif instruction == "INC":
            increment(parts[1])
        elif instruction == "STORE":
            store(parts[1], parts[2])
        elif instruction.endswith(':'):
            # Skip labels during execution
            pass
        else:
            raise ValueError(f"Unknown instruction: {instruction}")

        program_counter += 1

    return memory

# Example program that computes primes
program = """
SET R1 2

start_find_primes:
    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

# Evaluate the program
result = evaluate(program)
print(result)
This interpreter initializes the registers and memory, parses the program to map labels to their respective line numbers, and then executes the program line by line according to the defined instruction set. The `evaluate` function returns the resulting memory state after the program execution. You can test the interpreter with the provided example program to see if it correctly identifies and stores the first 100 prime numbers.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def evaluate(program):
    # Initialize registers and memory
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = []

    # Parse the program lines
    lines = program.strip().split('\n')
    program_counter = 0
    labels = {}

    # First pass: store the labels
    for i, line in enumerate(lines):
        if line.strip().endswith(':'):
            label = line.strip()[:-1]
            labels[label] = i

    # Instruction set handlers
    def set_register(reg, value):
        registers[reg] = value

    def jump(label):
        nonlocal program_counter
        program_counter = labels[label]

    def jump_if_true(label):
        nonlocal program_counter
        if register_values['flag']:
            program_counter = labels[label]

    def jump_if_false(label):
        nonlocal program_counter
        if not register_values['flag']:
            program_counter = labels[label]

    def equal(reg1, reg2):
        register_values['flag'] = registers[reg1] == registers[reg2]

    def greater_than(reg1, reg2):
        register_values['flag'] = registers[reg1] > registers[reg2]

    def modulo(reg1, reg2, reg3):
        registers[reg1] = registers[reg2] % registers[reg3]

    def multiply(reg1, reg2, reg3):
        registers[reg1] = registers[reg2] * registers[reg3]

    def increment(reg):
        registers[reg] += 1

    def store(reg1, reg2):
        memory.append(registers[reg1])
        registers[reg2] += 1

    # Register values and flags
    register_values = {'flag': False}

    # Execute instructions
    while program_counter < len(lines):
        line = lines[program_counter].strip()
        if line == "":
            program_counter += 1
            continue
        parts = line.split()
        instruction = parts[0]

        if instruction == "SET":
            set_register(parts[1], int(parts[2]))
        elif instruction == "JMP":
            jump(parts[1])
        elif instruction == "JT":
            jump_if_true(parts[1])
        elif instruction == "JF":
            jump_if_false(parts[1])
        elif instruction == "EQ":
            equal(parts[1], parts[2])
        elif instruction == "GT":
            greater_than(parts[1], parts[2])
        elif instruction == "MOD":
            modulo(parts[1], parts[2], parts[3])
        elif instruction == "MUL":
            multiply(parts[1], parts[2], parts[3])
        elif instruction == "INC":
            increment(parts[1])
        elif instruction == "STORE":
            store(parts[1], parts[2])
        elif instruction.endswith(':'):
            # Skip labels during execution
            pass
        else:
            raise ValueError(f"Unknown instruction: {instruction}")

        program_counter += 1

    return memory

# Example program that computes primes
program = """
SET R1 2

start_find_primes:
    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

# Evaluate the program
result = evaluate(program)
print(result)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def evaluate(program):
    # Initialize registers and memory
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = []

    # Parse the program lines
    lines = program.strip().split('\n')
    program_counter = 0
    labels = {}

    # First pass: store the labels
    for i, line in enumerate(lines):
        if line.strip().endswith(':'):
            label = line.strip()[:-1]
            labels[label] = i

    # Instruction set handlers
    def set_register(reg, value):
        registers[reg] = value

    def jump(label):
        nonlocal program_counter
        program_counter = labels[label]

    def jump_if_true(label):
        nonlocal program_counter
        if register_values['flag']:
            program_counter = labels[label]

    def jump_if_false(label):
        nonlocal program_counter
        if not register_values['flag']:
            program_counter = labels[label]

    def equal(reg1, reg2):
        register_values['flag'] = registers[reg1] == registers[reg2]

    def greater_than(reg1, reg2):
        register_values['flag'] = registers[reg1] > registers[reg2]

    def modulo(reg1, reg2, reg3):
        registers[reg1] = registers[reg2] % registers[reg3]

    def multiply(reg1, reg2, reg3):
        registers[reg1] = registers[reg2] * registers[reg3]

    def increment(reg):
        registers[reg] += 1

    def store(reg1, reg2):
        memory.append(registers[reg1])
        registers[reg2] += 1

