Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here is a Python interpreter `evaluate(str)` for the custom assembly language program provided:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
def evaluate(program):
    memory = [0] * 1000
    registers = [0] * 10
    registers[1] = 2
    registers[8] = 0

    def get_value(value):
        if value.isdigit():
            return int(value)
        else:
            return registers[int(value[1])]

    def set_value(register, value):
        if register.isdigit():
            registers[int(register)] = value
        else:
            memory[registers[int(register[1])]] = value

    program = program.split('\n')
    pc = 0
    while pc < len(program):
        line = program[pc]
        instruction = line.split()
        command = instruction[0]

        if command == 'SET':
            registers[int(instruction[1])] = get_value(instruction[2])

        elif command == 'JMP':
            pc = get_value(instruction[1]) - 1

        elif command == 'EQ':
            registers[int(instruction[1])] = 1 if get_value(instruction[2]) == get_value(instruction[3]) else 0

        elif command == 'JF':
            if get_value(instruction[1]) == 0:
                pc = get_value(instruction[2]) - 1

        elif command == 'INC':
            registers[int(instruction[1])] += 1

        elif command == 'STORE':
            set_value(instruction[1], get_value(instruction[2]))

        elif command == 'MUL':
            registers[int(instruction[1])] = get_value(instruction[2]) * get_value(instruction[3])

        elif command == 'GT':
            registers[int(instruction[1])] = 1 if get_value(instruction[2]) > get_value(instruction[3]) else 0

        elif command == 'MOD':
            registers[int(instruction[1])] = get_value(instruction[2]) % get_value(instruction[3])

        elif command == 'JT':
            if get_value(instruction[1]) == 1:
                pc = get_value(instruction[2]) - 1

        pc += 1

    primes = []
    for i in range(registers[8]):
        primes.append(memory[i])

    return primes

# Example usage
program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

print(evaluate(program))
You can run the `evaluate(program)` function with the custom assembly language program to get the resulting memory state, which will contain the list of prime numbers found by the program.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
def evaluate(program):
    memory = [0] * 1000
    registers = [0] * 10
    registers[1] = 2
    registers[8] = 0

    def get_value(value):
        if value.isdigit():
            return int(value)
        else:
            return registers[int(value[1])]

    def set_value(register, value):
        if register.isdigit():
            registers[int(register)] = value
        else:
            memory[registers[int(register[1])]] = value

    program = program.split('\n')
    pc = 0
    while pc < len(program):
        line = program[pc]
        instruction = line.split()
        command = instruction[0]

        if command == 'SET':
            registers[int(instruction[1])] = get_value(instruction[2])

        elif command == 'JMP':
            pc = get_value(instruction[1]) - 1

        elif command == 'EQ':
            registers[int(instruction[1])] = 1 if get_value(instruction[2]) == get_value(instruction[3]) else 0

        elif command == 'JF':
            if get_value(instruction[1]) == 0:
                pc = get_value(instruction[2]) - 1

        elif command == 'INC':
            registers[int(instruction[1])] += 1

        elif command == 'STORE':
            set_value(instruction[1], get_value(instruction[2]))

        elif command == 'MUL':
            registers[int(instruction[1])] = get_value(instruction[2]) * get_value(instruction[3])

        elif command == 'GT':
            registers[int(instruction[1])] = 1 if get_value(instruction[2]) > get_value(instruction[3]) else 0

        elif command == 'MOD':
            registers[int(instruction[1])] = get_value(instruction[2]) % get_value(instruction[3])

        elif command == 'JT':
            if get_value(instruction[1]) == 1:
                pc = get_value(instruction[2]) - 1

        pc += 1

    primes = []
    for i in range(registers[8]):
        primes.append(memory[i])

    return primes

# Example usage
program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
def evaluate(program):
    memory = [0] * 1000
    registers = [0] * 10
    registers[1] = 2
    registers[8] = 0

    def get_value(value):
        if value.isdigit():
            return int(value)
        else:
            return registers[int(value[1])]

