Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Sure, I'll provide you with a Python interpreter for the custom assembly language you've defined. The interpreter will read the program, execute it, and return the resulting memory state. The memory state will include the prime numbers that the program calculates. Here is the Python code for the interpreter:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | class Interpreter: def __init__(self, program): self.program = program.split('\n') self.registers = [0] * 10 self.memory = [] self.instruction_pointer = 0 self.labels = {} self.flag = False # Preprocess labels for idx, line in enumerate(self.program): if line.strip().endswith(':'): label = line.strip()[:-1] self.labels[label] = idx def run(self): while self.instruction_pointer < len(self.program): line = self.program[self.instruction_pointer].strip() if line.endswith(':'): # Skip label lines self.instruction_pointer += 1 continue self.execute(line) self.instruction_pointer += 1 def execute(self, line): parts = line.split() if not parts: return cmd = parts[0] if cmd == 'SET': self.registers[int(parts[1][1])] = int(parts[2]) elif cmd == 'INC': self.registers[int(parts[1][1])] += 1 elif cmd == 'EQ': self.flag = (self.registers[int(parts[1][1])] == self.registers[int(parts[2][1])]) elif cmd == 'GT': self.flag = (self.registers[int(parts[1][1])] > self.registers[int(parts[2][1])]) elif cmd == 'JF': if not self.flag: self.instruction_pointer = self.labels[parts[1]] - 1 elif cmd == 'JT': if self.flag: self.instruction_pointer = self.labels[parts[1]] - 1 elif cmd == 'JMP': self.instruction_pointer = self.labels[parts[1]] - 1 elif cmd == 'MUL': self.registers[int(parts[1][1])] = self.registers[int(parts[2][1])] * self.registers[int(parts[3][1])] elif cmd == 'MOD': self.registers[int(parts[1][1])] = self.registers[int(parts[2][1])] % self.registers[int(parts[3][1])] elif cmd == 'STORE': address = self.registers[int(parts[2][1])] while len(self.memory) <= address: self.memory.append(0) self.memory[address] = self.registers[int(parts[1][1])] def evaluate(program): interpreter = Interpreter(program) interpreter.run() return interpreter.memory # Example usage program = ''' SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: ''' print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | class Interpreter: def __init__(self, program): self.program = program.split('\n') self.registers = [0] * 10 self.memory = [] self.instruction_pointer = 0 self.labels = {} self.flag = False # Preprocess labels for idx, line in enumerate(self.program): if line.strip().endswith(':'): label = line.strip()[:-1] self.labels[label] = idx def run(self): while self.instruction_pointer < len(self.program): line = self.program[self.instruction_pointer].strip() if line.endswith(':'): # Skip label lines self.instruction_pointer += 1 continue self.execute(line) self.instruction_pointer += 1 def execute(self, line): parts = line.split() if not parts: return cmd = parts[0] if cmd == 'SET': self.registers[int(parts[1][1])] = int(parts[2]) elif cmd == 'INC': self.registers[int(parts[1][1])] += 1 elif cmd == 'EQ': self.flag = (self.registers[int(parts[1][1])] == self.registers[int(parts[2][1])]) elif cmd == 'GT': self.flag = (self.registers[int(parts[1][1])] > self.registers[int(parts[2][1])]) elif cmd == 'JF': if not self.flag: self.instruction_pointer = self.labels[parts[1]] - 1 elif cmd == 'JT': if self.flag: self.instruction_pointer = self.labels[parts[1]] - 1 elif cmd == 'JMP': self.instruction_pointer = self.labels[parts[1]] - 1 elif cmd == 'MUL': self.registers[int(parts[1][1])] = self.registers[int(parts[2][1])] * self.registers[int(parts[3][1])] elif cmd == 'MOD': self.registers[int(parts[1][1])] = self.registers[int(parts[2][1])] % self.registers[int(parts[3][1])] elif cmd == 'STORE': address = self.registers[int(parts[2][1])] while len(self.memory) <= address: self.memory.append(0) self.memory[address] = self.registers[int(parts[1][1])] def