Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
To implement a Python interpreter `evaluate(str)` for the given assembly language, we can follow a step-by-step approach to interpret and execute each instruction. The interpreter will need to keep track of the program counter (to know which instruction to execute next), registers, and memory state. Here's a simplified Python interpreter for the task:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | def evaluate(program): # Initialize registers and memory registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0} memory = [] labels = {} instructions = program.split('\n') # Pre-process to find all labels for index, instruction in enumerate(instructions): parts = instruction.strip().split() if parts and parts[-1].endswith(':'): labels[parts[-1][:-1]] = index # Helper functions for operations def set_register(register, value): registers[register] = value def inc(register): registers[register] += 1 def eq(register, value): registers[register] = int(registers[register] == value) def gt(register, value): registers[register] = int(registers[register] > value) def mod(register, a, b): registers[register] = registers[a] % registers[b] def mul(register, a, b): registers[register] = registers[a] * registers[b] # Start executing instructions pc = 0 # Program counter while pc < len(instructions): parts = instructions[pc].strip().split() if not parts: pc += 1 continue # Execute instruction instruction = parts[0] if instruction == 'SET': set_register(parts[1], int(parts[2])) elif instruction == 'INC': inc(parts[1]) elif instruction == 'EQ': eq(parts[1], int(parts[2])) elif instruction == 'GT': gt(parts[1], int(parts[2])) elif instruction == 'MOD': mod(parts[1], parts[2], parts[3]) elif instruction == 'MUL': mul(parts[1], parts[2], parts[3]) elif instruction == 'JMP': pc = labels[parts[1]] - 1 elif instruction == 'JT': if registers[parts[1]]: pc = labels[parts[2]] - 1 elif instruction == 'JF': if not registers[parts[1]]: pc = labels[parts[2]] - 1 elif instruction == 'STORE': memory.append(registers[parts[1]]) registers['R8'] += 1 # R8 is used as the prime count here elif instruction.endswith(':'): # Label, do nothing pass else: raise ValueError(f"Unknown instruction: {instruction}") pc += 1 # Move to next instruction if pc in labels.values() and len(memory) >= 100: # Stop if 100 primes found break return memory # Example Program program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | def evaluate(program): # Initialize registers and memory registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0} memory = [] labels = {} instructions = program.split('\n') # Pre-process to find all labels for index, instruction in enumerate(instructions): parts = instruction.strip().split() if parts and parts[-1].endswith(':'): labels[parts[-1][:-1]] = index # Helper functions for operations def set_register(register, value): registers[register] = value def inc(register): registers[register] += 1 def eq(register, value): registers[register] = int(registers[register] == value) def gt(register, value): registers[register] = int(registers[register] > value) def mod(register, a, b): registers[register] = registers[a] % registers[b] def mul(register, a, b): registers[register] = registers[a] * registers[b] # Start executing instructions pc = 0 # Program counter while pc < len(instructions): parts = instructions[pc].strip().split() if not parts: pc += 1 continue # Execute instruction instruction = parts[0] if instruction == 'SET': set_register(parts[1], int(parts[2])) elif instruction == 'INC': inc(parts[1]) elif instruction == 'EQ': eq(parts[1], int(parts[2])) elif instruction == 'GT': gt(parts[1], int(parts[2])) elif instruction == 'MOD': mod(parts[1], parts[2], parts[3]) elif instruction == 'MUL': mul(parts[1], parts[2], parts[3]) elif instruction == 'JMP': pc = labels[parts[1]] - 1 elif instruction == 'JT': if registers[parts[1]]: pc = labels[parts[2]] - 1 elif instruction == 'JF': if not registers[parts[1]]: pc = labels[parts[2]] - 1 elif instruction == 'STORE': memory.append(registers[parts[1]]) registers['R8'] += 1 # R8 is used as the prime count here elif instruction.endswith(':'): # Label, do nothing pass else: raise ValueError(f"Unknown instruction: {instruction}") pc += 1 # Move to next instruction if pc in labels.values() and len(memory) >= 100: # Stop if 100 primes found break return memory # Example Program program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | def evaluate(program): # Initialize