    def set_value(register, value):
        if register.isdigit():
            registers[int(register)] = value
        else:
            memory[registers[int(register[1])]] = value

    program = program.split('\n')
    pc = 0
    while pc < len(program):
        line = program[pc]
        instruction = line.split()
        command = instruction[0]

        if command == 'SET':
            registers[int(instruction[1])] = get_value(instruction[2])

        elif command == 'JMP':
            pc = get_value(instruction[1]) - 1

        elif command == 'EQ':
            registers[int(instruction[1])] = 1 if get_value(instruction[2]) == get_value(instruction[3]) else 0

        elif command == 'JF':
            if get_value(instruction[1]) == 0:
                pc = get_value(instruction[2]) - 1

        elif command == 'INC':
            registers[int(instruction[1])] += 1

        elif command == 'STORE':
            set_value(instruction[1], get_value(instruction[2]))

        elif command == 'MUL':
            registers[int(instruction[1])] = get_value(instruction[2]) * get_value(instruction[3])

        elif command == 'GT':
            registers[int(instruction[1])] = 1 if get_value(instruction[2]) > get_value(instruction[3]) else 0

        elif command == 'MOD':
            registers[int(instruction[1])] = get_value(instruction[2]) % get_value(instruction[3])

        elif command == 'JT':
            if get_value(instruction[1]) == 1:
                pc = get_value(instruction[2]) - 1

        pc += 1

    primes = []
    for i in range(registers[8]):
        primes.append(memory[i])

    return primes

# Example usage
program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 105, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 25, in evaluate command = instruction[0] IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here is a Python interpreter for the assembly language program provided:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def evaluate(program):
    memory = {}
    registers = {'R1': 2, 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0}

    lines = program.split('\n')
    line_num = 0

    while line_num < len(lines):
        line = lines[line_num]
        line_num += 1

        if line.startswith('SET'):
            _, reg, val = line.split()
            registers[reg] = int(val)
        elif line.startswith('JMP'):
            _, label = line.split()
            line_num = lines.index(label + ':')
        elif line.startswith('EQ'):
            _, reg1, reg2 = line.split()
            registers[reg1] = int(registers[reg1] == registers[reg2])
        elif line.startswith('JF'):
            _, label = line.split()
            if registers['R7'] == 0:
                line_num = lines.index(label + ':')
        elif line.startswith('GT'):
            _, reg1, reg2 = line.split()
            registers[reg1] = int(registers[reg1] > registers[reg2])
        elif line.startswith('JT'):
            _, label = line.split()
            if registers['R7'] == 1:
                line_num = lines.index(label + ':')
        elif line.startswith('INC'):
            _, reg = line.split()
            registers[reg] += 1
        elif line.startswith('MUL'):
            _, reg1, reg2, reg3 = line.split()
            registers[reg1] = registers[reg2] * registers[reg3]
        elif line.startswith('MOD'):
            _, reg1, reg2, reg3 = line.split()
            registers[reg1] = registers[reg2] % registers[reg3]
        elif line.startswith('STORE'):
            _, reg1, reg2 = line.split()
            memory[registers[reg2]] = registers[reg1]

    return [memory[i] for i in range(2, 102) if i in memory]

program = """
SET R1 2

start_find_primes:

    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))
This Python interpreter will simulate the execution of the given assembly language program and return the list of prime numbers found in the memory after running the program.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def evaluate(program):
    memory = {}
    registers = {'R1': 2, 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0}

    lines = program.split('\n')
    line_num = 0

    while line_num < len(lines):
        line = lines[line_num]
        line_num += 1

