Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Certainly! Below is a Python interpreter that evaluates the assembly-like program and returns the resulting memory state after running the program. The interpreter will simulate the execution of the program and maintain the state of the registers and memory. Here's the Python interpreter:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | class Interpreter: def __init__(self): self.registers = {f'R{i}': 0 for i in range(1, 9)} self.memory = [] self.program = [] self.pc = 0 def load_program(self, program): self.program = program.strip().split('\n') self.program = [line.strip() for line in self.program if line.strip() and not line.strip().startswith('//')] def get_value(self, arg): if arg.startswith('R'): return self.registers[arg] return int(arg) def set_value(self, arg, value): if arg.startswith('R'): self.registers[arg] = value def execute(self): while self.pc < len(self.program): instr = self.program[self.pc].split() opcode = instr[0] if opcode == 'SET': self.set_value(instr[1], self.get_value(instr[2])) elif opcode == 'JMP': self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) elif opcode == 'JF': if not self.registers['R0']: self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) elif opcode == 'JT': if self.registers['R0']: self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) elif opcode == 'EQ': self.registers['R0'] = int(self.get_value(instr[1]) == self.get_value(instr[2])) elif opcode == 'GT': self.registers['R0'] = int(self.get_value(instr[1]) > self.get_value(instr[2])) elif opcode == 'MUL': self.set_value(instr[1], self.get_value(instr[2]) * self.get_value(instr[3])) elif opcode == 'MOD': self.set_value(instr[1], self.get_value(instr[2]) % self.get_value(instr[3])) elif opcode == 'INC': self.set_value(instr[1], self.get_value(instr[1]) + 1) elif opcode == 'STORE': self.memory.append(self.get_value(instr[1])) elif opcode == 'JMP': self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) else: raise ValueError(f"Unknown instruction: {opcode}") self.pc += 1 def evaluate(program): interpreter = Interpreter() interpreter.load_program(program) interpreter.execute() return interpreter.memory # Example program program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | class Interpreter: def __init__(self): self.registers = {f'R{i}': 0 for i in range(1, 9)} self.memory = [] self.program = [] self.pc = 0 def load_program(self, program): self.program = program.strip().split('\n') self.program = [line.strip() for line in self.program if line.strip() and not line.strip().startswith('//')] def get_value(self, arg): if arg.startswith('R'): return self.registers[arg] return int(arg) def set_value(self, arg, value): if arg.startswith('R'): self.registers[arg] = value def execute(self): while self.pc < len(self.program): instr = self.program[self.pc].split() opcode = instr[0] if opcode == 'SET': self.set_value(instr[1], self.get_value(instr[2])) elif opcode == 'JMP': self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) elif opcode == 'JF': if not self.registers['R0']: self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) elif opcode == 'JT': if self.registers['R0']: self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) elif opcode == 'EQ': self.registers['R0'] = int(self.get_value(instr[1]) == self.get_value(instr[2])) elif opcode == 'GT': self.registers['R0'] = int(self.get_value(instr[1]) > self.get_value(instr[2])) elif opcode == 'MUL': self.set_value(instr[1], self.get_value(instr[2]) * self.get_value(instr[3])) elif opcode == 'MOD': self.set_value(instr[1], self.get_value(instr[2]) % self.get_value(instr[3])) elif opcode == 'INC': self.set_value(instr[1], self.get_value(instr[1]) + 1) elif opcode == 'STORE': self.memory.append(self.get_value(instr[1])) elif opcode == 'JMP': self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) else: raise ValueError(f"Unknown instruction: {opcode}") self.pc += 1 def evaluate(program): interpreter = Interpreter() interpreter.load_program(program) interpreter.execute() return interpreter.memory # Example program program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | class Interpreter: def __init__(self): self.registers = {f'R{i}': 0 for i in range(1, 9)} self.memory = [] self.program = [] self.pc = 0 def load_program(self, program): self.program = program.strip().split('\n') self.program = [line.strip() for line in self.program if line.strip() and not line.strip().startswith('//')] def get_value(self, arg): if arg.startswith('R'): return self.registers[arg] return