Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

To create an interpreter for your custom assembly language in Python, we need to follow these steps: 1. Parse the input program. 2. Implement a virtual machine that can execute the instructions. 3. Maintain the state of the registers and memory as the program runs. 4. Return the memory content after the program completes. Here is a Python implementation of the interpreter:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import re

def evaluate(program):
    # Define the program memory and registers
    registers = {'R{}'.format(i): 0 for i in range(9)}  # R1 to R8, R0 is not used
    memory = []  # List to store prime numbers

    # Parse the program into lines and instructions
    lines = program.strip().split('\n')
    instructions = [line.split() for line in lines if line and not line.startswith('//')]

    # Label mapping for jump instructions
    labels = {}
    for idx, instr in enumerate(instructions):
        if instr[0].endswith(':'):
            labels[instr[0][:-1]] = idx

    # Helper functions for instruction execution
    def get_value(op):
        if op.startswith('R'):
            return registers[op]
        return int(op)

    pc = 0  # Program counter
    while pc < len(instructions):
        instr = instructions[pc]
        opcode = instr[0]
        
        if opcode == 'SET':
            registers[instr[1]] = get_value(instr[2])
        elif opcode == 'JMP':
            if len(instr) > 2:
                pc = labels[instr[2]]
                continue
            else:
                pc = labels[instr[1]]
                continue
        elif opcode == 'EQ':
            registers[instr[1]] = 1 if get_value(instr[1]) == get_value(instr[2]) else 0
        elif opcode == 'JF':
            if not get_value(instr[1]):
                pc = labels[instr[2]]
                continue
        elif opcode == 'JT':
            if get_value(instr[1]):
                pc = labels[instr[2]]
                continue
        elif opcode == 'INC':
            registers[instr[1]] += 1
        elif opcode == 'STORE':
            memory.append(registers[instr[1]])
        elif opcode == 'MUL':
            registers[instr[1]] = get_value(instr[2]) * get_value(instr[3])
        elif opcode == 'GT':
            registers[instr[1]] = 1 if get_value(instr[1]) > get_value(instr[2]) else 0
        elif opcode == 'MOD':
            registers[instr[1]] = get_value(instr[2]) % get_value(instr[3])
        elif opcode == 'SET':
            registers[instr[1]] = get_value(instr[2])
        
        pc += 1

    return memory

program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))
This code snippet defines a basic virtual machine that can interpret and execute the custom assembly language provided in the `program`. It simulates the execution of the instructions, maintains the state of the registers and memory, and returns the final memory content, which should contain the prime numbers found by the program. Please note that this implementation is quite basic and might need enhancements for robustness and handling edge cases.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import re

def evaluate(program):
    # Define the program memory and registers
    registers = {'R{}'.format(i): 0 for i in range(9)}  # R1 to R8, R0 is not used
    memory = []  # List to store prime numbers

    # Parse the program into lines and instructions
    lines = program.strip().split('\n')
    instructions = [line.split() for line in lines if line and not line.startswith('//')]

    # Label mapping for jump instructions
    labels = {}
    for idx, instr in enumerate(instructions):
        if instr[0].endswith(':'):
            labels[instr[0][:-1]] = idx

    # Helper functions for instruction execution
    def get_value(op):
        if op.startswith('R'):
            return registers[op]
        return int(op)

    pc = 0  # Program counter
    while pc < len(instructions):
        instr = instructions[pc]
        opcode = instr[0]
        
        if opcode == 'SET':
            registers[instr[1]] = get_value(instr[2])
        elif opcode == 'JMP':
            if len(instr) > 2:
                pc = labels[instr[2]]
                continue
            else:
                pc = labels[instr[1]]
                continue
        elif opcode == 'EQ':
            registers[instr[1]] = 1 if get_value(instr[1]) == get_value(instr[2]) else 0
        elif opcode == 'JF':
            if not get_value(instr[1]):
                pc = labels[instr[2]]
                continue
        elif opcode == 'JT':
            if get_value(instr[1]):
                pc = labels[instr[2]]
                continue
        elif opcode == 'INC':
            registers[instr[1]] += 1
        elif opcode == 'STORE':
            memory.append(registers[instr[1]])
        elif opcode == 'MUL':
            registers[instr[1]] = get_value(instr[2]) * get_value(instr[3])
        elif opcode == 'GT':
            registers[instr[1]] = 1 if get_value(instr[1]) > get_value(instr[2]) else 0
        elif opcode == 'MOD':
            registers[instr[1]] = get_value(instr[2]) % get_value(instr[3])
        elif opcode == 'SET':
            registers[instr[1]] = get_value(instr[2])
        
        pc += 1

    return memory

program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import re

def evaluate(program):
    # Define the program memory and registers
    registers = {'R{}'.format(i): 0 for i in range(9)}  # R1 to R8, R0 is not used
    memory = []  # List to store prime numbers

    # Parse the program into lines and instructions
    lines = program.strip().split('\n')
    instructions = [line.split() for line in lines if line and not line.startswith('//')]