    # Register values and flags
    register_values = {'flag': False}

    # Execute instructions
    while program_counter < len(lines):
        line = lines[program_counter].strip()
        if line == "":
            program_counter += 1
            continue
        parts = line.split()
        instruction = parts[0]

        if instruction == "SET":
            set_register(parts[1], int(parts[2]))
        elif instruction == "JMP":
            jump(parts[1])
        elif instruction == "JT":
            jump_if_true(parts[1])
        elif instruction == "JF":
            jump_if_false(parts[1])
        elif instruction == "EQ":
            equal(parts[1], parts[2])
        elif instruction == "GT":
            greater_than(parts[1], parts[2])
        elif instruction == "MOD":
            modulo(parts[1], parts[2], parts[3])
        elif instruction == "MUL":
            multiply(parts[1], parts[2], parts[3])
        elif instruction == "INC":
            increment(parts[1])
        elif instruction == "STORE":
            store(parts[1], parts[2])
        elif instruction.endswith(':'):
            # Skip labels during execution
            pass
        else:
            raise ValueError(f"Unknown instruction: {instruction}")

        program_counter += 1

    return memory

# Example program that computes primes
program = """
SET R1 2

start_find_primes:
    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

# Evaluate the program
result = evaluate(program)
print(result)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229] Traceback (most recent call last): File "/usr/src/app/main.py", line 171, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 91, in evaluate raise ValueError(f"Unknown instruction: {instruction}") ValueError: Unknown instruction: //

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Sure! To create a Python interpreter for the assembly-like language you provided, we'll need to simulate the execution of the assembly instructions. Here's a Python function `evaluate` that takes the assembly program as input and returns the resulting memory state.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def evaluate(program):
    memory = [0] * 1000  # Initialize memory with 1000 slots
    registers = [0] * 10  # Initialize 10 registers (R0 to R9)
    labels = {}  # Dictionary to store labels and their corresponding line numbers
    instructions = program.strip().split('\n')

    # First pass: Extract labels and their positions
    for i, line in enumerate(instructions):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    pc = 0  # Program counter

    def get_value(reg):
        return registers[int(reg[1])]

    def set_value(reg, value):
        registers[int(reg[1])] = value

    while pc < len(instructions):
        instruction = instructions[pc].strip()

        if ':' in instruction:
            pc += 1
            continue

        parts = instruction.split()
        op = parts[0]

        if op == 'SET':
            reg = parts[1]
            value = int(parts[2])
            set_value(reg, value)

        elif op == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue

        elif op == 'EQ':
            reg1 = parts[1]
            reg2 = parts[2]
            if get_value(reg1) == get_value(reg2):
                set_value('R0', 1)
            else:
                set_value('R0', 0)

        elif op == 'JF':
            label = parts[1]
            if get_value('R0') == 0:
                pc = labels[label]
                continue

        elif op == 'STORE':
            reg1 = parts[1]
            reg2 = parts[2]
            memory[get_value(reg2)] = get_value(reg1)

        elif op == 'INC':
            reg = parts[1]
            set_value(reg, get_value(reg) + 1)

        elif op == 'MUL':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            set_value(reg1, get_value(reg2) * get_value(reg3))

        elif op == 'GT':
            reg1 = parts[1]
            reg2 = parts[2]
            if get_value(reg1) > get_value(reg2):
                set_value('R0', 1)
            else:
                set_value('R0', 0)

        elif op == 'MOD':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            set_value(reg1, get_value(reg2) % get_value(reg3))

        elif op == 'JT':
            label = parts[1]
            if get_value('R0') == 1:
                pc = labels[label]
                continue

        pc += 1

    # Extract the prime numbers from memory
    primes = []
    for i in range(100):
        if memory[i] != 0:
            primes.append(memory[i])
        else:
            break

    return primes

# Example usage
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

primes = evaluate(program)
print(primes)
This Python function simulates the execution of the provided assembly program and returns the list of prime numbers found. The `evaluate` function parses the program, extracts labels, and simulates the execution of each instruction, updating the registers and memory accordingly. The final memory state is then used to extract the list of prime numbers.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
def evaluate(program):
    memory = [0] * 1000  # Initialize memory with 1000 slots
    registers = [0] * 10  # Initialize 10 registers (R0 to R9)
    labels = {}  # Dictionary to store labels and their corresponding line numbers
    instructions = program.strip().split('\n')