int(arg) def set_value(self, arg, value): if arg.startswith('R'): self.registers[arg] = value def execute(self): while self.pc < len(self.program): instr = self.program[self.pc].split() opcode = instr[0] if opcode == 'SET': self.set_value(instr[1], self.get_value(instr[2])) elif opcode == 'JMP': self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) elif opcode == 'JF': if not self.registers['R0']: self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) elif opcode == 'JT': if self.registers['R0']: self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) elif opcode == 'EQ': self.registers['R0'] = int(self.get_value(instr[1]) == self.get_value(instr[2])) elif opcode == 'GT': self.registers['R0'] = int(self.get_value(instr[1]) > self.get_value(instr[2])) elif opcode == 'MUL': self.set_value(instr[1], self.get_value(instr[2]) * self.get_value(instr[3])) elif opcode == 'MOD': self.set_value(instr[1], self.get_value(instr[2]) % self.get_value(instr[3])) elif opcode == 'INC': self.set_value(instr[1], self.get_value(instr[1]) + 1) elif opcode == 'STORE': self.memory.append(self.get_value(instr[1])) elif opcode == 'JMP': self.pc = next((i for i, line in enumerate(self.program) if line.startswith(instr[1] + ':')), self.pc) else: raise ValueError(f"Unknown instruction: {opcode}") self.pc += 1 def evaluate(program): interpreter = Interpreter() interpreter.load_program(program) interpreter.execute() return interpreter.memory # Example program program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 98, in <module>
print(evaluate(program))
File "/usr/src/app/main.py", line 57, in evaluate
interpreter.execute()
File "/usr/src/app/main.py", line 51, in execute
raise ValueError(f"Unknown instruction: {opcode}")
ValueError: Unknown instruction: start_find_primes:
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Sure! To create a Python interpreter for your custom assembly language, we need to implement a simple virtual machine that can execute the given instructions. Below is a Python implementation of such an interpreter. This interpreter will parse the program, execute the instructions, and return the resulting memory state after running the program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | class VirtualMachine: def __init__(self): self.memory = {} self.registers = [0] * 10 self.pc = 0 self.instructions = [] def load_program(self, program): self.instructions = program.strip().split('\n') self.pc = 0 def execute(self): while self.pc < len(self.instructions): instruction = self.instructions[self.pc].strip() self.pc += 1 if instruction.startswith('SET'): self.set(instruction) elif instruction.startswith('JMP'): self.jmp(instruction) elif instruction.startswith('EQ'): self.eq(instruction) elif instruction.startswith('JF'): self.jf(instruction) elif instruction.startswith('STORE'): self.store(instruction) elif instruction.startswith('INC'): self.inc(instruction) elif instruction.startswith('JT'): self.jt(instruction) elif instruction.startswith('MUL'): self.mul(instruction) elif instruction.startswith('GT'): self.gt(instruction) elif instruction.startswith('MOD'): self.mod(instruction) def set(self, instruction): parts = instruction.split() reg = int(parts[1][1]) value = int(parts[2]) self.registers[reg] = value def jmp(self, instruction): parts = instruction.split() label = parts[1] self.pc = self.get_label_index(label) def eq(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) self.registers[8] = 1 if self.registers[reg1] == self.registers[reg2] else 0 def jf(self, instruction): parts = instruction.split() label = parts[1] if self.registers[8] == 0: self.pc = self.get_label_index(label) def store(self, instruction): parts = instruction.split() reg = int(parts[1][1]) addr = self.registers[int(parts[2][1])] self.memory[addr] = self.registers[reg] def inc(self, instruction): parts = instruction.split() reg = int(parts[1][1]) self.registers[reg] += 1 def jt(self, instruction): parts = instruction.split() label = parts[1] if self.registers[8] == 1: self.pc = self.get_label_index(label) def mul(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) reg_dest = int(parts[3][1]) self.registers[reg_dest] = self.registers[reg1] * self.registers[reg2] def gt(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) self.registers[8] = 1 if self.registers[reg1] > self.registers[reg2] else 0 def mod(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) reg_dest = int(parts[3][1]) self.registers[reg_dest] = self.registers[reg1] % self.registers[reg2] def get_label_index(self, label): for