    # Label mapping for jump instructions
    labels = {}
    for idx, instr in enumerate(instructions):
        if instr[0].endswith(':'):
            labels[instr[0][:-1]] = idx

    # Helper functions for instruction execution
    def get_value(op):
        if op.startswith('R'):
            return registers[op]
        return int(op)

    pc = 0  # Program counter
    while pc < len(instructions):
        instr = instructions[pc]
        opcode = instr[0]
        
        if opcode == 'SET':
            registers[instr[1]] = get_value(instr[2])
        elif opcode == 'JMP':
            if len(instr) > 2:
                pc = labels[instr[2]]
                continue
            else:
                pc = labels[instr[1]]
                continue
        elif opcode == 'EQ':
            registers[instr[1]] = 1 if get_value(instr[1]) == get_value(instr[2]) else 0
        elif opcode == 'JF':
            if not get_value(instr[1]):
                pc = labels[instr[2]]
                continue
        elif opcode == 'JT':
            if get_value(instr[1]):
                pc = labels[instr[2]]
                continue
        elif opcode == 'INC':
            registers[instr[1]] += 1
        elif opcode == 'STORE':
            memory.append(registers[instr[1]])
        elif opcode == 'MUL':
            registers[instr[1]] = get_value(instr[2]) * get_value(instr[3])
        elif opcode == 'GT':
            registers[instr[1]] = 1 if get_value(instr[1]) > get_value(instr[2]) else 0
        elif opcode == 'MOD':
            registers[instr[1]] = get_value(instr[2]) % get_value(instr[3])
        elif opcode == 'SET':
            registers[instr[1]] = get_value(instr[2])
        
        pc += 1

    return memory

program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 117, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 46, in evaluate if get_value(instr[1]): File "/usr/src/app/main.py", line 23, in get_value return int(op) ValueError: invalid literal for int() with base 10: 'is_prime_end'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

To create a Python interpreter for your assembly-like language, we'll need to simulate the execution of the program, managing registers, memory, and control flow. Here's a Python implementation to interpret the provided assembly program and return the resulting memory state:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import math

class AssemblyInterpreter:
    def __init__(self, program):
        self.program = program.split('\n')
        self.registers = {f'R{i}': 0 for i in range(1, 10)}
        self.memory = []
        self.labels = {}
        self.pc = 0
    
    def parse_program(self):
        for i, line in enumerate(self.program):
            line = line.strip()
            if line.endswith(':'):
                label = line[:-1]
                self.labels[label] = i

    def run(self):
        while self.pc < len(self.program):
            line = self.program[self.pc].strip()
            if not line or line.endswith(':'):
                self.pc += 1
                continue
            self.execute(line)
    
    def execute(self, line):
        parts = line.split()
        instr = parts[0]

        if instr == 'SET':
            self.registers[parts[1]] = int(parts[2])
        elif instr == 'INC':
            self.registers[parts[1]] += 1
        elif instr == 'EQ':
            self.registers[parts[1]] = 1 if self.registers[parts[2]] == int(parts[3]) else 0
        elif instr == 'JF':
            if self.registers[parts[1]] == 0:
                self.pc = self.labels[parts[2]]
                return
        elif instr == 'JT':
            if self.registers[parts[1]] != 0:
                self.pc = self.labels[parts[2]]
                return
        elif instr == 'JMP':
            self.pc = self.labels[parts[1]]
            return
        elif instr == 'MUL':
            self.registers[parts[1]] = self.registers[parts[2]] * self.registers[parts[3]]
        elif instr == 'GT':
            self.registers[parts[1]] = 1 if self.registers[parts[2]] > self.registers[parts[3]] else 0
        elif instr == 'MOD':
            self.registers[parts[1]] = self.registers[parts[2]] % self.registers[parts[3]]
        elif instr == 'STORE':
            addr = self.registers[parts[2]]
            if addr >= len(self.memory):
                self.memory.extend([0] * (addr + 1 - len(self.memory)))
            self.memory[addr] = self.registers[parts[1]]

        self.pc += 1

def evaluate(program):
    interpreter = AssemblyInterpreter(program)
    interpreter.parse_program()
    interpreter.run()
    return interpreter.memory

# Example usage
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime          // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment   // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end       // If 100 primes found, end program

increment:
    INC R1        // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1      // Assume number is prime initially
    SET R3 2      // Start divisor from 2

start_loop:       // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3  // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end // If not exceeded, continue; else, end loop

    MOD R6 R1 R3  // R6 = R1 % R3
    EQ R7 R6 0    // Check if R6 is 0
    JT not_prime  // If yes, number is not prime