evaluate(program): interpreter = Interpreter(program) interpreter.run() return interpreter.memory # Example usage program = ''' SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: ''' print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | class Interpreter: def __init__(self, program): self.program = program.split('\n') self.registers = [0] * 10 self.memory = [] self.instruction_pointer = 0 self.labels = {} self.flag = False # Preprocess labels for idx, line in enumerate(self.program): if line.strip().endswith(':'): label = line.strip()[:-1] self.labels[label] = idx def run(self): while self.instruction_pointer < len(self.program): line = self.program[self.instruction_pointer].strip() if line.endswith(':'): # Skip label lines self.instruction_pointer += 1 continue self.execute(line) self.instruction_pointer += 1 def execute(self, line): parts = line.split() if not parts: return cmd = parts[0] if cmd == 'SET': self.registers[int(parts[1][1])] = int(parts[2]) elif cmd == 'INC': self.registers[int(parts[1][1])] += 1 elif cmd == 'EQ': self.flag = (self.registers[int(parts[1][1])] == self.registers[int(parts[2][1])]) elif cmd == 'GT': self.flag = (self.registers[int(parts[1][1])] > self.registers[int(parts[2][1])]) elif cmd == 'JF': if not self.flag: self.instruction_pointer = self.labels[parts[1]] - 1 elif cmd == 'JT': if self.flag: self.instruction_pointer = self.labels[parts[1]] - 1 elif cmd == 'JMP': self.instruction_pointer = self.labels[parts[1]] - 1 elif cmd == 'MUL': self.registers[int(parts[1][1])] = self.registers[int(parts[2][1])] * self.registers[int(parts[3][1])] elif cmd == 'MOD': self.registers[int(parts[1][1])] = self.registers[int(parts[2][1])] % self.registers[int(parts[3][1])] elif cmd == 'STORE': address = self.registers[int(parts[2][1])] while len(self.memory) <= address: self.memory.append(0) self.memory[address] = self.registers[int(parts[1][1])] def evaluate(program): interpreter = Interpreter(program) interpreter.run() return interpreter.memory # Example usage program = ''' SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: ''' print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 116, in <module>
print(evaluate(program))
File "/usr/src/app/main.py", line 59, in evaluate
interpreter.run()
File "/usr/src/app/main.py", line 23, in run
self.execute(line)
File "/usr/src/app/main.py", line 46, in execute
self.instruction_pointer = self.labels[parts[1]] - 1
KeyError: 'start_loop'
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Sure! To create an interpreter for the assembly language program you provided, we'll need to simulate the execution of the instructions and maintain a memory state. The program logic includes setting registers, jumps, arithmetic operations, and storing values in memory. Here is a Python implementation of the interpreter:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | def evaluate(program): # Initialize registers and memory registers = [0] * 10 # Let's assume we have 10 registers R0 to R9 memory = [0] * 1000 # Memory space for storing primes memory_pointer = 0 # Memory pointer for storing primes # Parse the program instructions = [line.strip() for line in program.split('\n') if line.strip() and not line.strip().startswith('//')] labels = {} for idx, instr in enumerate(instructions): if instr.endswith(':'): labels[instr[:-1]] = idx def get_value(token): if token.startswith('R'): return registers[int(token[1:])] return int(token) def set_value(token, value): if token.startswith('R'): registers[int(token[1:])] = value def execute_instruction(idx): instr = instructions[idx] parts = instr.split() op = parts[0] if op == 'SET': set_value(parts[1], get_value(parts[2])) elif op == 'JMP': return labels[parts[1]] elif op == 'JF': if not get_value(parts[1]): return labels[parts[2]] elif op == 'JT': if get_value(parts[1]): return labels[parts[2]] elif op == 'EQ': set_value(parts[1], int(get_value(parts[2]) == get_value(parts[3]))) elif op == 'GT': set_value(parts[1], int(get_value(parts[2]) > get_value(parts[3]))) elif