idx, instr in enumerate(self.instructions): if instr.endswith(f'{label}:'): return idx return None def evaluate(program): vm = VirtualMachine() vm.load_program(program) vm.execute() return [vm.memory[i] for i in range(len(vm.memory))] # Example usage program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | class VirtualMachine: def __init__(self): self.memory = {} self.registers = [0] * 10 self.pc = 0 self.instructions = [] def load_program(self, program): self.instructions = program.strip().split('\n') self.pc = 0 def execute(self): while self.pc < len(self.instructions): instruction = self.instructions[self.pc].strip() self.pc += 1 if instruction.startswith('SET'): self.set(instruction) elif instruction.startswith('JMP'): self.jmp(instruction) elif instruction.startswith('EQ'): self.eq(instruction) elif instruction.startswith('JF'): self.jf(instruction) elif instruction.startswith('STORE'): self.store(instruction) elif instruction.startswith('INC'): self.inc(instruction) elif instruction.startswith('JT'): self.jt(instruction) elif instruction.startswith('MUL'): self.mul(instruction) elif instruction.startswith('GT'): self.gt(instruction) elif instruction.startswith('MOD'): self.mod(instruction) def set(self, instruction): parts = instruction.split() reg = int(parts[1][1]) value = int(parts[2]) self.registers[reg] = value def jmp(self, instruction): parts = instruction.split() label = parts[1] self.pc = self.get_label_index(label) def eq(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) self.registers[8] = 1 if self.registers[reg1] == self.registers[reg2] else 0 def jf(self, instruction): parts = instruction.split() label = parts[1] if self.registers[8] == 0: self.pc = self.get_label_index(label) def store(self, instruction): parts = instruction.split() reg = int(parts[1][1]) addr = self.registers[int(parts[2][1])] self.memory[addr] = self.registers[reg] def inc(self, instruction): parts = instruction.split() reg = int(parts[1][1]) self.registers[reg] += 1 def jt(self, instruction): parts = instruction.split() label = parts[1] if self.registers[8] == 1: self.pc = self.get_label_index(label) def mul(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) reg_dest = int(parts[3][1]) self.registers[reg_dest] = self.registers[reg1] * self.registers[reg2] def gt(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) self.registers[8] = 1 if self.registers[reg1] > self.registers[reg2] else 0 def mod(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) reg_dest = int(parts[3][1]) self.registers[reg_dest] = self.registers[reg1] % self.registers[reg2] def get_label_index(self, label): for idx, instr in enumerate(self.instructions): if instr.endswith(f'{label}:'): return idx return None def evaluate(program): vm = VirtualMachine() vm.load_program(program) vm.execute() return [vm.memory[i] for i in range(len(vm.memory))] # Example usage program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | class VirtualMachine: def __init__(self): self.memory = {} self.registers = [0] * 10 self.pc = 0 self.instructions = [] def load_program(self, program): self.instructions = program.strip().split('\n') self.pc = 0 def execute(self): while self.pc < len(self.instructions): instruction = self.instructions[self.pc].strip() self.pc += 1 if instruction.startswith('SET'): self.set(instruction) elif instruction.startswith('JMP'): self.jmp(instruction) elif instruction.startswith('EQ'): self.eq(instruction) elif instruction.startswith('JF'): self.jf(instruction) elif instruction.startswith('STORE'): self.store(instruction) elif instruction.startswith('INC'): self.inc(instruction) elif instruction.startswith('JT'): self.jt(instruction) elif instruction.startswith('MUL'): self.mul(instruction) elif instruction.startswith('GT'): self.gt(instruction) elif instruction.startswith('MOD'): self.mod(instruction) def set(self, instruction): parts = instruction.split() reg = int(parts[1][1]) value = int(parts[2]) self.registers[reg] = value def jmp(self, instruction): parts = instruction.split() label = parts[1] self.pc = self.get_label_index(label) def eq(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) self.registers[8] = 1 if self.registers[reg1] == self.registers[reg2] else 0 def jf(self, instruction): parts = instruction.split() label = parts[1] if self.registers[8] == 0: self.pc = self.get_label_index(label) def store(self, instruction): parts = instruction.split() reg = int(parts[1][1]) addr = self.registers[int(parts[2][1])] self.memory[addr] = self.registers[reg] def inc(self, instruction): parts = instruction.split() reg = int(parts[1][1]) self.registers[reg] += 1 def jt(self, instruction): parts = instruction.split() label = parts[1] if self.registers[8] == 1: self.pc = self.get_label_index(label) def mul(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) reg_dest = int(parts[3][1]) self.registers[reg_dest] = self.registers[reg1] * self.registers[reg2] def gt(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) self.registers[8] = 1 if self.registers[reg1] > self.registers[reg2] else 0 def mod(self, instruction): parts = instruction.split() reg1 = int(parts[1][1]) reg2 = int(parts[2][1]) reg_dest = int(parts[3][1]) self.registers[reg_dest] = self.registers[reg1] % self.registers[reg2] def get_label_index(self, label): for idx, instr in enumerate(self.instructions): if instr.endswith(f'{label}:'): return idx return None def evaluate(program): vm = VirtualMachine() vm.load_program(program) vm.execute() return [vm.memory[i] for i in range(len(vm.memory))] # Example usage program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Timeout: function took too long to complete
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Certainly! To create a Python interpreter for your custom assembly language, we'll need to define a set of instructions and a function `evaluate` that can parse and execute the program. Below is the implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | def evaluate(program): # Initialize registers and memory registers = {f'R{i}': 0 for i in range(1, 9)} memory = [] # Parse the program lines lines = program.strip().split('\n') program_counter = 0 labels = {} # First pass: store the labels for i, line in enumerate(lines): if line.strip().endswith(':'): label = line.strip()[:-1] labels[label] = i # Instruction set handlers def set_register(reg, value): registers[reg] = value def jump(label): nonlocal program_counter program_counter = labels[label] def jump_if_true(label): nonlocal program_counter if register_values['flag']: program_counter = labels[label] def jump_if_false(label): nonlocal program_counter if not register_values['flag']: program_counter = labels[label] def equal(reg1, reg2): register_values['flag'] = registers[reg1] == registers[reg2] def greater_than(reg1, reg2): register_values['flag'] = registers[reg1] > registers[reg2] def modulo(reg1, reg2, reg3): registers[reg1] = registers[reg2] % registers[reg3] def multiply(reg1, reg2, reg3): registers[reg1] = registers[reg2] * registers[reg3] def increment(reg): registers[reg] += 1 def store(reg1, reg2): memory.append(registers[reg1]) registers[reg2] += 1 # Register values and flags register_values = {'flag': False} # Execute instructions while program_counter < len(lines): line = lines[program_counter].strip() if line == "": program_counter += 1 continue parts = line.split() instruction = parts[0] if instruction == "SET": set_register(parts[1], int(parts[2])) elif instruction == "JMP": jump(parts[1]) elif instruction == "JT": jump_if_true(parts[1]) elif instruction == "JF": jump_if_false(parts[1]) elif instruction == "EQ": equal(parts[1], parts[2]) elif instruction == "GT": greater_than(parts[1], parts[2]) elif instruction == "MOD": modulo(parts[1], parts[2], parts[3]) elif instruction == "MUL": multiply(parts[1], parts[2], parts[3]) elif instruction == "INC": increment(parts[1]) elif instruction == "STORE": store(parts[1], parts[2]) elif instruction.endswith(':'): # Skip labels during execution pass else: raise ValueError(f"Unknown instruction: {instruction}") program_counter += 1 return memory # Example program that computes primes program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ # Evaluate the program result = evaluate(program) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | def evaluate(program): # Initialize registers and memory registers = {f'R{i}': 0 for i in range(1, 9)} memory = [] # Parse the program lines lines = program.strip().split('\n') program_counter = 0 labels = {} # First pass: store the labels for i, line in enumerate(lines): if line.strip().endswith(':'): label = line.strip()[:-1] labels[label] = i # Instruction set handlers def set_register(reg, value): registers[reg] = value def jump(label): nonlocal program_counter program_counter = labels[label] def jump_if_true(label): nonlocal program_counter if register_values['flag']: program_counter = labels[label] def jump_if_false(label): nonlocal program_counter if not register_values['flag']: program_counter = labels[label] def equal(reg1, reg2): register_values['flag'] = registers[reg1] == registers[reg2] def