    INC R3        // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0      // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))
The above code creates an interpreter for your assembly language. The `evaluate` function takes in the program as a string, parses it, and runs it to produce the resulting memory state. The result of running this program should be the first 100 prime numbers stored in memory, starting at address 0. Note: The provided program is assumed to be syntactically correct and free from logical errors. The interpreter closely follows the provided assembly language specification and program logic.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import math

class AssemblyInterpreter:
    def __init__(self, program):
        self.program = program.split('\n')
        self.registers = {f'R{i}': 0 for i in range(1, 10)}
        self.memory = []
        self.labels = {}
        self.pc = 0
    
    def parse_program(self):
        for i, line in enumerate(self.program):
            line = line.strip()
            if line.endswith(':'):
                label = line[:-1]
                self.labels[label] = i

    def run(self):
        while self.pc < len(self.program):
            line = self.program[self.pc].strip()
            if not line or line.endswith(':'):
                self.pc += 1
                continue
            self.execute(line)
    
    def execute(self, line):
        parts = line.split()
        instr = parts[0]

        if instr == 'SET':
            self.registers[parts[1]] = int(parts[2])
        elif instr == 'INC':
            self.registers[parts[1]] += 1
        elif instr == 'EQ':
            self.registers[parts[1]] = 1 if self.registers[parts[2]] == int(parts[3]) else 0
        elif instr == 'JF':
            if self.registers[parts[1]] == 0:
                self.pc = self.labels[parts[2]]
                return
        elif instr == 'JT':
            if self.registers[parts[1]] != 0:
                self.pc = self.labels[parts[2]]
                return
        elif instr == 'JMP':
            self.pc = self.labels[parts[1]]
            return
        elif instr == 'MUL':
            self.registers[parts[1]] = self.registers[parts[2]] * self.registers[parts[3]]
        elif instr == 'GT':
            self.registers[parts[1]] = 1 if self.registers[parts[2]] > self.registers[parts[3]] else 0
        elif instr == 'MOD':
            self.registers[parts[1]] = self.registers[parts[2]] % self.registers[parts[3]]
        elif instr == 'STORE':
            addr = self.registers[parts[2]]
            if addr >= len(self.memory):
                self.memory.extend([0] * (addr + 1 - len(self.memory)))
            self.memory[addr] = self.registers[parts[1]]

        self.pc += 1

def evaluate(program):
    interpreter = AssemblyInterpreter(program)
    interpreter.parse_program()
    interpreter.run()
    return interpreter.memory

# Example usage
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime          // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment   // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end       // If 100 primes found, end program

increment:
    INC R1        // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1      // Assume number is prime initially
    SET R3 2      // Start divisor from 2

start_loop:       // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3  // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end // If not exceeded, continue; else, end loop

    MOD R6 R1 R3  // R6 = R1 % R3
    EQ R7 R6 0    // Check if R6 is 0
    JT not_prime  // If yes, number is not prime

    INC R3        // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0      // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import math

class AssemblyInterpreter:
    def __init__(self, program):
        self.program = program.split('\n')
        self.registers = {f'R{i}': 0 for i in range(1, 10)}
        self.memory = []
        self.labels = {}
        self.pc = 0
    
    def parse_program(self):
        for i, line in enumerate(self.program):
            line = line.strip()
            if line.endswith(':'):
                label = line[:-1]
                self.labels[label] = i

    def run(self):
        while self.pc < len(self.program):
            line = self.program[self.pc].strip()
            if not line or line.endswith(':'):
                self.pc += 1
                continue
            self.execute(line)
    
    def execute(self, line):
        parts = line.split()
        instr = parts[0]

        if instr == 'SET':
            self.registers[parts[1]] = int(parts[2])
        elif instr == 'INC':
            self.registers[parts[1]] += 1
        elif instr == 'EQ':
            self.registers[parts[1]] = 1 if self.registers[parts[2]] == int(parts[3]) else 0
        elif instr == 'JF':
            if self.registers[parts[1]] == 0:
                self.pc = self.labels[parts[2]]
                return
        elif instr == 'JT':
            if self.registers[parts[1]] != 0:
                self.pc = self.labels[parts[2]]
                return
        elif instr == 'JMP':
            self.pc = self.labels[parts[1]]
            return
        elif instr == 'MUL':
            self.registers[parts[1]] = self.registers[parts[2]] * self.registers[parts[3]]
        elif instr == 'GT':
            self.registers[parts[1]] = 1 if self.registers[parts[2]] > self.registers[parts[3]] else 0
        elif instr == 'MOD':
            self.registers[parts[1]] = self.registers[parts[2]] % self.registers[parts[3]]
        elif instr == 'STORE':
            addr = self.registers[parts[2]]
            if addr >= len(self.memory):
                self.memory.extend([0] * (addr + 1 - len(self.memory)))
            self.memory[addr] = self.registers[parts[1]]

        self.pc += 1

def evaluate(program):
    interpreter = AssemblyInterpreter(program)
    interpreter.parse_program()
    interpreter.run()
    return interpreter.memory

# Example usage
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime          // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment   // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end       // If 100 primes found, end program

increment:
    INC R1        // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1      // Assume number is prime initially
    SET R3 2      // Start divisor from 2

start_loop:       // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3  // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end // If not exceeded, continue; else, end loop