op == 'INC': set_value(parts[1], get_value(parts[1]) + 1) elif op == 'MUL': set_value(parts[1], get_value(parts[2]) * get_value(parts[3])) elif op == 'MOD': set_value(parts[1], get_value(parts[2]) % get_value(parts[3])) elif op == 'STORE': memory[get_value(parts[2])] = get_value(parts[1]) return idx + 1 idx = 0 while idx < len(instructions): idx = execute_instruction(idx) # Collect the primes from memory primes = [] for i in range(memory_pointer): primes.append(memory[i]) return primes # Example usage program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ primes = evaluate(program) print(primes) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | def evaluate(program): # Initialize registers and memory registers = [0] * 10 # Let's assume we have 10 registers R0 to R9 memory = [0] * 1000 # Memory space for storing primes memory_pointer = 0 # Memory pointer for storing primes # Parse the program instructions = [line.strip() for line in program.split('\n') if line.strip() and not line.strip().startswith('//')] labels = {} for idx, instr in enumerate(instructions): if instr.endswith(':'): labels[instr[:-1]] = idx def get_value(token): if token.startswith('R'): return registers[int(token[1:])] return int(token) def set_value(token, value): if token.startswith('R'): registers[int(token[1:])] = value def execute_instruction(idx): instr = instructions[idx] parts = instr.split() op = parts[0] if op == 'SET': set_value(parts[1], get_value(parts[2])) elif op == 'JMP': return labels[parts[1]] elif op == 'JF': if not get_value(parts[1]): return labels[parts[2]] elif op == 'JT': if get_value(parts[1]): return labels[parts[2]] elif op == 'EQ': set_value(parts[1], int(get_value(parts[2]) == get_value(parts[3]))) elif op == 'GT': set_value(parts[1], int(get_value(parts[2]) > get_value(parts[3]))) elif op == 'INC': set_value(parts[1], get_value(parts[1]) + 1) elif op == 'MUL': set_value(parts[1], get_value(parts[2]) * get_value(parts[3])) elif op == 'MOD': set_value(parts[1], get_value(parts[2]) % get_value(parts[3])) elif op == 'STORE': memory[get_value(parts[2])] = get_value(parts[1]) return idx + 1 idx = 0 while idx < len(instructions): idx = execute_instruction(idx) # Collect the primes from memory primes = [] for i in range(memory_pointer): primes.append(memory[i]) return primes # Example usage program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ primes = evaluate(program) print(primes) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | def evaluate(program): # Initialize registers and memory registers = [0] * 10 # Let's assume we have 10 registers R0 to R9 memory = [0] * 1000 # Memory space for storing primes memory_pointer = 0 # Memory pointer for storing primes # Parse the program instructions = [line.strip() for line in program.split('\n') if line.strip() and not line.strip().startswith('//')] labels = {} for idx, instr in enumerate(instructions): if instr.endswith(':'): labels[instr[:-1]] = idx def get_value(token): if token.startswith('R'): return registers[int(token[1:])] return int(token) def set_value(token, value): if token.startswith('R'): registers[int(token[1:])] = value def execute_instruction(idx): instr = instructions[idx] parts = instr.split() op = parts[0] if op == 'SET': set_value(parts[1], get_value(parts[2])) elif op == 'JMP': return labels[parts[1]] elif op == 'JF': if not get_value(parts[1]): return labels[parts[2]] elif op == 'JT': if get_value(parts[1]): return labels[parts[2]] elif op == 'EQ': set_value(parts[1], int(get_value(parts[2]) == get_value(parts[3]))) elif op == 'GT': set_value(parts[1], int(get_value(parts[2]) > get_value(parts[3]))) elif op == 'INC': set_value(parts[1], get_value(parts[1]) + 1) elif op == 'MUL': set_value(parts[1], get_value(parts[2]) * get_value(parts[3])) elif op == 'MOD': set_value(parts[1], get_value(parts[2]) % get_value(parts[3])) elif op == 'STORE': memory[get_value(parts[2])] = get_value(parts[1]) return idx + 1 idx = 0 while idx < len(instructions): idx = execute_instruction(idx) # Collect the primes from memory primes = [] for i in range(memory_pointer): primes.append(memory[i]) return primes # Example usage program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ primes = evaluate(program) print(primes) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 117, in <module>