greater_than(reg1, reg2): register_values['flag'] = registers[reg1] > registers[reg2] def modulo(reg1, reg2, reg3): registers[reg1] = registers[reg2] % registers[reg3] def multiply(reg1, reg2, reg3): registers[reg1] = registers[reg2] * registers[reg3] def increment(reg): registers[reg] += 1 def store(reg1, reg2): memory.append(registers[reg1]) registers[reg2] += 1 # Register values and flags register_values = {'flag': False} # Execute instructions while program_counter < len(lines): line = lines[program_counter].strip() if line == "": program_counter += 1 continue parts = line.split() instruction = parts[0] if instruction == "SET": set_register(parts[1], int(parts[2])) elif instruction == "JMP": jump(parts[1]) elif instruction == "JT": jump_if_true(parts[1]) elif instruction == "JF": jump_if_false(parts[1]) elif instruction == "EQ": equal(parts[1], parts[2]) elif instruction == "GT": greater_than(parts[1], parts[2]) elif instruction == "MOD": modulo(parts[1], parts[2], parts[3]) elif instruction == "MUL": multiply(parts[1], parts[2], parts[3]) elif instruction == "INC": increment(parts[1]) elif instruction == "STORE": store(parts[1], parts[2]) elif instruction.endswith(':'): # Skip labels during execution pass else: raise ValueError(f"Unknown instruction: {instruction}") program_counter += 1 return memory # Example program that computes primes program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ # Evaluate the program result = evaluate(program) print(result) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | def evaluate(program): # Initialize registers and memory registers = {f'R{i}': 0 for i in range(1, 9)} memory = [] # Parse the program lines lines = program.strip().split('\n') program_counter = 0 labels = {} # First pass: store the labels for i, line in enumerate(lines): if line.strip().endswith(':'): label = line.strip()[:-1] labels[label] = i # Instruction set handlers def set_register(reg, value): registers[reg] = value def jump(label): nonlocal program_counter program_counter = labels[label] def jump_if_true(label): nonlocal program_counter if register_values['flag']: program_counter = labels[label] def jump_if_false(label): nonlocal program_counter if not register_values['flag']: program_counter = labels[label] def equal(reg1, reg2): register_values['flag'] = registers[reg1] == registers[reg2] def greater_than(reg1, reg2): register_values['flag'] = registers[reg1] > registers[reg2] def modulo(reg1, reg2, reg3): registers[reg1] = registers[reg2] % registers[reg3] def multiply(reg1, reg2, reg3): registers[reg1] = registers[reg2] * registers[reg3] def increment(reg): registers[reg] += 1 def store(reg1, reg2): memory.append(registers[reg1]) registers[reg2] += 1 # Register values and flags register_values = {'flag': False} # Execute instructions while program_counter < len(lines): line = lines[program_counter].strip() if line == "": program_counter += 1 continue parts = line.split() instruction = parts[0] if instruction == "SET": set_register(parts[1], int(parts[2])) elif instruction == "JMP": jump(parts[1]) elif instruction == "JT": jump_if_true(parts[1]) elif instruction == "JF": jump_if_false(parts[1]) elif instruction == "EQ": equal(parts[1], parts[2]) elif instruction == "GT": greater_than(parts[1], parts[2]) elif instruction == "MOD": modulo(parts[1], parts[2], parts[3]) elif instruction == "MUL": multiply(parts[1], parts[2], parts[3]) elif instruction == "INC": increment(parts[1]) elif instruction == "STORE": store(parts[1], parts[2]) elif instruction.endswith(':'): # Skip labels during execution pass else: raise ValueError(f"Unknown instruction: {instruction}") program_counter += 1 return memory # Example program that computes primes program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ # Evaluate the program result = evaluate(program) print(result) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229]
Traceback (most recent call last):
File "/usr/src/app/main.py", line 171, in <module>
answer = evaluate("""
File "/usr/src/app/main.py", line 91, in evaluate
raise ValueError(f"Unknown instruction: {instruction}")
ValueError: Unknown instruction: //