    MOD R6 R1 R3  // R6 = R1 % R3
    EQ R7 R6 0    // Check if R6 is 0
    JT not_prime  // If yes, number is not prime

    INC R3        // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0      // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 120, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 65, in evaluate interpreter.run() File "/usr/src/app/main.py", line 25, in run self.execute(line) File "/usr/src/app/main.py", line 51, in execute self.registers[parts[1]] = 1 if self.registers[parts[2]] > self.registers[parts[3]] else 0 KeyError: '//'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Creating an interpreter for the given hypothetical assembly language involves parsing the program, maintaining the state of the registers and memory, and executing the instructions step-by-step. Here's a simplified version of the interpreter in Python:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import re

def evaluate(program):
    # Initialize registers and memory
    registers = [0] * 9  # R1 to R8
    memory = []
    ip = 0               # Instruction pointer
    program_lines = program.strip().split('\n')
    labels = {}
    
    # Parse labels and instructions
    instructions = []
    for line in program_lines:
        line = line.strip()
        if ':' in line:
            label, instr = line.split(':')
            labels[label.strip()] = len(instructions)
            if instr.strip():
                instructions.append(instr.strip())
        else:
            instructions.append(line)
    
    def debug_state():
        print(f"IP: {ip}, Registers: {registers}, Memory: {memory}")
    
    while ip < len(instructions):
        instr = instructions[ip].split()
        cmd = instr[0]
        
        if cmd == 'SET':
            reg = int(instr[1][1])
            val = int(instr[2])
            registers[reg] = val
        
        elif cmd == 'INC':
            reg = int(instr[1][1])
            registers[reg] += 1
        
        elif cmd == 'JMP':
            label = instr[1]
            if len(instr) == 2:
                ip = labels[label] - 1
            else:
                jump_label = instr[2]
                if registers[int(instr[1][1])] == 1:
                    ip = labels[jump_label] - 1
        
        elif cmd == 'EQ':
            reg = int(instr[1][1])
            val = int(instr[2])
            if registers[reg] == val:
                registers[9] = 1  # Use register 9 as flag
            else:
                registers[9] = 0
        
        elif cmd == 'JF':
            if registers[9] == 0:
                ip += 1
            ip -= 1
        
        elif cmd == 'STORE':
            val = registers[int(instr[1][1])]
            addr = registers[int(instr[2][1])]
            if addr >= len(memory):
                memory.extend([0] * (addr - len(memory) + 1))
            memory[addr] = val
        
        elif cmd == 'MUL':
            reg_d = int(instr[1][1])
            reg_s1 = int(instr[2][1])
            reg_s2 = int(instr[3][1])
            registers[reg_d] = registers[reg_s1] * registers[reg_s2]
        
        elif cmd == 'GT':
            reg_d = int(instr[1][1])
            reg_s = int(instr[2][1])
            if registers[reg_d] > registers[reg_s]:
                registers[9] = 1
            else:
                registers[9] = 0
        
        elif cmd == 'JT':
            label = instr[1]
            if registers[9] == 1:
                ip = labels[label] - 1
        
        elif cmd == 'MOD':
            reg_d = int(instr[1][1])
            reg_s1 = int(instr[2][1])
            reg_s2 = int(instr[3][1])
            registers[reg_d] = registers[reg_s1] % registers[reg_s2]
        
        ip += 1
    
    return memory

# Example usage
program = """
SET R1 2
start_find_primes:
    JMP is_prime is_prime
ready_prime:
    EQ R2 1
    JF increment
    STORE R1 R8
    INC R8
    EQ R8 100
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    EQ R7 R6 0
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

print(evaluate(program))
This code initializes the registers and memory, parses the program into instructions and labels, and then executes the instructions while maintaining the state of the registers and memory. The result is the state of the memory after the program has finished executing, which will contain the first 100 prime numbers.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import re

def evaluate(program):
    # Initialize registers and memory
    registers = [0] * 9  # R1 to R8
    memory = []
    ip = 0               # Instruction pointer
    program_lines = program.strip().split('\n')
    labels = {}
    
    # Parse labels and instructions
    instructions = []
    for line in program_lines:
        line = line.strip()
        if ':' in line:
            label, instr = line.split(':')
            labels[label.strip()] = len(instructions)
            if instr.strip():
                instructions.append(instr.strip())
        else:
            instructions.append(line)
    
    def debug_state():
        print(f"IP: {ip}, Registers: {registers}, Memory: {memory}")
    
    while ip < len(instructions):
        instr = instructions[ip].split()
        cmd = instr[0]
        
        if cmd == 'SET':
            reg = int(instr[1][1])
            val = int(instr[2])
            registers[reg] = val
        
        elif cmd == 'INC':
            reg = int(instr[1][1])
            registers[reg] += 1
        