primes = evaluate(program)
File "/usr/src/app/main.py", line 54, in evaluate
idx = execute_instruction(idx)
File "/usr/src/app/main.py", line 41, in execute_instruction
set_value(parts[1], int(get_value(parts[2]) > get_value(parts[3])))
File "/usr/src/app/main.py", line 18, in get_value
return int(token)
ValueError: invalid literal for int() with base 10: '//'
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
To create a Python interpreter for your custom assembly language, we'll need to break down the provided assembly code and simulate its execution step by step. The interpreter will need to parse the code, execute the instructions, and manage the registers and memory accordingly. Here's a Python implementation of the interpreter:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | import re def evaluate(program): # Registers registers = {f'R{i}': 0 for i in range(9)} # Memory to store primes memory = [0] * 100 # Program Counter pc = 0 # Program instructions instructions = [line.strip() for line in program.strip().split('\n') if line.strip() and not line.strip().startswith('//')] labels = {} # First pass to register labels for i, line in enumerate(instructions): if line.endswith(':'): labels[line[:-1]] = i def get_value(token): if token.startswith('R'): return registers[token] else: return int(token) while pc < len(instructions): parts = instructions[pc].split() instr = parts[0] if instr == 'SET': registers[parts[1]] = get_value(parts[2]) pc += 1 elif instr == 'INC': registers[parts[1]] += 1 pc += 1 elif instr == 'EQ': registers[parts[1]] = 1 if get_value(parts[2]) == get_value(parts[3]) else 0 pc += 1 elif instr == 'GT': registers[parts[1]] = 1 if get_value(parts[2]) > get_value(parts[3]) else 0 pc += 1 elif instr == 'JF': if registers[parts[1]] == 0: pc = labels[parts[2]] else: pc += 1 elif instr == 'JT': if registers[parts[1]] != 0: pc = labels[parts[2]] else: pc += 1 elif instr == 'MUL': registers[parts[1]] = get_value(parts[2]) * get_value(parts[3]) pc += 1 elif instr == 'MOD': registers[parts[1]] = get_value(parts[2]) % get_value(parts[3]) pc += 1 elif instr == 'STORE': address = get_value(parts[2]) if address < len(memory): memory[address] = get_value(parts[1]) pc += 1 elif instr == 'JMP': pc = labels[parts[1]] else: pc += 1 return memory[:registers['R8']] # Example usage: program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ result = evaluate(program) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | import re def evaluate(program): # Registers registers = {f'R{i}': 0 for i in range(9)} # Memory to store primes memory = [0] * 100 # Program Counter pc = 0 # Program instructions instructions = [line.strip() for line in program.strip().split('\n') if line.strip() and not line.strip().startswith('//')] labels = {} # First pass to register labels for i, line in enumerate(instructions): if line.endswith(':'): labels[line[:-1]] = i def get_value(token): if token.startswith('R'): return registers[token] else: return int(token) while pc < len(instructions): parts = instructions[pc].split() instr = parts[0] if instr == 'SET': registers[parts[1]] = get_value(parts[2]) pc += 1 elif instr == 'INC': registers[parts[1]] += 1 pc += 1 elif instr == 'EQ': registers[parts[1]] = 1 if get_value(parts[2]) == get_value(parts[3]) else 0 pc += 1 elif instr == 'GT': registers[parts[1]] = 1 if get_value(parts[2]) > get_value(parts[3]) else 0 pc += 1 elif instr == 'JF': if registers[parts[1]] == 0: pc = labels[parts[2]] else: pc += 1 elif instr == 'JT': if registers[parts[1]] != 0: pc = labels[parts[2]] else: pc += 1 elif instr == 'MUL': registers[parts[1]] = get_value(parts[2]) * get_value(parts[3]) pc += 1 elif instr == 'MOD': registers[parts[1]] = get_value(parts[2]) % get_value(parts[3]) pc += 1 elif instr == 'STORE': address = get_value(parts[2]) if address < len(memory): memory[address] = get_value(parts[1]) pc += 1 elif instr == 'JMP': pc = labels[parts[1]] else: pc += 1 return memory[:registers['R8']] # Example usage: program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ result = evaluate(program) print(result) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | import re def evaluate(program): # Registers registers = {f'R{i}': 0 for i in range(9)} # Memory to store primes memory = [0] * 100 # Program Counter pc = 0 # Program instructions instructions = [line.strip() for line in program.strip().split('\n') if line.strip() and not line.strip().startswith('//')] labels = {} # First pass to register labels for i, line in enumerate(instructions): if line.endswith(':'): labels[line[:-1]] = i def get_value(token): if token.startswith('R'): return registers[token] else: return int(token) while pc < len(instructions): parts = instructions[pc].split() instr = parts[0] if instr == 'SET': registers[parts[1]] = get_value(parts[2]) pc += 1 elif instr == 'INC': registers[parts[1]] += 1 pc += 1 elif instr == 'EQ': registers[parts[1]] = 1 if get_value(parts[2]) == get_value(parts[3]) else 0 pc += 1 elif instr == 'GT': registers[parts[1]] = 1 if get_value(parts[2]) > get_value(parts[3]) else 0 pc += 1 elif instr == 'JF': if registers[parts[1]] == 0: pc = labels[parts[2]] else: pc += 1 elif instr == 'JT': if registers[parts[1]] != 0: pc = labels[parts[2]] else: pc += 1 elif instr == 'MUL': registers[parts[1]] = get_value(parts[2]) * get_value(parts[3]) pc += 1 elif instr == 'MOD': registers[parts[1]] = get_value(parts[2]) % get_value(parts[3]) pc += 1 elif instr == 'STORE': address = get_value(parts[2]) if address < len(memory): memory[address] = get_value(parts[1]) pc += 1 elif instr == 'JMP': pc = labels[parts[1]] else: pc += 1 return memory[:registers['R8']] # Example usage: program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ result = evaluate(program) print(result) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 125, in <module>
result = evaluate(program)
File "/usr/src/app/main.py", line 40, in evaluate
registers[parts[1]] = 1 if get_value(parts[2]) > get_value(parts[3]) else 0
File "/usr/src/app/main.py", line 24, in get_value
return int(token)
ValueError: invalid literal for int() with base 10: '//'
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Sure, I'll help you create a Python interpreter for the provided assembly-like language. The goal is to simulate the execution of the program and return the memory state containing the first 100 prime numbers. Here's the interpreter implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | def evaluate(program): instructions = program.strip().split('\n') instructions = [line.split('//')[0].strip() for line in instructions if line.split('//')[0].strip()] registers = {f'R{i}': 0 for i in range(9)} # Initialize registers R0 to R8 memory = [] # Memory to store prime numbers instruction_pointer = 0 labels = {} # First pass to collect labels for idx, inst in enumerate(instructions): if ':' in inst: label, command = inst.split(':') labels[label.strip()] = idx instructions[idx] = command.strip() def get_value(operand): if operand.startswith('R'): return registers[operand] return int(operand) def set_register(register, value): registers[register] = value while instruction_pointer < len(instructions): inst = instructions[instruction_pointer] parts = inst.split() cmd = parts[0] if cmd == 'SET': set_register(parts[1], get_value(parts[2])) elif cmd == 'INC': registers[parts[1]] += 1 elif cmd == 'STORE': addr = get_value(parts[2]) if addr >= len(memory): memory.extend([0] * (addr - len(memory) + 1)) memory[addr] = get_value(parts[1]) elif cmd == 'EQ': registers[parts[1]] = int(get_value(parts[2]) == get_value(parts[3])) elif cmd == 'JF': if