        if line.startswith('SET'):
            _, reg, val = line.split()
            registers[reg] = int(val)
        elif line.startswith('JMP'):
            _, label = line.split()
            line_num = lines.index(label + ':')
        elif line.startswith('EQ'):
            _, reg1, reg2 = line.split()
            registers[reg1] = int(registers[reg1] == registers[reg2])
        elif line.startswith('JF'):
            _, label = line.split()
            if registers['R7'] == 0:
                line_num = lines.index(label + ':')
        elif line.startswith('GT'):
            _, reg1, reg2 = line.split()
            registers[reg1] = int(registers[reg1] > registers[reg2])
        elif line.startswith('JT'):
            _, label = line.split()
            if registers['R7'] == 1:
                line_num = lines.index(label + ':')
        elif line.startswith('INC'):
            _, reg = line.split()
            registers[reg] += 1
        elif line.startswith('MUL'):
            _, reg1, reg2, reg3 = line.split()
            registers[reg1] = registers[reg2] * registers[reg3]
        elif line.startswith('MOD'):
            _, reg1, reg2, reg3 = line.split()
            registers[reg1] = registers[reg2] % registers[reg3]
        elif line.startswith('STORE'):
            _, reg1, reg2 = line.split()
            memory[registers[reg2]] = registers[reg1]

    return [memory[i] for i in range(2, 102) if i in memory]

program = """
SET R1 2

start_find_primes:

    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def evaluate(program):
    memory = {}
    registers = {'R1': 2, 'R2': 0, 'R3': 0, 'R4': 0, 'R6': 0, 'R7': 0, 'R8': 0}

    lines = program.split('\n')
    line_num = 0

    while line_num < len(lines):
        line = lines[line_num]
        line_num += 1

        if line.startswith('SET'):
            _, reg, val = line.split()
            registers[reg] = int(val)
        elif line.startswith('JMP'):
            _, label = line.split()
            line_num = lines.index(label + ':')
        elif line.startswith('EQ'):
            _, reg1, reg2 = line.split()
            registers[reg1] = int(registers[reg1] == registers[reg2])
        elif line.startswith('JF'):
            _, label = line.split()
            if registers['R7'] == 0:
                line_num = lines.index(label + ':')
        elif line.startswith('GT'):
            _, reg1, reg2 = line.split()
            registers[reg1] = int(registers[reg1] > registers[reg2])
        elif line.startswith('JT'):
            _, label = line.split()
            if registers['R7'] == 1:
                line_num = lines.index(label + ':')
        elif line.startswith('INC'):
            _, reg = line.split()
            registers[reg] += 1
        elif line.startswith('MUL'):
            _, reg1, reg2, reg3 = line.split()
            registers[reg1] = registers[reg2] * registers[reg3]
        elif line.startswith('MOD'):
            _, reg1, reg2, reg3 = line.split()
            registers[reg1] = registers[reg2] % registers[reg3]
        elif line.startswith('STORE'):
            _, reg1, reg2 = line.split()
            memory[registers[reg2]] = registers[reg1]

    return [memory[i] for i in range(2, 102) if i in memory]

program = """
SET R1 2

start_find_primes:

    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [] Traceback (most recent call last): File "/usr/src/app/main.py", line 118, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' AssertionError: Wrong answer; got [] instead of [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here is a Python interpreter for the assembly language program provided:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
def evaluate(program):
    memory = [0] * 1000
    registers = [0] * 10
    registers[8] = 0  # Initialize R8 to store primes
    primes = []

    lines = program.strip().split('\n')
    i = 0
    while i < len(lines):
        line = lines[i]
        tokens = line.split()
        
        if tokens[0] == 'SET':
            reg = int(tokens[1][1])
            val = int(tokens[2])
            registers[reg] = val
        elif tokens[0] == 'JMP':
            label = tokens[1]
            for j in range(len(lines)):
                if lines[j].startswith(label):
                    i = j
                    break
        elif tokens[0] == 'EQ':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            if registers[reg1] == registers[reg2]:
                registers[0] = 1
            else:
                registers[0] = 0
        elif tokens[0] == 'JF':
            label = tokens[1]
            if registers[0] == 0:
                for j in range(len(lines)):
                    if lines[j].startswith(label):
                        i = j
                        break
        elif tokens[0] == 'INC':
            reg = int(tokens[1][1])
            registers[reg] += 1
        elif tokens[0] == 'STORE':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            memory[registers[reg2]] = registers[reg1]
        elif tokens[0] == 'MUL':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            reg3 = int(tokens[3][1])
            registers[reg3] = registers[reg1] * registers[reg2]
        elif tokens[0] == 'GT':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            if registers[reg1] > registers[reg2]:
                registers[0] = 1
            else:
                registers[0] = 0
        elif tokens[0] == 'MOD':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            reg3 = int(tokens[3][1])
            registers[reg3] = registers[reg1] % registers[reg2]
        