        elif cmd == 'JMP':
            label = instr[1]
            if len(instr) == 2:
                ip = labels[label] - 1
            else:
                jump_label = instr[2]
                if registers[int(instr[1][1])] == 1:
                    ip = labels[jump_label] - 1
        
        elif cmd == 'EQ':
            reg = int(instr[1][1])
            val = int(instr[2])
            if registers[reg] == val:
                registers[9] = 1  # Use register 9 as flag
            else:
                registers[9] = 0
        
        elif cmd == 'JF':
            if registers[9] == 0:
                ip += 1
            ip -= 1
        
        elif cmd == 'STORE':
            val = registers[int(instr[1][1])]
            addr = registers[int(instr[2][1])]
            if addr >= len(memory):
                memory.extend([0] * (addr - len(memory) + 1))
            memory[addr] = val
        
        elif cmd == 'MUL':
            reg_d = int(instr[1][1])
            reg_s1 = int(instr[2][1])
            reg_s2 = int(instr[3][1])
            registers[reg_d] = registers[reg_s1] * registers[reg_s2]
        
        elif cmd == 'GT':
            reg_d = int(instr[1][1])
            reg_s = int(instr[2][1])
            if registers[reg_d] > registers[reg_s]:
                registers[9] = 1
            else:
                registers[9] = 0
        
        elif cmd == 'JT':
            label = instr[1]
            if registers[9] == 1:
                ip = labels[label] - 1
        
        elif cmd == 'MOD':
            reg_d = int(instr[1][1])
            reg_s1 = int(instr[2][1])
            reg_s2 = int(instr[3][1])
            registers[reg_d] = registers[reg_s1] % registers[reg_s2]
        
        ip += 1
    
    return memory

# Example usage
program = """
SET R1 2
start_find_primes:
    JMP is_prime is_prime
ready_prime:
    EQ R2 1
    JF increment
    STORE R1 R8
    INC R8
    EQ R8 100
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    EQ R7 R6 0
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import re

def evaluate(program):
    # Initialize registers and memory
    registers = [0] * 9  # R1 to R8
    memory = []
    ip = 0               # Instruction pointer
    program_lines = program.strip().split('\n')
    labels = {}
    
    # Parse labels and instructions
    instructions = []
    for line in program_lines:
        line = line.strip()
        if ':' in line:
            label, instr = line.split(':')
            labels[label.strip()] = len(instructions)
            if instr.strip():
                instructions.append(instr.strip())
        else:
            instructions.append(line)
    
    def debug_state():
        print(f"IP: {ip}, Registers: {registers}, Memory: {memory}")
    
    while ip < len(instructions):
        instr = instructions[ip].split()
        cmd = instr[0]
        
        if cmd == 'SET':
            reg = int(instr[1][1])
            val = int(instr[2])
            registers[reg] = val
        
        elif cmd == 'INC':
            reg = int(instr[1][1])
            registers[reg] += 1
        
        elif cmd == 'JMP':
            label = instr[1]
            if len(instr) == 2:
                ip = labels[label] - 1
            else:
                jump_label = instr[2]
                if registers[int(instr[1][1])] == 1:
                    ip = labels[jump_label] - 1
        
        elif cmd == 'EQ':
            reg = int(instr[1][1])
            val = int(instr[2])
            if registers[reg] == val:
                registers[9] = 1  # Use register 9 as flag
            else:
                registers[9] = 0
        
        elif cmd == 'JF':
            if registers[9] == 0:
                ip += 1
            ip -= 1
        
        elif cmd == 'STORE':
            val = registers[int(instr[1][1])]
            addr = registers[int(instr[2][1])]
            if addr >= len(memory):
                memory.extend([0] * (addr - len(memory) + 1))
            memory[addr] = val
        
        elif cmd == 'MUL':
            reg_d = int(instr[1][1])
            reg_s1 = int(instr[2][1])
            reg_s2 = int(instr[3][1])
            registers[reg_d] = registers[reg_s1] * registers[reg_s2]
        
        elif cmd == 'GT':
            reg_d = int(instr[1][1])
            reg_s = int(instr[2][1])
            if registers[reg_d] > registers[reg_s]:
                registers[9] = 1
            else:
                registers[9] = 0
        
        elif cmd == 'JT':
            label = instr[1]
            if registers[9] == 1:
                ip = labels[label] - 1
        
        elif cmd == 'MOD':
            reg_d = int(instr[1][1])
            reg_s1 = int(instr[2][1])
            reg_s2 = int(instr[3][1])
            registers[reg_d] = registers[reg_s1] % registers[reg_s2]
        
        ip += 1
    
    return memory

# Example usage
program = """
SET R1 2
start_find_primes:
    JMP is_prime is_prime
ready_prime:
    EQ R2 1
    JF increment
    STORE R1 R8
    INC R8
    EQ R8 100
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    EQ R7 R6 0
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 133, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 46, in evaluate if registers[int(instr[1][1])] == 1: ValueError: invalid literal for int() with base 10: 's'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Let's write a Python interpreter for the custom assembly language you've designed. This interpreter will parse and execute the assembly instructions, maintaining a register set and memory state. Here's a basic implementation:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import re
from math import isqrt

def evaluate(program):
    # Initialize registers and memory
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = []
    labels = {}
    program = program.strip().split('\n')
    