registers and memory registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0} memory = [] labels = {} instructions = program.split('\n') # Pre-process to find all labels for index, instruction in enumerate(instructions): parts = instruction.strip().split() if parts and parts[-1].endswith(':'): labels[parts[-1][:-1]] = index # Helper functions for operations def set_register(register, value): registers[register] = value def inc(register): registers[register] += 1 def eq(register, value): registers[register] = int(registers[register] == value) def gt(register, value): registers[register] = int(registers[register] > value) def mod(register, a, b): registers[register] = registers[a] % registers[b] def mul(register, a, b): registers[register] = registers[a] * registers[b] # Start executing instructions pc = 0 # Program counter while pc < len(instructions): parts = instructions[pc].strip().split() if not parts: pc += 1 continue # Execute instruction instruction = parts[0] if instruction == 'SET': set_register(parts[1], int(parts[2])) elif instruction == 'INC': inc(parts[1]) elif instruction == 'EQ': eq(parts[1], int(parts[2])) elif instruction == 'GT': gt(parts[1], int(parts[2])) elif instruction == 'MOD': mod(parts[1], parts[2], parts[3]) elif instruction == 'MUL': mul(parts[1], parts[2], parts[3]) elif instruction == 'JMP': pc = labels[parts[1]] - 1 elif instruction == 'JT': if registers[parts[1]]: pc = labels[parts[2]] - 1 elif instruction == 'JF': if not registers[parts[1]]: pc = labels[parts[2]] - 1 elif instruction == 'STORE': memory.append(registers[parts[1]]) registers['R8'] += 1 # R8 is used as the prime count here elif instruction.endswith(':'): # Label, do nothing pass else: raise ValueError(f"Unknown instruction: {instruction}") pc += 1 # Move to next instruction if pc in labels.values() and len(memory) >= 100: # Stop if 100 primes found break return memory # Example Program program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 131, in <module>
print(evaluate(program))
^^^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 70, in evaluate
raise ValueError(f"Unknown instruction: {instruction}")
ValueError: Unknown instruction: //
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Below is a Python interpreter named `evaluate` that takes a program string written in the provided assembly language syntax and returns the resulting memory state after running the program, specifically designed to handle the prime numbers computation example provided:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | def evaluate(program): # Split the program into lines and initialize registers and memory lines = program.split('\n') registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0} memory = [0] * 100 # assuming we want to find 100 primes pc = 0 # program counter labels = {line.split(':')[0]: i for i, line in enumerate(lines) if ':' in line} def get_value(x): if x.startswith('R'): return registers[x] return int(x) while pc < len(lines): line = lines[pc].strip() if not line or line.startswith('//'): pc += 1 continue parts = line.split() cmd = parts[0] if cmd == 'SET': registers[parts[1]] = int(parts[2]) elif cmd == 'JMP': pc = labels[parts[1]] continue elif cmd == 'EQ': registers[parts[1]] = int(get_value(parts[2]) == get_value(parts[3])) elif cmd == 'JF': if not registers[parts[1]]: pc = labels[parts[2]] continue elif cmd == 'STORE': memory[registers[parts[2]]] = registers[parts[1]] elif cmd == 'INC': registers[parts[1]] += 1 elif cmd == 'MUL': registers[parts[1]] = registers[parts[2]] * registers[parts[3]] elif cmd == 'GT': registers[parts[1]] = int(registers[parts[2]] > registers[parts[3]]) elif cmd == 'JT': if registers[parts[1]]: pc = labels[parts[2]] continue elif cmd == 'MOD': registers[parts[1]] = registers[parts[2]] % registers[parts[3]] pc += 1 return [m for m in memory if m != 0] # Example program as a string program_string = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ # Run the interpreter print(evaluate(program_string)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | def evaluate(program): # Split the program into lines and initialize registers and memory lines = program.split('\n') registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0} memory = [0] * 100 # assuming we want to find 100 primes pc = 0 # program counter labels = {line.split(':')[0]: i for i, line in enumerate(lines) if ':' in line} def get_value(x): if x.startswith('R'): return registers[x] return int(x) while pc < len(lines): line = lines[pc].strip() if