        i += 1
    
    for val in memory:
        if val != 0:
            primes.append(val)
    
    return primes

# Example program provided
program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

result = evaluate(program)
print(result)
You can run the above Python interpreter with the provided program to get the resulting list of prime numbers stored in memory.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
def evaluate(program):
    memory = [0] * 1000
    registers = [0] * 10
    registers[8] = 0  # Initialize R8 to store primes
    primes = []

    lines = program.strip().split('\n')
    i = 0
    while i < len(lines):
        line = lines[i]
        tokens = line.split()
        
        if tokens[0] == 'SET':
            reg = int(tokens[1][1])
            val = int(tokens[2])
            registers[reg] = val
        elif tokens[0] == 'JMP':
            label = tokens[1]
            for j in range(len(lines)):
                if lines[j].startswith(label):
                    i = j
                    break
        elif tokens[0] == 'EQ':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            if registers[reg1] == registers[reg2]:
                registers[0] = 1
            else:
                registers[0] = 0
        elif tokens[0] == 'JF':
            label = tokens[1]
            if registers[0] == 0:
                for j in range(len(lines)):
                    if lines[j].startswith(label):
                        i = j
                        break
        elif tokens[0] == 'INC':
            reg = int(tokens[1][1])
            registers[reg] += 1
        elif tokens[0] == 'STORE':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            memory[registers[reg2]] = registers[reg1]
        elif tokens[0] == 'MUL':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            reg3 = int(tokens[3][1])
            registers[reg3] = registers[reg1] * registers[reg2]
        elif tokens[0] == 'GT':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            if registers[reg1] > registers[reg2]:
                registers[0] = 1
            else:
                registers[0] = 0
        elif tokens[0] == 'MOD':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            reg3 = int(tokens[3][1])
            registers[reg3] = registers[reg1] % registers[reg2]
        
        i += 1
    
    for val in memory:
        if val != 0:
            primes.append(val)
    
    return primes

# Example program provided
program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

result = evaluate(program)
print(result)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
def evaluate(program):
    memory = [0] * 1000
    registers = [0] * 10
    registers[8] = 0  # Initialize R8 to store primes
    primes = []

    lines = program.strip().split('\n')
    i = 0
    while i < len(lines):
        line = lines[i]
        tokens = line.split()
        
        if tokens[0] == 'SET':
            reg = int(tokens[1][1])
            val = int(tokens[2])
            registers[reg] = val
        elif tokens[0] == 'JMP':
            label = tokens[1]
            for j in range(len(lines)):
                if lines[j].startswith(label):
                    i = j
                    break
        elif tokens[0] == 'EQ':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            if registers[reg1] == registers[reg2]:
                registers[0] = 1
            else:
                registers[0] = 0
        elif tokens[0] == 'JF':
            label = tokens[1]
            if registers[0] == 0:
                for j in range(len(lines)):
                    if lines[j].startswith(label):
                        i = j
                        break
        elif tokens[0] == 'INC':
            reg = int(tokens[1][1])
            registers[reg] += 1
        elif tokens[0] == 'STORE':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            memory[registers[reg2]] = registers[reg1]
        elif tokens[0] == 'MUL':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            reg3 = int(tokens[3][1])
            registers[reg3] = registers[reg1] * registers[reg2]
        elif tokens[0] == 'GT':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            if registers[reg1] > registers[reg2]:
                registers[0] = 1
            else:
                registers[0] = 0
        elif tokens[0] == 'MOD':
            reg1 = int(tokens[1][1])
            reg2 = int(tokens[2][1])
            reg3 = int(tokens[3][1])
            registers[reg3] = registers[reg1] % registers[reg2]
        
        i += 1
    
    for val in memory:
        if val != 0:
            primes.append(val)
    
    return primes

# Example program provided
program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

result = evaluate(program)
print(result)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Timeout: function took too long to complete