    # Remove comments and store labels
    for i, line in enumerate(program):
        if '//' in line:
            line = line.split('//')[0].strip()
        if ':' in line:
            label, code = line.split(':')
            labels[label.strip()] = i
            program[i] = code.strip()
        else:
            program[i] = line.strip()

    def get_value(x):
        return registers[x] if x in registers else int(x)

    def execute_line(line):
        parts = re.split(r'\s+', line)
        instr = parts[0]
        
        if instr == 'SET':
            registers[parts[1]] = int(parts[2])
        elif instr == 'INC':
            registers[parts[1]] += 1
        elif instr == 'EQ':
            registers[parts[1]] = 1 if get_value(parts[2]) == get_value(parts[3]) else 0
        elif instr == 'JF':
            if registers[parts[1]] == 0:
                return parts[2]
        elif instr == 'JT':
            if registers[parts[1]] != 0:
                return parts[2]
        elif instr == 'JMP':
            return parts[1]
        elif instr == 'STORE':
            memory.append(registers[parts[1]])
        elif instr == 'MUL':
            registers[parts[1]] = get_value(parts[2]) * get_value(parts[3])
        elif instr == 'GT':
            registers[parts[1]] = 1 if get_value(parts[2]) > get_value(parts[3]) else 0
        elif instr == 'MOD':
            registers[parts[1]] = get_value(parts[2]) % get_value(parts[3])
        elif instr == 'NOP':
            pass
        return None

    pc = 0
    while pc < len(program):
        line = program[pc].strip()
        if not line:
            pc += 1
            continue
        new_label = execute_line(line)
        if new_label:
            pc = labels[new_label]
        else:
            pc += 1

    return memory

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:
    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))
The above interpreter takes the assembly code as input, processes it, and returns the memory state containing the first 100 prime numbers, as described in the program. The interpreter supports basic instructions like SET, INC, EQ, JF, JT, JMP, STORE, MUL, GT, and MOD, and it handles labels for control flow.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import re
from math import isqrt

def evaluate(program):
    # Initialize registers and memory
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = []
    labels = {}
    program = program.strip().split('\n')
    
    # Remove comments and store labels
    for i, line in enumerate(program):
        if '//' in line:
            line = line.split('//')[0].strip()
        if ':' in line:
            label, code = line.split(':')
            labels[label.strip()] = i
            program[i] = code.strip()
        else:
            program[i] = line.strip()

    def get_value(x):
        return registers[x] if x in registers else int(x)

    def execute_line(line):
        parts = re.split(r'\s+', line)
        instr = parts[0]
        
        if instr == 'SET':
            registers[parts[1]] = int(parts[2])
        elif instr == 'INC':
            registers[parts[1]] += 1
        elif instr == 'EQ':
            registers[parts[1]] = 1 if get_value(parts[2]) == get_value(parts[3]) else 0
        elif instr == 'JF':
            if registers[parts[1]] == 0:
                return parts[2]
        elif instr == 'JT':
            if registers[parts[1]] != 0:
                return parts[2]
        elif instr == 'JMP':
            return parts[1]
        elif instr == 'STORE':
            memory.append(registers[parts[1]])
        elif instr == 'MUL':
            registers[parts[1]] = get_value(parts[2]) * get_value(parts[3])
        elif instr == 'GT':
            registers[parts[1]] = 1 if get_value(parts[2]) > get_value(parts[3]) else 0
        elif instr == 'MOD':
            registers[parts[1]] = get_value(parts[2]) % get_value(parts[3])
        elif instr == 'NOP':
            pass
        return None

    pc = 0
    while pc < len(program):
        line = program[pc].strip()
        if not line:
            pc += 1
            continue
        new_label = execute_line(line)
        if new_label:
            pc = labels[new_label]
        else:
            pc += 1

    return memory

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:
    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import re
from math import isqrt

def evaluate(program):
    # Initialize registers and memory
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = []
    labels = {}
    program = program.strip().split('\n')
    