registers[parts[1]] == 0: instruction_pointer = labels[parts[2]] - 1 elif cmd == 'JMP': instruction_pointer = labels[parts[1]] - 1 elif cmd == 'JT': if registers[parts[1]] != 0: instruction_pointer = labels[parts[2]] - 1 elif cmd == 'MUL': registers[parts[1]] = get_value(parts[2]) * get_value(parts[3]) elif cmd == 'GT': registers[parts[1]] = int(get_value(parts[2]) > get_value(parts[3])) elif cmd == 'MOD': registers[parts[1]] = get_value(parts[2]) % get_value(parts[3]) instruction_pointer += 1 return memory[:100] # Example usage with your provided program program = ''' SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: ''' result = evaluate(program) print(result) # Output the first 100 prime numbers |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | def evaluate(program): instructions = program.strip().split('\n') instructions = [line.split('//')[0].strip() for line in instructions if line.split('//')[0].strip()] registers = {f'R{i}': 0 for i in range(9)} # Initialize registers R0 to R8 memory = [] # Memory to store prime numbers instruction_pointer = 0 labels = {} # First pass to collect labels for idx, inst in enumerate(instructions): if ':' in inst: label, command = inst.split(':') labels[label.strip()] = idx instructions[idx] = command.strip() def get_value(operand): if operand.startswith('R'): return registers[operand] return int(operand) def set_register(register, value): registers[register] = value while instruction_pointer < len(instructions): inst = instructions[instruction_pointer] parts = inst.split() cmd = parts[0] if cmd == 'SET': set_register(parts[1], get_value(parts[2])) elif cmd == 'INC': registers[parts[1]] += 1 elif cmd == 'STORE': addr = get_value(parts[2]) if addr >= len(memory): memory.extend([0] * (addr - len(memory) + 1)) memory[addr] = get_value(parts[1]) elif cmd == 'EQ': registers[parts[1]] = int(get_value(parts[2]) == get_value(parts[3])) elif cmd == 'JF': if registers[parts[1]] == 0: instruction_pointer = labels[parts[2]] - 1 elif cmd == 'JMP': instruction_pointer = labels[parts[1]] - 1 elif cmd == 'JT': if registers[parts[1]] != 0: instruction_pointer = labels[parts[2]] - 1 elif cmd == 'MUL': registers[parts[1]] = get_value(parts[2]) * get_value(parts[3]) elif cmd == 'GT': registers[parts[1]] = int(get_value(parts[2]) > get_value(parts[3])) elif cmd == 'MOD': registers[parts[1]] = get_value(parts[2]) % get_value(parts[3]) instruction_pointer += 1 return memory[:100] # Example usage with your provided program program = ''' SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: ''' result = evaluate(program) print(result) # Output the first 100 prime numbers |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | def evaluate(program): instructions = program.strip().split('\n') instructions = [line.split('//')[0].strip() for line in instructions if line.split('//')[0].strip()] registers = {f'R{i}': 0 for i in range(9)} # Initialize registers R0 to R8 memory = [] # Memory to store prime numbers instruction_pointer = 0 labels = {} # First pass to collect labels for idx, inst in enumerate(instructions): if ':' in inst: label, command = inst.split(':') labels[label.strip()] = idx instructions[idx] = command.strip() def get_value(operand): if operand.startswith('R'): return registers[operand] return int(operand) def set_register(register, value): registers[register] = value while instruction_pointer < len(instructions): inst = instructions[instruction_pointer] parts = inst.split() cmd = parts[0] if cmd == 'SET': set_register(parts[1], get_value(parts[2])) elif cmd == 'INC': registers[parts[1]] += 1 elif cmd == 'STORE': addr = get_value(parts[2]) if addr >= len(memory): memory.extend([0] * (addr - len(memory) + 1)) memory[addr] = get_value(parts[1]) elif cmd == 'EQ': registers[parts[1]] = int(get_value(parts[2]) == get_value(parts[3])) elif cmd == 'JF': if registers[parts[1]] == 0: instruction_pointer = labels[parts[2]] - 1 elif cmd == 'JMP': instruction_pointer = labels[parts[1]] - 1 elif cmd == 'JT': if