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here is a Python interpreter `evaluate(str)` for the given assembly language program that computes primes:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
def evaluate(program):
    memory = {}
    R1 = 2
    R8 = 0

    def execute(instruction):
        nonlocal R1, R8
        parts = instruction.split()
        opcode = parts[0]
        if opcode == 'SET':
            reg = parts[1]
            val = int(parts[2])
            if reg.startswith('R'):
                memory[reg] = val
        elif opcode == 'JMP':
            return parts[1]
        elif opcode == 'EQ':
            reg1 = parts[1]
            reg2 = parts[2]
            if memory[reg1] == memory[reg2]:
                return 'EQ'
        elif opcode == 'JF':
            return parts[1] if parts[1] != 'increment' else 'JF_increment'
        elif opcode == 'INC':
            reg = parts[1]
            memory[reg] += 1
        elif opcode == 'STORE':
            reg1 = parts[1]
            reg2 = parts[2]
            if reg2.startswith('R'):
                memory[memory[reg2]] = memory[reg1]
        elif opcode == 'MUL':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            memory[reg3] = memory[reg1] * memory[reg2]
        elif opcode == 'GT':
            reg1 = parts[1]
            reg2 = parts[2]
            if memory[reg1] > memory[reg2]:
                return 'GT'
        elif opcode == 'MOD':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            memory[reg3] = memory[reg1] % memory[reg2]

    while True:
        instruction = program.split('\n')[R1].strip()
        if not instruction:
            break
        result = execute(instruction)
        if result == 'EQ':
            R1 += 1
        elif result == 'GT':
            R1 += 1
        elif result == 'JF_increment':
            R1 += 1
        elif result:
            R1 = int(result)
        else:
            R1 += 1
        
        if R1 == 0:
            break

    primes = [memory[str(i)] for i in range(2, R8 + 2)]
    return primes

program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

print(evaluate(program))
This Python interpreter will execute the provided assembly language program and return the list of prime numbers stored in memory after running the program.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
def evaluate(program):
    memory = {}
    R1 = 2
    R8 = 0

    def execute(instruction):
        nonlocal R1, R8
        parts = instruction.split()
        opcode = parts[0]
        if opcode == 'SET':
            reg = parts[1]
            val = int(parts[2])
            if reg.startswith('R'):
                memory[reg] = val
        elif opcode == 'JMP':
            return parts[1]
        elif opcode == 'EQ':
            reg1 = parts[1]
            reg2 = parts[2]
            if memory[reg1] == memory[reg2]:
                return 'EQ'
        elif opcode == 'JF':
            return parts[1] if parts[1] != 'increment' else 'JF_increment'
        elif opcode == 'INC':
            reg = parts[1]
            memory[reg] += 1
        elif opcode == 'STORE':
            reg1 = parts[1]
            reg2 = parts[2]
            if reg2.startswith('R'):
                memory[memory[reg2]] = memory[reg1]
        elif opcode == 'MUL':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            memory[reg3] = memory[reg1] * memory[reg2]
        elif opcode == 'GT':
            reg1 = parts[1]
            reg2 = parts[2]
            if memory[reg1] > memory[reg2]:
                return 'GT'
        elif opcode == 'MOD':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            memory[reg3] = memory[reg1] % memory[reg2]

    while True:
        instruction = program.split('\n')[R1].strip()
        if not instruction:
            break
        result = execute(instruction)
        if result == 'EQ':
            R1 += 1
        elif result == 'GT':
            R1 += 1
        elif result == 'JF_increment':
            R1 += 1
        elif result:
            R1 = int(result)
        else:
            R1 += 1
        
        if R1 == 0:
            break

    primes = [memory[str(i)] for i in range(2, R8 + 2)]
    return primes

program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def evaluate(program):
    memory = {}
    R1 = 2
    R8 = 0