    # Remove comments and store labels
    for i, line in enumerate(program):
        if '//' in line:
            line = line.split('//')[0].strip()
        if ':' in line:
            label, code = line.split(':')
            labels[label.strip()] = i
            program[i] = code.strip()
        else:
            program[i] = line.strip()

    def get_value(x):
        return registers[x] if x in registers else int(x)

    def execute_line(line):
        parts = re.split(r'\s+', line)
        instr = parts[0]
        
        if instr == 'SET':
            registers[parts[1]] = int(parts[2])
        elif instr == 'INC':
            registers[parts[1]] += 1
        elif instr == 'EQ':
            registers[parts[1]] = 1 if get_value(parts[2]) == get_value(parts[3]) else 0
        elif instr == 'JF':
            if registers[parts[1]] == 0:
                return parts[2]
        elif instr == 'JT':
            if registers[parts[1]] != 0:
                return parts[2]
        elif instr == 'JMP':
            return parts[1]
        elif instr == 'STORE':
            memory.append(registers[parts[1]])
        elif instr == 'MUL':
            registers[parts[1]] = get_value(parts[2]) * get_value(parts[3])
        elif instr == 'GT':
            registers[parts[1]] = 1 if get_value(parts[2]) > get_value(parts[3]) else 0
        elif instr == 'MOD':
            registers[parts[1]] = get_value(parts[2]) % get_value(parts[3])
        elif instr == 'NOP':
            pass
        return None

    pc = 0
    while pc < len(program):
        line = program[pc].strip()
        if not line:
            pc += 1
            continue
        new_label = execute_line(line)
        if new_label:
            pc = labels[new_label]
        else:
            pc += 1

    return memory

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:
    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 121, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 62, in evaluate new_label = execute_line(line) File "/usr/src/app/main.py", line 49, in execute_line registers[parts[1]] = 1 if get_value(parts[2]) > get_value(parts[3]) else 0 IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

To create a Python interpreter for the custom assembly language, we need to simulate the behavior of the given assembly instructions and manage a virtual memory and register set. I'll break down the interpreter into several components: 1. **Tokenizing the program**: Splitting the input program into lines and tokens. 2. **Instruction Set**: Defining the behavior for each instruction. 3. **Execution Engine**: Running the instructions step-by-step and managing control flow. Below is a Python implementation of the interpreter:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
class AssemblyInterpreter:
    def __init__(self, program):
        self.program = program.strip().split('\n')
        self.instruction_pointer = 0
        self.registers = [0] * 10  # General purpose registers R0 to R9
        self.memory = []           # Memory to store primes
        self.labels = {}           # Label locations in the program
        self.parse_labels()        # Parse labels for jumps

    def parse_labels(self):
        for i, line in enumerate(self.program):
            tokens = line.strip().split()
            if tokens and tokens[0].endswith(':'):
                self.labels[tokens[0][:-1]] = i

    def get_value(self, operand):
        if operand.startswith('R'):
            return self.registers[int(operand[1:])]
        return int(operand)

    def set_value(self, operand, value):
        if operand.startswith('R'):
            self.registers[int(operand[1:])] = value

    def execute_instruction(self, tokens):
        if not tokens:
            return
        op = tokens[0]
        if op == 'SET':
            _, reg, val = tokens
            self.set_value(reg, self.get_value(val))
        elif op == 'JMP':
            _, label = tokens
            self.instruction_pointer = self.labels[label]
        elif op == 'EQ':
            _, reg, val = tokens
            self.set_value(reg, int(self.get_value(reg) == self.get_value(val)))
        elif op == 'JF':
            _, label = tokens
            if not self.registers[0]:  # Register R0 is used for flags
                self.instruction_pointer = self.labels[label] - 1
        elif op == 'JT':
            _, label = tokens
            if self.registers[0]:  # Register R0 is used for flags
                self.instruction_pointer = self.labels[label] - 1
        elif op == 'INC':
            _, reg = tokens
            self.set_value(reg, self.get_value(reg) + 1)
        elif op == 'MUL':
            _, reg, op1, op2 = tokens
            self.set_value(reg, self.get_value(op1) * self.get_value(op2))
        elif op == 'MOD':
            _, reg, op1, op2 = tokens
            self.set_value(reg, self.get_value(op1) % self.get_value(op2))
        elif op == 'STORE':
            _, reg, mem_index = tokens
            self.memory.append(self.get_value(reg))
        else:
            # Assume it's a label and ignore it
            pass

    def run(self):
        while self.instruction_pointer < len(self.program):
            line = self.program[self.instruction_pointer].strip()
            tokens = line.split('//')[0].strip().split()
            self.execute_instruction(tokens)
            self.instruction_pointer += 1
        return self.memory

def evaluate(program):
    interpreter = AssemblyInterpreter(program)
    return interpreter.run()

# Example usage
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))
This code defines an `AssemblyInterpreter` class that parses and runs the given assembly program. It maintains registers and memory, interprets instructions, and handles control flow with labels and jumps. The `evaluate` function instantiates the interpreter with the provided program and returns the memory state after execution. Note: I've made some assumptions such as the use of R0 for flag conditions in `JF` and `JT` instructions. Adjustments may be needed based on the exact specification of the assembly language.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
class AssemblyInterpreter:
    def __init__(self, program):
        self.program = program.strip().split('\n')
        self.instruction_pointer = 0
        self.registers = [0] * 10  # General purpose registers R0 to R9
        self.memory = []           # Memory to store primes
        self.labels = {}           # Label locations in the program
        self.parse_labels()        # Parse labels for jumps