    # First pass: Extract labels and their positions
    for i, line in enumerate(instructions):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    pc = 0  # Program counter

    def get_value(reg):
        return registers[int(reg[1])]

    def set_value(reg, value):
        registers[int(reg[1])] = value

    while pc < len(instructions):
        instruction = instructions[pc].strip()

        if ':' in instruction:
            pc += 1
            continue

        parts = instruction.split()
        op = parts[0]

        if op == 'SET':
            reg = parts[1]
            value = int(parts[2])
            set_value(reg, value)

        elif op == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue

        elif op == 'EQ':
            reg1 = parts[1]
            reg2 = parts[2]
            if get_value(reg1) == get_value(reg2):
                set_value('R0', 1)
            else:
                set_value('R0', 0)

        elif op == 'JF':
            label = parts[1]
            if get_value('R0') == 0:
                pc = labels[label]
                continue

        elif op == 'STORE':
            reg1 = parts[1]
            reg2 = parts[2]
            memory[get_value(reg2)] = get_value(reg1)

        elif op == 'INC':
            reg = parts[1]
            set_value(reg, get_value(reg) + 1)

        elif op == 'MUL':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            set_value(reg1, get_value(reg2) * get_value(reg3))

        elif op == 'GT':
            reg1 = parts[1]
            reg2 = parts[2]
            if get_value(reg1) > get_value(reg2):
                set_value('R0', 1)
            else:
                set_value('R0', 0)

        elif op == 'MOD':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            set_value(reg1, get_value(reg2) % get_value(reg3))

        elif op == 'JT':
            label = parts[1]
            if get_value('R0') == 1:
                pc = labels[label]
                continue

        pc += 1

    # Extract the prime numbers from memory
    primes = []
    for i in range(100):
        if memory[i] != 0:
            primes.append(memory[i])
        else:
            break

    return primes

# Example usage
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

primes = evaluate(program)
print(primes)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def evaluate(program):
    memory = [0] * 1000  # Initialize memory with 1000 slots
    registers = [0] * 10  # Initialize 10 registers (R0 to R9)
    labels = {}  # Dictionary to store labels and their corresponding line numbers
    instructions = program.strip().split('\n')

    # First pass: Extract labels and their positions
    for i, line in enumerate(instructions):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    pc = 0  # Program counter

    def get_value(reg):
        return registers[int(reg[1])]

    def set_value(reg, value):
        registers[int(reg[1])] = value

    while pc < len(instructions):
        instruction = instructions[pc].strip()

        if ':' in instruction:
            pc += 1
            continue

        parts = instruction.split()
        op = parts[0]

        if op == 'SET':
            reg = parts[1]
            value = int(parts[2])
            set_value(reg, value)

        elif op == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue

        elif op == 'EQ':
            reg1 = parts[1]
            reg2 = parts[2]
            if get_value(reg1) == get_value(reg2):
                set_value('R0', 1)
            else:
                set_value('R0', 0)

        elif op == 'JF':
            label = parts[1]
            if get_value('R0') == 0:
                pc = labels[label]
                continue

        elif op == 'STORE':
            reg1 = parts[1]
            reg2 = parts[2]
            memory[get_value(reg2)] = get_value(reg1)

        elif op == 'INC':
            reg = parts[1]
            set_value(reg, get_value(reg) + 1)

        elif op == 'MUL':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            set_value(reg1, get_value(reg2) * get_value(reg3))

        elif op == 'GT':
            reg1 = parts[1]
            reg2 = parts[2]
            if get_value(reg1) > get_value(reg2):
                set_value('R0', 1)
            else:
                set_value('R0', 0)

        elif op == 'MOD':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            set_value(reg1, get_value(reg2) % get_value(reg3))

        elif op == 'JT':
            label = parts[1]
            if get_value('R0') == 1:
                pc = labels[label]
                continue

        pc += 1

    # Extract the prime numbers from memory
    primes = []
    for i in range(100):
        if memory[i] != 0:
            primes.append(memory[i])
        else:
            break

    return primes

# Example usage
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

primes = evaluate(program)
print(primes)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 158, in <module> primes = evaluate(program) File "/usr/src/app/main.py", line 30, in evaluate op = parts[0] IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