    def execute(instruction):
        nonlocal R1, R8
        parts = instruction.split()
        opcode = parts[0]
        if opcode == 'SET':
            reg = parts[1]
            val = int(parts[2])
            if reg.startswith('R'):
                memory[reg] = val
        elif opcode == 'JMP':
            return parts[1]
        elif opcode == 'EQ':
            reg1 = parts[1]
            reg2 = parts[2]
            if memory[reg1] == memory[reg2]:
                return 'EQ'
        elif opcode == 'JF':
            return parts[1] if parts[1] != 'increment' else 'JF_increment'
        elif opcode == 'INC':
            reg = parts[1]
            memory[reg] += 1
        elif opcode == 'STORE':
            reg1 = parts[1]
            reg2 = parts[2]
            if reg2.startswith('R'):
                memory[memory[reg2]] = memory[reg1]
        elif opcode == 'MUL':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            memory[reg3] = memory[reg1] * memory[reg2]
        elif opcode == 'GT':
            reg1 = parts[1]
            reg2 = parts[2]
            if memory[reg1] > memory[reg2]:
                return 'GT'
        elif opcode == 'MOD':
            reg1 = parts[1]
            reg2 = parts[2]
            reg3 = parts[3]
            memory[reg3] = memory[reg1] % memory[reg2]

    while True:
        instruction = program.split('\n')[R1].strip()
        if not instruction:
            break
        result = execute(instruction)
        if result == 'EQ':
            R1 += 1
        elif result == 'GT':
            R1 += 1
        elif result == 'JF_increment':
            R1 += 1
        elif result:
            R1 = int(result)
        else:
            R1 += 1
        
        if R1 == 0:
            break

    primes = [memory[str(i)] for i in range(2, R8 + 2)]
    return primes

program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 108, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 61, in evaluate R1 = int(result) ValueError: invalid literal for int() with base 10: 'is_prime'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here is a Python interpreter for the assembly language program provided:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def evaluate(program):
    # Initialize memory as an empty list
    memory = []

    # Initialize registers
    R = [0] * 9

    # Split the program into lines
    lines = program.split("\n")

    # Define labels
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(":"):
            labels[line[:-1]] = i

    # Start executing the program
    pc = labels["start_find_primes"]
    while pc < len(lines):
        line = lines[pc]
        parts = line.split()

        if len(parts) == 3:
            opcode, reg, val = parts
        elif len(parts) == 2:
            opcode, reg = parts
        else:
            opcode = parts[0]

        if opcode == "SET":
            R[int(reg[1])] = int(val)
        elif opcode == "JMP":
            pc = labels[val]
            continue
        elif opcode == "EQ":
            R[int(reg[1])] = int(R[int(parts[2][1])] == R[int(parts[3][1]])
        elif opcode == "JF":
            if R[int(reg[1])] == 0:
                pc = labels[parts[1]]
                continue
        elif opcode == "INC":
            R[int(reg[1])] += 1
        elif opcode == "STORE":
            memory.append(R[int(reg[1])])
        elif opcode == "MOD":
            R[int(reg[1])] = R[int(parts[2][1])] % R[int(parts[3][1])]
        elif opcode == "MUL":
            R[int(reg[1])] = R[int(parts[2][1])] * R[int(parts[3][1])]
        elif opcode == "GT":
            R[int(reg[1])] = int(R[int(parts[2][1])] > R[int(parts[3][1])])
        elif opcode == "JT":
            if R[int(reg[1])] != 0:
                pc = labels[parts[1]]
                continue

        pc += 1

    return memory

# Sample program
program = """
SET R1 2

start_find_primes:

    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

result = evaluate(program)
print(result)
This Python interpreter will execute the provided assembly language program and return the resulting memory state, which should contain the list of prime numbers found by the program.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def evaluate(program):
    # Initialize memory as an empty list
    memory = []