    def parse_labels(self):
        for i, line in enumerate(self.program):
            tokens = line.strip().split()
            if tokens and tokens[0].endswith(':'):
                self.labels[tokens[0][:-1]] = i

    def get_value(self, operand):
        if operand.startswith('R'):
            return self.registers[int(operand[1:])]
        return int(operand)

    def set_value(self, operand, value):
        if operand.startswith('R'):
            self.registers[int(operand[1:])] = value

    def execute_instruction(self, tokens):
        if not tokens:
            return
        op = tokens[0]
        if op == 'SET':
            _, reg, val = tokens
            self.set_value(reg, self.get_value(val))
        elif op == 'JMP':
            _, label = tokens
            self.instruction_pointer = self.labels[label]
        elif op == 'EQ':
            _, reg, val = tokens
            self.set_value(reg, int(self.get_value(reg) == self.get_value(val)))
        elif op == 'JF':
            _, label = tokens
            if not self.registers[0]:  # Register R0 is used for flags
                self.instruction_pointer = self.labels[label] - 1
        elif op == 'JT':
            _, label = tokens
            if self.registers[0]:  # Register R0 is used for flags
                self.instruction_pointer = self.labels[label] - 1
        elif op == 'INC':
            _, reg = tokens
            self.set_value(reg, self.get_value(reg) + 1)
        elif op == 'MUL':
            _, reg, op1, op2 = tokens
            self.set_value(reg, self.get_value(op1) * self.get_value(op2))
        elif op == 'MOD':
            _, reg, op1, op2 = tokens
            self.set_value(reg, self.get_value(op1) % self.get_value(op2))
        elif op == 'STORE':
            _, reg, mem_index = tokens
            self.memory.append(self.get_value(reg))
        else:
            # Assume it's a label and ignore it
            pass

    def run(self):
        while self.instruction_pointer < len(self.program):
            line = self.program[self.instruction_pointer].strip()
            tokens = line.split('//')[0].strip().split()
            self.execute_instruction(tokens)
            self.instruction_pointer += 1
        return self.memory

def evaluate(program):
    interpreter = AssemblyInterpreter(program)
    return interpreter.run()

# Example usage
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
class AssemblyInterpreter:
    def __init__(self, program):
        self.program = program.strip().split('\n')
        self.instruction_pointer = 0
        self.registers = [0] * 10  # General purpose registers R0 to R9
        self.memory = []           # Memory to store primes
        self.labels = {}           # Label locations in the program
        self.parse_labels()        # Parse labels for jumps

    def parse_labels(self):
        for i, line in enumerate(self.program):
            tokens = line.strip().split()
            if tokens and tokens[0].endswith(':'):
                self.labels[tokens[0][:-1]] = i

    def get_value(self, operand):
        if operand.startswith('R'):
            return self.registers[int(operand[1:])]
        return int(operand)

    def set_value(self, operand, value):
        if operand.startswith('R'):
            self.registers[int(operand[1:])] = value

    def execute_instruction(self, tokens):
        if not tokens:
            return
        op = tokens[0]
        if op == 'SET':
            _, reg, val = tokens
            self.set_value(reg, self.get_value(val))
        elif op == 'JMP':
            _, label = tokens
            self.instruction_pointer = self.labels[label]
        elif op == 'EQ':
            _, reg, val = tokens
            self.set_value(reg, int(self.get_value(reg) == self.get_value(val)))
        elif op == 'JF':
            _, label = tokens
            if not self.registers[0]:  # Register R0 is used for flags
                self.instruction_pointer = self.labels[label] - 1
        elif op == 'JT':
            _, label = tokens
            if self.registers[0]:  # Register R0 is used for flags
                self.instruction_pointer = self.labels[label] - 1
        elif op == 'INC':
            _, reg = tokens
            self.set_value(reg, self.get_value(reg) + 1)
        elif op == 'MUL':
            _, reg, op1, op2 = tokens
            self.set_value(reg, self.get_value(op1) * self.get_value(op2))
        elif op == 'MOD':
            _, reg, op1, op2 = tokens
            self.set_value(reg, self.get_value(op1) % self.get_value(op2))
        elif op == 'STORE':
            _, reg, mem_index = tokens
            self.memory.append(self.get_value(reg))
        else:
            # Assume it's a label and ignore it
            pass

    def run(self):
        while self.instruction_pointer < len(self.program):
            line = self.program[self.instruction_pointer].strip()
            tokens = line.split('//')[0].strip().split()
            self.execute_instruction(tokens)
            self.instruction_pointer += 1
        return self.memory

def evaluate(program):
    interpreter = AssemblyInterpreter(program)
    return interpreter.run()

# Example usage
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 127, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 73, in evaluate return interpreter.run() File "/usr/src/app/main.py", line 67, in run self.execute_instruction(tokens) File "/usr/src/app/main.py", line 34, in execute_instruction _, label = tokens ValueError: too many values to unpack (expected 2)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False