To create a Python interpreter for the assembly-like language you provided, we need to simulate the execution of the program step-by-step. This involves parsing the instructions, maintaining the state of the registers and memory, and executing the instructions in sequence. Below is a Python implementation of the `evaluate` function that returns the resulting memory state after running the program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import math

class Interpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 16)}
        self.memory = []
        self.instructions = []
        self.pc = 0

    def load_program(self, program):
        self.instructions = program.strip().split('\n')
        self.pc = 0

    def run(self):
        while self.pc < len(self.instructions):
            instruction = self.instructions[self.pc]
            self.execute_instruction(instruction)
            self.pc += 1

    def execute_instruction(self, instruction):
        parts = instruction.strip().split()
        opcode = parts[0]

        if opcode == 'SET':
            reg = parts[1]
            value = int(parts[2])
            self.registers[reg] = value

        elif opcode == 'INC':
            reg = parts[1]
            self.registers[reg] += 1

        elif opcode == 'JMP':
            label = parts[1]
            self.pc = self.find_label(label)

        elif opcode == 'EQ':
            reg1 = parts[1]
            reg2 = parts[2]
            self.registers['flag'] = 1 if self.registers[reg1] == self.registers[reg2] else 0

        elif opcode == 'JF':
            label = parts[1]
            if self.registers.get('flag', 0) == 0:
                self.pc = self.find_label(label)

        elif opcode == 'GT':
            reg1 = parts[1]
            reg2 = parts[2]
            self.registers['flag'] = 1 if self.registers[reg1] > self.registers[reg2] else 0

        elif opcode == 'JT':
            label = parts[1]
            if self.registers.get('flag', 0) == 1:
                self.pc = self.find_label(label)

        elif opcode == 'MUL':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            self.registers[reg1] = self.registers[reg2] * self.registers[reg3]

        elif opcode == 'MOD':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            self.registers[reg1] = self.registers[reg2] % self.registers[reg3]

        elif opcode == 'STORE':
            reg1 = parts[1]
            reg2 = parts[2]
            self.memory[self.registers[reg2]] = self.registers[reg1]

        elif opcode.endswith(':'):
            pass  # Labels are ignored during execution

    def find_label(self, label):
        for i, instr in enumerate(self.instructions):
            if instr.strip().endswith(f'{label}:'):
                return i
        return self.pc

    def get_memory(self):
        return self.memory

def evaluate(program):
    interpreter = Interpreter()
    interpreter.registers['R8'] = 0  # Initialize R8 to 0 as prime count register
    interpreter.memory = [0] * 100  # Initialize memory to hold primes
    interpreter.load_program(program)
    interpreter.run()
    return interpreter.get_memory()[:interpreter.registers['R8']]

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))
This interpreter will parse and execute the program, updating the state of the registers and memory as it goes. The `evaluate` function returns the memory state, which should contain the first 100 prime numbers for the provided program.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import math

class Interpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 16)}
        self.memory = []
        self.instructions = []
        self.pc = 0

    def load_program(self, program):
        self.instructions = program.strip().split('\n')
        self.pc = 0

    def run(self):
        while self.pc < len(self.instructions):
            instruction = self.instructions[self.pc]
            self.execute_instruction(instruction)
            self.pc += 1

    def execute_instruction(self, instruction):
        parts = instruction.strip().split()
        opcode = parts[0]

        if opcode == 'SET':
            reg = parts[1]
            value = int(parts[2])
            self.registers[reg] = value

        elif opcode == 'INC':
            reg = parts[1]
            self.registers[reg] += 1

        elif opcode == 'JMP':
            label = parts[1]
            self.pc = self.find_label(label)

        elif opcode == 'EQ':
            reg1 = parts[1]
            reg2 = parts[2]
            self.registers['flag'] = 1 if self.registers[reg1] == self.registers[reg2] else 0