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Sure! To create a Python interpreter for the assembly-like language you provided, we'll need to simulate the execution of the assembly instructions. Here's a Python function `evaluate` that takes the assembly program as input and returns the resulting memory state.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | def evaluate(program): memory = [0] * 1000 # Initialize memory with 1000 slots registers = [0] * 10 # Initialize 10 registers (R0 to R9) labels = {} # Dictionary to store labels and their corresponding line numbers instructions = program.strip().split('\n') # First pass: Extract labels and their positions for i, line in enumerate(instructions): if ':' in line: label = line.split(':')[0].strip() labels[label] = i pc = 0 # Program counter def get_value(reg): return registers[int(reg[1])] def set_value(reg, value): registers[int(reg[1])] = value while pc < len(instructions): instruction = instructions[pc].strip() if ':' in instruction: pc += 1 continue parts = instruction.split() op = parts[0] if op == 'SET': reg = parts[1] value = int(parts[2]) set_value(reg, value) elif op == 'JMP': label = parts[1] pc = labels[label] continue elif op == 'EQ': reg1 = parts[1] reg2 = parts[2] if get_value(reg1) == get_value(reg2): set_value('R0', 1) else: set_value('R0', 0) elif op == 'JF': label = parts[1] if get_value('R0') == 0: pc = labels[label] continue elif op == 'STORE': reg1 = parts[1] reg2 = parts[2] memory[get_value(reg2)] = get_value(reg1) elif op == 'INC': reg = parts[1] set_value(reg, get_value(reg) + 1) elif op == 'MUL': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] set_value(reg1, get_value(reg2) * get_value(reg3)) elif op == 'GT': reg1 = parts[1] reg2 = parts[2] if get_value(reg1) > get_value(reg2): set_value('R0', 1) else: set_value('R0', 0) elif op == 'MOD': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] set_value(reg1, get_value(reg2) % get_value(reg3)) elif op == 'JT': label = parts[1] if get_value('R0') == 1: pc = labels[label] continue pc += 1 # Extract the prime numbers from memory primes = [] for i in range(100): if memory[i] != 0: primes.append(memory[i]) else: break return primes # Example usage program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ primes = evaluate(program) print(primes) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | def evaluate(program): memory = [0] * 1000 # Initialize memory with 1000 slots registers = [0] * 10 # Initialize 10 registers (R0 to R9) labels = {} # Dictionary to store labels and their corresponding line numbers instructions = program.strip().split('\n') # First pass: Extract labels and their positions for i, line in enumerate(instructions): if ':' in line: label = line.split(':')[0].strip() labels[label] = i pc = 0 # Program counter def get_value(reg): return registers[int(reg[1])] def set_value(reg, value): registers[int(reg[1])] = value while pc < len(instructions): instruction = instructions[pc].strip() if ':' in instruction: pc += 1 continue parts = instruction.split() op = parts[0] if op == 'SET': reg = parts[1] value = int(parts[2]) set_value(reg, value) elif op == 'JMP': label = parts[1] pc = labels[label] continue elif op == 'EQ': reg1 = parts[1] reg2 = parts[2] if get_value(reg1) == get_value(reg2): set_value('R0', 1) else: set_value('R0', 0) elif op == 'JF': label = parts[1] if get_value('R0') == 0: pc = labels[label] continue elif op == 'STORE': reg1 = parts[1] reg2 = parts[2] memory[get_value(reg2)] = get_value(reg1) elif op == 'INC': reg = parts[1] set_value(reg, get_value(reg) + 1) elif op == 'MUL': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] set_value(reg1, get_value(reg2) * get_value(reg3)) elif op == 'GT': reg1 = parts[1] reg2 = parts[2] if get_value(reg1) > get_value(reg2): set_value('R0', 1) else: set_value('R0', 0) elif op == 'MOD': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] set_value(reg1, get_value(reg2) % get_value(reg3)) elif op == 'JT': label = parts[1] if get_value('R0') == 1: pc = labels[label] continue pc += 1 # Extract the prime numbers from memory primes = [] for i in range(100): if memory[i] != 0: primes.append(memory[i]) else: break return primes # Example usage program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ primes = evaluate(program) print(primes) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | def evaluate(program): memory = [0] * 1000 # Initialize memory with 1000 slots registers = [0] * 10 # Initialize 10 registers (R0 to R9) labels = {} # Dictionary to store labels and their corresponding line numbers instructions = program.strip().split('\n') # First pass: Extract labels and their positions for i, line in enumerate(instructions): if ':' in line: label = line.split(':')[0].strip() labels[label] = i pc = 0 # Program counter def get_value(reg): return registers[int(reg[1])] def set_value(reg, value): registers[int(reg[1])] = value while pc < len(instructions): instruction = instructions[pc].strip() if ':' in instruction: pc += 1 continue parts = instruction.split() op = parts[0] if op == 'SET': reg = parts[1] value = int(parts[2]) set_value(reg, value) elif op == 'JMP': label = parts[1] pc = labels[label] continue elif op == 'EQ': reg1 = parts[1] reg2 = parts[2] if get_value(reg1) == get_value(reg2): set_value('R0', 1) else: set_value('R0', 0) elif op == 'JF': label = parts[1] if get_value('R0') == 0: pc = labels[label] continue elif op == 'STORE': reg1 = parts[1] reg2 = parts[2] memory[get_value(reg2)] = get_value(reg1) elif op == 'INC': reg = parts[1] set_value(reg, get_value(reg) + 1) elif op == 'MUL': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] set_value(reg1, get_value(reg2) * get_value(reg3)) elif op == 'GT': reg1 = parts[1] reg2 = parts[2] if get_value(reg1) > get_value(reg2): set_value('R0', 1) else: set_value('R0', 0) elif op == 'MOD': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] set_value(reg1, get_value(reg2) % get_value(reg3)) elif op == 'JT': label = parts[1] if get_value('R0') == 1: pc = labels[label] continue pc += 1 # Extract the prime numbers from memory primes = [] for i in range(100): if memory[i] != 0: primes.append(memory[i]) else: break return primes # Example usage program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ primes = evaluate(program) print(primes) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 158, in <module>
primes = evaluate(program)
File "/usr/src/app/main.py", line 30, in evaluate
op = parts[0]
IndexError: list index out of range
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
To create a Python interpreter for the assembly-like language you provided, we need to simulate the execution of the program step-by-step. This involves parsing the instructions, maintaining the state of the registers and memory, and executing the instructions in sequence. Below is a Python implementation of the `evaluate` function that returns the resulting memory state after running the program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | import math class Interpreter: def __init__(self): self.registers = {f'R{i}': 0 for i in range(1, 16)} self.memory = [] self.instructions = [] self.pc = 0 def load_program(self, program): self.instructions = program.strip().split('\n') self.pc = 0 def run(self): while self.pc < len(self.instructions): instruction = self.instructions[self.pc] self.execute_instruction(instruction) self.pc += 1 def execute_instruction(self, instruction): parts = instruction.strip().split() opcode = parts[0] if opcode == 'SET': reg = parts[1] value = int(parts[2]) self.registers[reg] = value elif opcode == 'INC': reg = parts[1] self.registers[reg] += 1 elif opcode == 'JMP': label = parts[1] self.pc = self.find_label(label) elif opcode == 'EQ': reg1 = parts[1] reg2 = parts[2] self.registers['flag'] = 1 if self.registers[reg1] == self.registers[reg2] else 0 elif opcode == 'JF': label = parts[1] if self.registers.get('flag', 0) == 0: self.pc = self.find_label(label) elif opcode == 'GT': reg1 = parts[1] reg2 = parts[2] self.registers['flag'] = 1 if self.registers[reg1] > self.registers[reg2] else 0 elif opcode == 'JT': label = parts[1] if self.registers.get('flag', 0) == 1: self.pc = self.find_label(label) elif opcode == 'MUL': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] self.registers[reg1] = self.registers[reg2] * self.registers[reg3] elif opcode == 'MOD': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] self.registers[reg1] = self.registers[reg2] % self.registers[reg3] elif opcode == 'STORE': reg1 = parts[1] reg2 = parts[2] self.memory[self.registers[reg2]] = self.registers[reg1] elif opcode.endswith(':'): pass # Labels are ignored during execution def find_label(self, label): for i, instr in enumerate(self.instructions): if instr.strip().endswith(f'{label}:'): return i return self.pc def get_memory(self): return self.memory def evaluate(program): interpreter = Interpreter() interpreter.registers['R8'] = 0 # Initialize R8 to 0 as prime count register interpreter.memory = [0] * 100 # Initialize memory to hold primes interpreter.load_program(program) interpreter.run() return interpreter.get_memory()[:interpreter.registers['R8']] # Example usage: program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | import math class Interpreter: def __init__(self): self.registers = {f'R{i}': 0 for i in range(1, 16)} self.memory = [] self.instructions = [] self.pc = 0 def load_program(self, program): self.instructions = program.strip().split('\n') self.pc = 0 def run(self): while self.pc < len(self.instructions): instruction = self.instructions[self.pc] self.execute_instruction(instruction) self.pc += 1 def execute_instruction(self, instruction): parts = instruction.strip().split() opcode = parts[0] if opcode == 'SET': reg = parts[1] value = int(parts[2]) self.registers[reg] = value elif opcode == 'INC': reg = parts[1] self.registers[reg] += 1 elif opcode == 'JMP': label = parts[1] self.pc = self.find_label(label) elif opcode == 'EQ': reg1 = parts[1] reg2 = parts[2] self.registers['flag'] = 1 if self.registers[reg1] == self.registers[reg2] else 0 elif opcode == 'JF': label = parts[1] if self.registers.get('flag', 0) == 0: self.pc = self.find_label(label) elif opcode == 'GT': reg1 = parts[1] reg2 = parts[2] self.registers['flag'] = 1 if self.registers[reg1] > self.registers[reg2] else 0 elif opcode == 'JT': label = parts[1] if self.registers.get('flag', 0) == 1: self.pc = self.find_label(label) elif opcode == 'MUL': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] self.registers[reg1] = self.registers[reg2] * self.registers[reg3] elif opcode == 'MOD': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] self.registers[reg1] = self.registers[reg2] % self.registers[reg3] elif opcode == 'STORE': reg1 = parts[1] reg2 = parts[2] self.memory[self.registers[reg2]] = self.registers[reg1] elif opcode.endswith(':'): pass # Labels are ignored during execution def find_label(self, label): for i, instr in enumerate(self.instructions): if instr.strip().endswith(f'{label}:'): return i return self.pc def get_memory(self): return self.memory def evaluate(program): interpreter = Interpreter() interpreter.registers['R8'] = 0 # Initialize R8 to 0 as prime count register interpreter.memory = [0] * 100 # Initialize memory to hold primes interpreter.load_program(program) interpreter.run() return interpreter.get_memory()[:interpreter.registers['R8']] # Example usage: program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | import math class Interpreter: def __init__(self): self.registers = {f'R{i}': 0 for i in range(1, 16)} self.memory = [] self.instructions = [] self.pc = 0 def load_program(self, program): self.instructions = program.strip().split('\n') self.pc = 0 def run(self): while self.pc < len(self.instructions): instruction = self.instructions[self.pc] self.execute_instruction(instruction) self.pc += 1 def execute_instruction(self, instruction): parts = instruction.strip().split() opcode = parts[0] if opcode == 'SET': reg = parts[1] value = int(parts[2]) self.registers[reg] = value elif opcode == 'INC': reg = parts[1] self.registers[reg] += 1 elif opcode == 'JMP': label = parts[1] self.pc = self.find_label(label) elif opcode == 'EQ': reg1 = parts[1] reg2 = parts[2] self.registers['flag'] = 1 if self.registers[reg1] == self.registers[reg2] else 0 elif opcode == 'JF': label = parts[1] if self.registers.get('flag', 0) == 0: self.pc = self.find_label(label) elif opcode == 'GT': reg1 = parts[1] reg2 = parts[2] self.registers['flag'] = 1 if self.registers[reg1] > self.registers[reg2] else 0 elif opcode == 'JT': label = parts[1] if self.registers.get('flag', 0) == 1: self.pc = self.find_label(label) elif opcode == 'MUL': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] self.registers[reg1] = self.registers[reg2] * self.registers[reg3] elif opcode == 'MOD': reg1 = parts[1] reg2 = parts[2] reg3 = parts[3] self.registers[reg1] = self.registers[reg2] % self.registers[reg3] elif opcode == 'STORE': reg1 = parts[1] reg2 = parts[2] self.memory[self.registers[reg2]] = self.registers[reg1] elif opcode.endswith(':'): pass # Labels are ignored during execution def find_label(self, label): for i, instr in enumerate(self.instructions): if instr.strip().endswith(f'{label}:'): return i return self.pc def get_memory(self): return self.memory def evaluate(program): interpreter = Interpreter() interpreter.registers['R8'] = 0 # Initialize R8 to 0 as prime count register interpreter.memory = [0] * 100 # Initialize memory to hold primes interpreter.load_program(program) interpreter.run() return interpreter.get_memory()[:interpreter.registers['R8']] # Example usage: program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 150, in <module>
print(evaluate(program))
File "/usr/src/app/main.py", line 92, in evaluate
interpreter.run()
File "/usr/src/app/main.py", line 18, in run
self.execute_instruction(instruction)
File "/usr/src/app/main.py", line 23, in execute_instruction
opcode = parts[0]
IndexError: list index out of range
Testing if the previous output contains the string All tests passed
: False