not line or line.startswith('//'): pc += 1 continue parts = line.split() cmd = parts[0] if cmd == 'SET': registers[parts[1]] = int(parts[2]) elif cmd == 'JMP': pc = labels[parts[1]] continue elif cmd == 'EQ': registers[parts[1]] = int(get_value(parts[2]) == get_value(parts[3])) elif cmd == 'JF': if not registers[parts[1]]: pc = labels[parts[2]] continue elif cmd == 'STORE': memory[registers[parts[2]]] = registers[parts[1]] elif cmd == 'INC': registers[parts[1]] += 1 elif cmd == 'MUL': registers[parts[1]] = registers[parts[2]] * registers[parts[3]] elif cmd == 'GT': registers[parts[1]] = int(registers[parts[2]] > registers[parts[3]]) elif cmd == 'JT': if registers[parts[1]]: pc = labels[parts[2]] continue elif cmd == 'MOD': registers[parts[1]] = registers[parts[2]] % registers[parts[3]] pc += 1 return [m for m in memory if m != 0] # Example program as a string program_string = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ # Run the interpreter print(evaluate(program_string)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | def evaluate(program): # Split the program into lines and initialize registers and memory lines = program.split('\n') registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0} memory = [0] * 100 # assuming we want to find 100 primes pc = 0 # program counter labels = {line.split(':')[0]: i for i, line in enumerate(lines) if ':' in line} def get_value(x): if x.startswith('R'): return registers[x] return int(x) while pc < len(lines): line = lines[pc].strip() if not line or line.startswith('//'): pc += 1 continue parts = line.split() cmd = parts[0] if cmd == 'SET': registers[parts[1]] = int(parts[2]) elif cmd == 'JMP': pc = labels[parts[1]] continue elif cmd == 'EQ': registers[parts[1]] = int(get_value(parts[2]) == get_value(parts[3])) elif cmd == 'JF': if not registers[parts[1]]: pc = labels[parts[2]] continue elif cmd == 'STORE': memory[registers[parts[2]]] = registers[parts[1]] elif cmd == 'INC': registers[parts[1]] += 1 elif cmd == 'MUL': registers[parts[1]] = registers[parts[2]] * registers[parts[3]] elif cmd == 'GT': registers[parts[1]] = int(registers[parts[2]] > registers[parts[3]]) elif cmd == 'JT': if registers[parts[1]]: pc = labels[parts[2]] continue elif cmd == 'MOD': registers[parts[1]] = registers[parts[2]] % registers[parts[3]] pc += 1 return [m for m in memory if m != 0] # Example program as a string program_string = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ # Run the interpreter print(evaluate(program_string)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 109, in <module>
print(evaluate(program_string))
^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 44, in evaluate
registers[parts[1]] = int(registers[parts[2]] > registers[parts[3]])
~~~~~~~~~^^^^^^^^^^
KeyError: '//'
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
To create a Python interpreter for the assembly language program you provided, we need to simulate the execution of the assembly instructions. The interpreter will mimic the operations of the CPU registers and memory, interpreting and executing each instruction sequentially, with special handling for jumps and conditional logic based on the program's flow. Below is a Python function `evaluate(program)` that takes the program as a string, parses it, and then executes it to find the first 100 prime numbers, returning the memory state at the end.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | def evaluate(program): # Split the program into lines and remove comments lines = [line.split("//")[0].strip() for line in program.split('\n') if line.strip() and "//" in line] # Initialize registers and memory registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0} memory = [] # Convert lines to instructions (list of tuples) instructions = [tuple(line.split()) for line in lines] # Instruction pointer ip = 0 # Helper functions for operations def set_reg(x, y): registers[x] = int(y) def inc(x): registers[x] += 1 def eq(x, y): registers['R7'] = int(registers[x] == int(y)) def gt(x, y): registers['R7'] = int(registers[x] > int(y)) def mul(x, y, z): registers[x] = registers[y] * registers[z] def mod(x, y, z): registers[x] = registers[y] % registers[z] def store(x, y): if len(memory) <= registers[y]: memory.extend([None] * (registers[y] + 1 - len(memory))) memory[registers[y]] = registers[x] # Mapping opcodes to function calls opcodes = { 'SET': set_reg, 'INC': inc, 'EQ': eq, 'GT': gt, 'MUL': mul, 'MOD': mod, 'STORE': store, } # Labels for jumps labels = {instruction[0]: i for i, instruction in enumerate(instructions) if instruction[0] not in opcodes} # Program execution loop while ip < len(instructions): instruction = instructions[ip] opcode = instruction[0] if opcode in opcodes: opcodes[opcode](*instruction[1:]) elif opcode == 'JMP': ip = labels[instruction[1]] continue elif opcode == 'JF': if registers['R7'] == 0: ip = labels[instruction[1]] continue elif opcode == 'JT': if registers['R7'] != 0: ip = labels[instruction[1]] continue ip += 1 # End condition: 100 primes found if len(memory) >= 100: break return memory # Example usage with the provided program as input program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ # Execute the program memory_state = evaluate(program) # Print the resulting memory state print(memory_state[:100]) # Print first 100 primes found |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | def evaluate(program): # Split the program into lines and remove comments lines = [line.split("//")[0].strip() for line in program.split('\n') if line.strip() and "//" in line] # Initialize registers and memory registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0} memory = [] # Convert lines to instructions (list of tuples) instructions = [tuple(line.split()) for line in lines] # Instruction pointer ip = 0 # Helper functions for operations def set_reg(x, y): registers[x] = int(y) def inc(x): registers[x] += 1 def eq(x, y): registers['R7'] = int(registers[x] == int(y)) def gt(x, y): registers['R7'] = int(registers[x] > int(y)) def mul(x, y, z): registers[x] = registers[y] * registers[z] def mod(x, y, z): registers[x] = registers[y] % registers[z] def store(x, y): if len(memory) <= registers[y]: memory.extend([None] * (registers[y] + 1 - len(memory))) memory[registers[y]] = registers[x] # Mapping opcodes to function calls opcodes = { 'SET': set_reg, 'INC': inc, 'EQ': eq, 'GT': gt, 'MUL': mul, 'MOD': mod, 'STORE': store, } # Labels for jumps labels = {instruction[0]: i for i, instruction in enumerate(instructions) if instruction[0] not in opcodes} # Program execution loop while ip < len(instructions): instruction = instructions[ip] opcode = instruction[0] if opcode in opcodes: opcodes[opcode](*instruction[1:]) elif opcode == 'JMP': ip = labels[instruction[1]] continue elif opcode == 'JF': if registers['R7'] == 0: ip = labels[instruction[1]] continue elif opcode == 'JT': if registers['R7'] != 0: ip = labels[instruction[1]] continue ip += 1 # End condition: 100 primes found if len(memory) >= 100: break return memory # Example usage with the provided program as input program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ # Execute the program memory_state = evaluate(program) # Print the resulting memory state print(memory_state[:100]) # Print first 100 primes found |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | def evaluate(program): # Split the program into lines and remove comments lines = [line.split("//")[0].strip() for line in program.split('\n') if line.strip() and "//" in line] # Initialize registers and memory registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0} memory = [] # Convert lines to instructions (list of tuples) instructions = [tuple(line.split()) for line in lines] # Instruction pointer ip = 0 # Helper functions for operations def set_reg(x, y): registers[x] = int(y) def inc(x): registers[x] += 1 def eq(x, y): registers['R7'] = int(registers[x] == int(y)) def gt(x, y): registers['R7'] = int(registers[x] > int(y)) def mul(x, y, z): registers[x] = registers[y] * registers[z] def mod(x, y, z): registers[x] = registers[y] % registers[z] def store(x, y): if len(memory) <= registers[y]: memory.extend([None] * (registers[y] + 1 - len(memory))) memory[registers[y]] = registers[x] # Mapping opcodes to function calls opcodes = { 'SET': set_reg, 'INC': inc, 'EQ': eq, 'GT': gt, 'MUL': mul, 'MOD': mod, 'STORE': store, } # Labels for jumps labels = {instruction[0]: i for i, instruction in enumerate(instructions) if instruction[0] not in opcodes} # Program execution loop while ip < len(instructions): instruction = instructions[ip] opcode = instruction[0] if opcode in opcodes: opcodes[opcode](*instruction[1:]) elif opcode == 'JMP': ip = labels[instruction[1]] continue elif opcode == 'JF': if registers['R7'] == 0: ip = labels[instruction[1]] continue elif opcode == 'JT': if registers['R7'] != 0: ip = labels[instruction[1]] continue ip += 1 # End condition: 100 primes found if len(memory) >= 100: break return memory # Example usage with the provided program as input program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ # Execute the program memory_state = evaluate(program) # Print the resulting memory state print(memory_state[:100]) # Print first 100 primes found answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 134, in <module>