        elif opcode == 'JF':
            label = parts[1]
            if self.registers.get('flag', 0) == 0:
                self.pc = self.find_label(label)

        elif opcode == 'GT':
            reg1 = parts[1]
            reg2 = parts[2]
            self.registers['flag'] = 1 if self.registers[reg1] > self.registers[reg2] else 0

        elif opcode == 'JT':
            label = parts[1]
            if self.registers.get('flag', 0) == 1:
                self.pc = self.find_label(label)

        elif opcode == 'MUL':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            self.registers[reg1] = self.registers[reg2] * self.registers[reg3]

        elif opcode == 'MOD':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            self.registers[reg1] = self.registers[reg2] % self.registers[reg3]

        elif opcode == 'STORE':
            reg1 = parts[1]
            reg2 = parts[2]
            self.memory[self.registers[reg2]] = self.registers[reg1]

        elif opcode.endswith(':'):
            pass  # Labels are ignored during execution

    def find_label(self, label):
        for i, instr in enumerate(self.instructions):
            if instr.strip().endswith(f'{label}:'):
                return i
        return self.pc

    def get_memory(self):
        return self.memory

def evaluate(program):
    interpreter = Interpreter()
    interpreter.registers['R8'] = 0  # Initialize R8 to 0 as prime count register
    interpreter.memory = [0] * 100  # Initialize memory to hold primes
    interpreter.load_program(program)
    interpreter.run()
    return interpreter.get_memory()[:interpreter.registers['R8']]

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import math

class Interpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 16)}
        self.memory = []
        self.instructions = []
        self.pc = 0

    def load_program(self, program):
        self.instructions = program.strip().split('\n')
        self.pc = 0

    def run(self):
        while self.pc < len(self.instructions):
            instruction = self.instructions[self.pc]
            self.execute_instruction(instruction)
            self.pc += 1

    def execute_instruction(self, instruction):
        parts = instruction.strip().split()
        opcode = parts[0]

        if opcode == 'SET':
            reg = parts[1]
            value = int(parts[2])
            self.registers[reg] = value

        elif opcode == 'INC':
            reg = parts[1]
            self.registers[reg] += 1

        elif opcode == 'JMP':
            label = parts[1]
            self.pc = self.find_label(label)

        elif opcode == 'EQ':
            reg1 = parts[1]
            reg2 = parts[2]
            self.registers['flag'] = 1 if self.registers[reg1] == self.registers[reg2] else 0

        elif opcode == 'JF':
            label = parts[1]
            if self.registers.get('flag', 0) == 0:
                self.pc = self.find_label(label)

        elif opcode == 'GT':
            reg1 = parts[1]
            reg2 = parts[2]
            self.registers['flag'] = 1 if self.registers[reg1] > self.registers[reg2] else 0

        elif opcode == 'JT':
            label = parts[1]
            if self.registers.get('flag', 0) == 1:
                self.pc = self.find_label(label)

        elif opcode == 'MUL':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            self.registers[reg1] = self.registers[reg2] * self.registers[reg3]

        elif opcode == 'MOD':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            self.registers[reg1] = self.registers[reg2] % self.registers[reg3]

        elif opcode == 'STORE':
            reg1 = parts[1]
            reg2 = parts[2]
            self.memory[self.registers[reg2]] = self.registers[reg1]

        elif opcode.endswith(':'):
            pass  # Labels are ignored during execution

    def find_label(self, label):
        for i, instr in enumerate(self.instructions):
            if instr.strip().endswith(f'{label}:'):
                return i
        return self.pc

    def get_memory(self):
        return self.memory

def evaluate(program):
    interpreter = Interpreter()
    interpreter.registers['R8'] = 0  # Initialize R8 to 0 as prime count register
    interpreter.memory = [0] * 100  # Initialize memory to hold primes
    interpreter.load_program(program)
    interpreter.run()
    return interpreter.get_memory()[:interpreter.registers['R8']]

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 150, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 92, in evaluate interpreter.run() File "/usr/src/app/main.py", line 18, in run self.execute_instruction(instruction) File "/usr/src/app/main.py", line 23, in execute_instruction opcode = parts[0] IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False