    # Initialize registers
    R = [0] * 9

    # Split the program into lines
    lines = program.split("\n")

    # Define labels
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(":"):
            labels[line[:-1]] = i

    # Start executing the program
    pc = labels["start_find_primes"]
    while pc < len(lines):
        line = lines[pc]
        parts = line.split()

        if len(parts) == 3:
            opcode, reg, val = parts
        elif len(parts) == 2:
            opcode, reg = parts
        else:
            opcode = parts[0]

        if opcode == "SET":
            R[int(reg[1])] = int(val)
        elif opcode == "JMP":
            pc = labels[val]
            continue
        elif opcode == "EQ":
            R[int(reg[1])] = int(R[int(parts[2][1])] == R[int(parts[3][1]])
        elif opcode == "JF":
            if R[int(reg[1])] == 0:
                pc = labels[parts[1]]
                continue
        elif opcode == "INC":
            R[int(reg[1])] += 1
        elif opcode == "STORE":
            memory.append(R[int(reg[1])])
        elif opcode == "MOD":
            R[int(reg[1])] = R[int(parts[2][1])] % R[int(parts[3][1])]
        elif opcode == "MUL":
            R[int(reg[1])] = R[int(parts[2][1])] * R[int(parts[3][1])]
        elif opcode == "GT":
            R[int(reg[1])] = int(R[int(parts[2][1])] > R[int(parts[3][1])])
        elif opcode == "JT":
            if R[int(reg[1])] != 0:
                pc = labels[parts[1]]
                continue

        pc += 1

    return memory

# Sample program
program = """
SET R1 2

start_find_primes:

    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

result = evaluate(program)
print(result)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def evaluate(program):
    # Initialize memory as an empty list
    memory = []

    # Initialize registers
    R = [0] * 9

    # Split the program into lines
    lines = program.split("\n")

    # Define labels
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(":"):
            labels[line[:-1]] = i

    # Start executing the program
    pc = labels["start_find_primes"]
    while pc < len(lines):
        line = lines[pc]
        parts = line.split()

        if len(parts) == 3:
            opcode, reg, val = parts
        elif len(parts) == 2:
            opcode, reg = parts
        else:
            opcode = parts[0]

        if opcode == "SET":
            R[int(reg[1])] = int(val)
        elif opcode == "JMP":
            pc = labels[val]
            continue
        elif opcode == "EQ":
            R[int(reg[1])] = int(R[int(parts[2][1])] == R[int(parts[3][1]])
        elif opcode == "JF":
            if R[int(reg[1])] == 0:
                pc = labels[parts[1]]
                continue
        elif opcode == "INC":
            R[int(reg[1])] += 1
        elif opcode == "STORE":
            memory.append(R[int(reg[1])])
        elif opcode == "MOD":
            R[int(reg[1])] = R[int(parts[2][1])] % R[int(parts[3][1])]
        elif opcode == "MUL":
            R[int(reg[1])] = R[int(parts[2][1])] * R[int(parts[3][1])]
        elif opcode == "GT":
            R[int(reg[1])] = int(R[int(parts[2][1])] > R[int(parts[3][1])])
        elif opcode == "JT":
            if R[int(reg[1])] != 0:
                pc = labels[parts[1]]
                continue

        pc += 1

    return memory

# Sample program
program = """
SET R1 2

start_find_primes:

    JMP is_prime

ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment

    STORE R1 R8
    INC R8

    SET R7 100
    EQ R8 R7
    JF increment

    JMP end

increment:
    INC R1
    JMP start_find_primes

is_prime:
    SET R2 1
    SET R3 2

start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end

    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime

    INC R3
    JMP start_loop

not_prime:
    SET R2 0

is_prime_end:
    JMP ready_prime

end:
"""

result = evaluate(program)
print(result)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: File "/usr/src/app/main.py", line 37 R[int(reg[1])] = int(R[int(parts[2][1])] == R[int(parts[3][1]]) ^ SyntaxError: closing parenthesis ']' does not match opening parenthesis '('

Substring Evaluation

Testing if the previous output contains the string All tests passed: False