memory_state = evaluate(program)
^^^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 52, in evaluate
labels = {instruction[0]: i for i, instruction in enumerate(instructions) if instruction[0] not in opcodes}
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 52, in <dictcomp>
labels = {instruction[0]: i for i, instruction in enumerate(instructions) if instruction[0] not in opcodes}
~~~~~~~~~~~^^^
IndexError: tuple index out of range
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
To create a Python interpreter that can evaluate the assembly language program you've provided and return the resulting memory state, we will follow a series of steps. This interpreter will parse the instructions, maintain registers and memory state, and execute the logic as specified in the assembly language.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | def evaluate(program): # Split the program into lines and remove comments lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip() and '//' in line] # Initialize registers and memory registers = {f"R{i}": 0 for i in range(1, 9)} memory = [0] * 100 # Assuming a fixed size for simplicity labels = {} # Preprocessing to map labels for i, line in enumerate(lines): parts = line.split() if len(parts) == 1: # It's a label labels[parts[0]] = i def parse_operand(operand): if operand.startswith('R'): return registers[operand] return int(operand) pc = 0 # Program counter while pc < len(lines): parts = lines[pc].split() instruction = parts[0] pc += 1 # Default increment if instruction == 'SET': registers[parts[1]] = parse_operand(parts[2]) elif instruction == 'JMP': pc = labels[parts[1]] elif instruction == 'EQ': registers[parts[1]] = 1 if registers[parts[1]] == parse_operand(parts[2]) else 0 elif instruction == 'JF': if registers[parts[1]] == 0: pc = labels[parts[2]] elif instruction == 'STORE': memory[registers[parts[2]]] = registers[parts[1]] elif instruction == 'INC': registers[parts[1]] += 1 elif instruction == 'MUL': registers[parts[1]] = registers[parts[2]] * registers[parts[3]] elif instruction == 'GT': registers[parts[1]] = 1 if registers[parts[1]] > registers[parts[2]] else 0 elif instruction == 'MOD': registers[parts[1]] = registers[parts[2]] % registers[parts[3]] elif instruction == 'JT': if registers[parts[1]] == 1: pc = labels[parts[2]] return memory[:registers['R8']] # Return the filled portion of the memory # Example program provided as a string program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ # Evaluating the program result = evaluate(program) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | def evaluate(program): # Split the program into lines and remove comments lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip() and '//' in line] # Initialize registers and memory registers = {f"R{i}": 0 for i in range(1, 9)} memory = [0] * 100 # Assuming a fixed size for simplicity labels = {} # Preprocessing to map labels for i, line in enumerate(lines): parts = line.split() if len(parts) == 1: # It's a label labels[parts[0]] = i def parse_operand(operand): if operand.startswith('R'): return registers[operand] return int(operand) pc = 0 # Program counter while pc < len(lines): parts = lines[pc].split() instruction = parts[0] pc += 1 # Default increment if instruction == 'SET': registers[parts[1]] = parse_operand(parts[2]) elif instruction == 'JMP': pc = labels[parts[1]] elif instruction == 'EQ': registers[parts[1]] = 1 if registers[parts[1]] == parse_operand(parts[2]) else 0 elif instruction == 'JF': if registers[parts[1]] == 0: pc = labels[parts[2]] elif instruction == 'STORE': memory[registers[parts[2]]] = registers[parts[1]] elif instruction == 'INC': registers[parts[1]] += 1 elif instruction == 'MUL': registers[parts[1]] = registers[parts[2]] * registers[parts[3]] elif instruction == 'GT': registers[parts[1]] = 1 if registers[parts[1]] > registers[parts[2]] else 0 elif instruction == 'MOD': registers[parts[1]] = registers[parts[2]] % registers[parts[3]] elif instruction == 'JT': if registers[parts[1]] == 1: pc = labels[parts[2]] return memory[:registers['R8']] # Return the filled portion of the memory # Example program provided as a string program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ # Evaluating