registers[parts[1]] != 0: instruction_pointer = labels[parts[2]] - 1 elif cmd == 'MUL': registers[parts[1]] = get_value(parts[2]) * get_value(parts[3]) elif cmd == 'GT': registers[parts[1]] = int(get_value(parts[2]) > get_value(parts[3])) elif cmd == 'MOD': registers[parts[1]] = get_value(parts[2]) % get_value(parts[3]) instruction_pointer += 1 return memory[:100] # Example usage with your provided program program = ''' SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: ''' result = evaluate(program) print(result) # Output the first 100 prime numbers answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 116, in <module>
result = evaluate(program)
File "/usr/src/app/main.py", line 29, in evaluate
cmd = parts[0]
IndexError: list index out of range
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Sure, let's create a Python interpreter to evaluate the custom assembly language program you provided. The interpreter will simulate the execution of the program and return the state of the memory where the prime numbers are stored. Here's the implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | import math class Interpreter: def __init__(self, program): self.program = program.splitlines() self.registers = [0] * 10 self.memory = [0] * 1000 # Assuming we have a memory size of 1000 self.labels = {} self.parse_labels() self.ip = 0 # Instruction pointer def parse_labels(self): for i, line in enumerate(self.program): if ':' in line: label = line.split(':')[0].strip() self.labels[label] = i def run(self): while self.ip < len(self.program): line = self.program[self.ip].strip() if not line or line.startswith('//') or ':' in line: self.ip += 1 continue self.execute(line) self.ip += 1 def execute(self, line): parts = line.split() instr = parts[0] if instr == 'SET': reg = int(parts[1][1:]) val = int(parts[2]) self.registers[reg] = val elif instr == 'INC': reg = int(parts[1][1:]) self.registers[reg] += 1 elif instr == 'EQ': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) self.registers[reg1] = int(self.registers[reg1] == self.registers[reg2]) elif instr == 'JF': reg = int(parts[1][1:]) label = parts[2] if not self.registers[reg]: self.ip = self.labels[label] - 1 # -1 because the ip will be incremented after execution elif instr == 'JT': reg = int(parts[1][1:]) label = parts[2] if self.registers[reg]: self.ip = self.labels[label] - 1 elif instr == 'JMP': label = parts[1] self.ip = self.labels[label] - 1 elif instr == 'STORE': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) self.memory[self.registers[reg2]] = self.registers[reg1] elif instr == 'MUL': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) reg3 = int(parts[3][1:]) self.registers[reg1] = self.registers[reg2] * self.registers[reg3] elif instr == 'GT': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) self.registers[reg1] = int(self.registers[reg1] > self.registers[reg2]) elif instr == 'MOD': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) reg3 = int(parts[3][1:]) self.registers[reg1] = self.registers[reg2] % self.registers[reg3] def evaluate(program): interpreter = Interpreter(program) interpreter.run() return interpreter.memory[:100] # Test the evaluate function with the provided program program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | import math class Interpreter: def __init__(self, program): self.program = program.splitlines() self.registers = [0] * 10 self.memory = [0] * 1000 # Assuming we have a memory size of 1000 self.labels = {} self.parse_labels() self.ip = 0 # Instruction pointer def parse_labels(self): for i, line in enumerate(self.program): if ':' in line: label = line.split(':')[0].strip() self.labels[label] = i def run(self): while self.ip < len(self.program): line = self.program[self.ip].strip() if not line or line.startswith('//') or ':' in line: self.ip += 1 continue self.execute(line) self.ip += 1 def execute(self, line): parts = line.split() instr = parts[0] if instr == 'SET': reg = int(parts[1][1:]) val = int(parts[2]) self.registers[reg] = val elif instr == 'INC': reg = int(parts[1][1:]) self.registers[reg] += 1 elif instr == 'EQ': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) self.registers[reg1] = int(self.registers[reg1] == self.registers[reg2]) elif instr == 'JF': reg = int(parts[1][1:]) label = parts[2] if not self.registers[reg]: self.ip = self.labels[label] - 1 # -1 because the ip will be incremented after execution elif instr == 'JT': reg = int(parts[1][1:]) label = parts[2] if self.registers[reg]: self.ip = self.labels[label] - 1 elif instr == 'JMP': label = parts[1] self.ip = self.labels[label] - 1 elif instr == 'STORE': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) self.memory[self.registers[reg2]] = self.registers[reg1] elif instr == 'MUL': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) reg3 = int(parts[3][1:]) self.registers[reg1] = self.registers[reg2] * self.registers[reg3] elif instr == 'GT': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) self.registers[reg1] = int(self.registers[reg1] > self.registers[reg2]) elif instr == 'MOD': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) reg3 = int(parts[3][1:]) self.registers[reg1] = self.registers[reg2] % self.registers[reg3] def evaluate(program): interpreter = Interpreter(program) interpreter.run() return interpreter.memory[:100] # Test the evaluate function with the provided program program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | import math class Interpreter: def __init__(self, program): self.program = program.splitlines() self.registers = [0] * 10 self.memory = [0] * 1000 # Assuming we have a memory size of 1000 self.labels = {} self.parse_labels() self.ip = 0 # Instruction pointer def parse_labels(self): for i, line in enumerate(self.program): if ':' in line: label = line.split(':')[0].strip() self.labels[label] = i def run(self): while self.ip < len(self.program): line = self.program[self.ip].strip() if not line or line.startswith('//') or ':' in line: self.ip += 1 continue self.execute(line) self.ip += 1 def execute(self, line): parts = line.split() instr = parts[0] if instr == 'SET': reg = int(parts[1][1:]) val = int(parts[2]) self.registers[reg] = val elif instr == 'INC': reg = int(parts[1][1:]) self.registers[reg] += 1 elif instr == 'EQ': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) self.registers[reg1] = int(self.registers[reg1] == self.registers[reg2]) elif instr == 'JF': reg = int(parts[1][1:]) label = parts[2] if not self.registers[reg]: self.ip = self.labels[label] - 1 # -1 because the ip will be incremented after execution elif instr == 'JT': reg = int(parts[1][1:]) label = parts[2] if self.registers[reg]: self.ip = self.labels[label] - 1 elif instr == 'JMP': label = parts[1] self.ip = self.labels[label] - 1 elif instr == 'STORE': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) self.memory[self.registers[reg2]] = self.registers[reg1] elif instr == 'MUL': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) reg3 = int(parts[3][1:]) self.registers[reg1] = self.registers[reg2] * self.registers[reg3] elif instr == 'GT': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) self.registers[reg1] = int(self.registers[reg1] > self.registers[reg2]) elif instr == 'MOD': reg1 = int(parts[1][1:]) reg2 = int(parts[2][1:]) reg3 = int(parts[3][1:]) self.registers[reg1] = self.registers[reg2] % self.registers[reg3] def evaluate(program): interpreter = Interpreter(program) interpreter.run() return interpreter.memory[:100] # Test the evaluate function with the provided program program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 135, in <module>
print(evaluate(program))
File "/usr/src/app/main.py", line 77, in evaluate
interpreter.run()
File "/usr/src/app/main.py", line 25, in run
self.execute(line)
File "/usr/src/app/main.py", line 49, in execute
reg = int(parts[1][1:])
ValueError: invalid literal for int() with base 10: 's_prime_end'
Testing if the previous output contains the string All tests passed
: False