the program result = evaluate(program) print(result) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | def evaluate(program): # Split the program into lines and remove comments lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip() and '//' in line] # Initialize registers and memory registers = {f"R{i}": 0 for i in range(1, 9)} memory = [0] * 100 # Assuming a fixed size for simplicity labels = {} # Preprocessing to map labels for i, line in enumerate(lines): parts = line.split() if len(parts) == 1: # It's a label labels[parts[0]] = i def parse_operand(operand): if operand.startswith('R'): return registers[operand] return int(operand) pc = 0 # Program counter while pc < len(lines): parts = lines[pc].split() instruction = parts[0] pc += 1 # Default increment if instruction == 'SET': registers[parts[1]] = parse_operand(parts[2]) elif instruction == 'JMP': pc = labels[parts[1]] elif instruction == 'EQ': registers[parts[1]] = 1 if registers[parts[1]] == parse_operand(parts[2]) else 0 elif instruction == 'JF': if registers[parts[1]] == 0: pc = labels[parts[2]] elif instruction == 'STORE': memory[registers[parts[2]]] = registers[parts[1]] elif instruction == 'INC': registers[parts[1]] += 1 elif instruction == 'MUL': registers[parts[1]] = registers[parts[2]] * registers[parts[3]] elif instruction == 'GT': registers[parts[1]] = 1 if registers[parts[1]] > registers[parts[2]] else 0 elif instruction == 'MOD': registers[parts[1]] = registers[parts[2]] % registers[parts[3]] elif instruction == 'JT': if registers[parts[1]] == 1: pc = labels[parts[2]] return memory[:registers['R8']] # Return the filled portion of the memory # Example program provided as a string program = """ SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """ # Evaluating the program result = evaluate(program) print(result) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 106, in <module>
result = evaluate(program)
^^^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 31, in evaluate
pc = labels[parts[1]]
~~~~~~^^^^^^^^^^
KeyError: 'is_prime'
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here's a basic Python interpreter for the given assembly language. This interpreter is specifically tailored to understand and execute the provided assembly language script for finding prime numbers. Please note that this interpreter is designed around the provided example and may need adjustments to work with other programs or additional instructions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | def evaluate(program): # Split the program into lines and then into parts lines = [line.split() for line in program.strip().split('\n') if line.strip()] # Initialize registers and memory registers = {"R1": 2, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0} memory = [0] * 100 # Assuming a fixed size for simplicity labels = {} # Preprocess labels for jumping for i, parts in enumerate(lines): if len(parts) == 1: labels[parts[0].replace(':', '')] = i # Simple flag to indicate the status of the last comparison operation flag_eq = False flag_gt = False flag_jf = False def mod(a, b): return a % b def mul(a, b): return a * b def inc(register): registers[register] += 1 def eq(register, value): nonlocal flag_eq flag_eq = (registers[register] == value) def gt(a, b): nonlocal flag_gt flag_gt = (a > b) def set_register(register, value): registers[register] = value def store(value, address): memory[registers[address]] = value pc = 0 # Program counter while pc < len(lines): parts = lines[pc] instruction = parts[0] if instruction == "SET": set_register(parts[1], int(parts[2])) elif instruction == "INC": inc(parts[1]) elif instruction == "STORE": store(registers[parts[1]], parts[2]) elif instruction == "EQ": eq(parts[1], int(parts[2])) elif instruction == "JF": if not flag_eq: pc = labels[parts[1]] continue elif instruction == "JMP": pc = labels[parts[1]] continue elif instruction == "GT": gt(registers[parts[1]], registers[parts[2]]) elif instruction == "MOD": registers[parts[1]] = mod(registers[parts[2]], registers[parts[3]]) elif instruction == "MUL": registers[parts[1]] = mul(registers[parts[2]], registers[parts[3]]) elif instruction == "JT": if flag_gt: pc = labels[parts[1]] continue pc += 1 if registers["R8"] == 100: # Assuming we stop when we found 100 primes break return memory[:registers["R8"]] # Example program program = """ SET R1 2 start_find_primes: JMP is_prime is_prime ready_prime: EQ R2 1 JF increment STORE R1 R8 INC R8 EQ R8 100 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 EQ R7 R6 0 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | def evaluate(program): # Split the program into lines and then into parts lines = [line.split() for line in program.strip().split('\n') if line.strip()] # Initialize registers and memory registers = {"R1": 2, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0} memory = [0] * 100 # Assuming a fixed size for simplicity labels = {} # Preprocess labels for jumping for i, parts in enumerate(lines): if len(parts) == 1: labels[parts[0].replace(':', '')] = i # Simple flag to indicate the status of the last comparison operation flag_eq = False flag_gt = False flag_jf = False def mod(a, b): return a % b def mul(a, b): return a * b def inc(register): registers[register] += 1 def eq(register, value): nonlocal flag_eq flag_eq = (registers[register] == value) def gt(a, b): nonlocal flag_gt flag_gt = (a > b) def set_register(register, value): registers[register] = value def store(value, address): memory[registers[address]] = value pc = 0 # Program counter while pc < len(lines): parts = lines[pc] instruction = parts[0] if instruction == "SET": set_register(parts[1], int(parts[2])) elif instruction == "INC": inc(parts[1]) elif instruction == "STORE": store(registers[parts[1]], parts[2]) elif instruction == "EQ": eq(parts[1], int(parts[2])) elif instruction == "JF": if not flag_eq: pc = labels[parts[1]] continue elif instruction == "JMP": pc = labels[parts[1]] continue elif instruction == "GT": gt(registers[parts[1]], registers[parts[2]]) elif instruction == "MOD": registers[parts[1]] = mod(registers[parts[2]], registers[parts[3]]) elif instruction == "MUL": registers[parts[1]] = mul(registers[parts[2]], registers[parts[3]]) elif instruction == "JT": if flag_gt: pc = labels[parts[1]] continue pc += 1 if registers["R8"] == 100: # Assuming we stop when we found 100 primes break return memory[:registers["R8"]] # Example program program = """ SET R1 2 start_find_primes: JMP is_prime is_prime ready_prime: EQ R2 1 JF increment STORE R1 R8 INC R8 EQ R8 100 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 EQ R7 R6 0 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | def evaluate(program): # Split the program into lines and then into parts lines = [line.split() for line in program.strip().split('\n') if line.strip()] # Initialize registers and memory registers = {"R1": 2, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0} memory = [0] * 100 # Assuming a fixed size for simplicity labels = {} # Preprocess labels for jumping for i, parts in enumerate(lines): if len(parts) == 1: labels[parts[0].replace(':', '')] = i # Simple flag to indicate the status of the last comparison operation flag_eq = False flag_gt = False flag_jf = False def mod(a, b): return a % b def mul(a, b): return a * b def inc(register): registers[register] += 1 def eq(register, value): nonlocal flag_eq flag_eq = (registers[register] == value) def gt(a, b): nonlocal flag_gt flag_gt = (a > b) def set_register(register, value): registers[register] = value def store(value, address): memory[registers[address]] = value pc = 0 # Program counter while pc < len(lines): parts = lines[pc] instruction = parts[0] if instruction == "SET": set_register(parts[1], int(parts[2])) elif instruction == "INC": inc(parts[1]) elif instruction == "STORE": store(registers[parts[1]], parts[2]) elif instruction == "EQ": eq(parts[1], int(parts[2])) elif instruction == "JF": if not flag_eq: pc = labels[parts[1]] continue elif instruction == "JMP": pc = labels[parts[1]] continue elif instruction == "GT": gt(registers[parts[1]], registers[parts[2]]) elif instruction == "MOD": registers[parts[1]] = mod(registers[parts[2]], registers[parts[3]]) elif instruction == "MUL": registers[parts[1]] = mul(registers[parts[2]], registers[parts[3]]) elif instruction == "JT": if flag_gt: pc = labels[parts[1]] continue pc += 1 if registers["R8"] == 100: # Assuming we stop when we found 100 primes break return memory[:registers["R8"]] # Example program program = """ SET R1 2 start_find_primes: JMP is_prime is_prime ready_prime: EQ R2 1 JF increment STORE R1 R8 INC R8 EQ R8 100 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 EQ R7 R6 0 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 117, in <module>
print(evaluate(program))
^^^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 56, in evaluate
eq(parts[1], int(parts[2]))
^^^^^^^^^^^^^
ValueError: invalid literal for int() with base 10: 'R6'
Testing if the previous output contains the string All tests passed
: False