Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
## Python Interpreter for the Assembly Language
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | def evaluate(program): """ Evaluates the given assembly program and returns the resulting memory state. Args: program: The assembly program as a string. Returns: A list containing the values stored in memory after program execution. """ # Initialize registers and memory registers = { "R1": 2, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0, } memory = [] # Define instructions and their corresponding functions instructions = { "SET": set_register, "JMP": jump, "EQ": compare_and_jump_if_equal, "GT": compare_and_jump_if_greater, "JF": jump_if_false, "INC": increment_register, "STORE": store_in_memory, "MOD": modulo, "JT": jump_if_true, } # Split the program into lines and remove comments lines = program.splitlines() lines = [line.strip() for line in lines if not line.startswith("//")] # Initialize program counter pc = 0 # Main execution loop while pc < len(lines): line = lines[pc] # Extract instruction and operands instruction, *operands = line.split() # Execute the instruction instructions[instruction](registers, memory, operands) # Update program counter pc += 1 return memory def set_register(registers, memory, operands): """Sets the value of a register.""" register, value = operands registers[register] = int(value) def jump(registers, memory, operands): """Jumps to the specified label.""" label = operands[0] global lines for i, line in enumerate(lines): if line.startswith(label + ":"): pc = i break def compare_and_jump_if_equal(registers, memory, operands): """Compares two registers and jumps if they are equal.""" register1, register2 = operands if registers[register1] == registers[register2]: jump(registers, memory, [operands[2]]) def compare_and_jump_if_greater(registers, memory, operands): """Compares two registers and jumps if the first is greater than the second.""" register1, register2 = operands if registers[register1] > registers[register2]: jump(registers, memory, [operands[2]]) def jump_if_false(registers, memory, operands): """Jumps to the specified label if the given register is 0.""" register, label = operands if registers[register] == 0: jump(registers, memory, [label]) def increment_register(registers, memory, operands): """Increments the value of a register.""" register = operands[0] registers[register] += 1 def store_in_memory(registers, memory, operands): """Stores the value of a register in memory.""" register, address = operands memory.append(registers[register]) def modulo(registers, memory, operands): """Calculates the modulo of two registers and stores the result in a register.""" register1, register2, result_register = operands registers[result_register] = registers[register1] % registers[register2] def jump_if_true(registers, memory, operands): """Jumps to the specified label if the given register is not 0.""" register, label = operands if registers[register] != 0: jump(registers, memory, [label]) # Example usage program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ memory = evaluate(program) print(memory) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | def evaluate(program): """ Evaluates the given assembly program and returns the resulting memory state. Args: program: The assembly program as a string. Returns: A list containing the values stored in memory after program execution. """ # Initialize registers and memory registers = { "R1": 2, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0, } memory = [] # Define instructions and their corresponding functions instructions = { "SET": set_register, "JMP": jump, "EQ": compare_and_jump_if_equal, "GT": compare_and_jump_if_greater, "JF": jump_if_false, "INC": increment_register, "STORE": store_in_memory, "MOD": modulo, "JT": jump_if_true, } # Split the program into lines and remove comments lines = program.splitlines() lines = [line.strip() for line in lines if not line.startswith("//")] # Initialize program counter pc = 0 # Main execution loop while pc < len(lines): line = lines[pc] # Extract instruction and operands instruction, *operands = line.split() # Execute the instruction instructions[instruction](registers, memory, operands) # Update program counter pc += 1 return memory def set_register(registers, memory, operands): """Sets the value of a register.""" register, value = operands registers[register] = int(value) def jump(registers, memory, operands): """Jumps to the specified label.""" label = operands[0] global lines for i, line in enumerate(lines): if line.startswith(label + ":"): pc = i break def compare_and_jump_if_equal(registers, memory, operands): """Compares two registers and jumps if they are equal.""" register1, register2 = operands if registers[register1] == registers[register2]: jump(registers, memory, [operands[2]]) def compare_and_jump_if_greater(registers, memory, operands): """Compares two registers and jumps if the first is greater than the second.""" register1, register2 = operands if registers[register1] > registers[register2]: jump(registers, memory, [operands[2]]) def jump_if_false(registers, memory, operands): """Jumps to the specified label if the given register is 0.""" register, label = operands if registers[register] == 0: jump(registers, memory, [label]) def increment_register(registers, memory, operands): """Increments the value of a register.""" register = operands[0] registers[register] += 1 def store_in_memory(registers, memory, operands): """Stores the value of a register in memory.""" register, address = operands memory.append(registers[register]) def modulo(registers, memory, operands): """Calculates the modulo of two registers and stores the result in a register.""" register1, register2, result_register = operands registers[result_register] = registers[register1] % registers[register2] def jump_if_true(registers, memory, operands): """Jumps to the specified label if the given register is not 0.""" register, label = operands if registers[register] != 0: jump(registers, memory, [label]) # Example usage program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ memory = evaluate(program) print(memory) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | def evaluate(program): """ Evaluates the given assembly program and returns the resulting memory state. Args: program: The assembly program as a string. Returns: A list containing the values stored in memory after program execution. """ # Initialize registers and memory registers = { "R1": 2, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0, } memory = [] # Define instructions and their corresponding functions instructions = { "SET": set_register, "JMP": jump, "EQ": compare_and_jump_if_equal, "GT": compare_and_jump_if_greater, "JF": jump_if_false, "INC": increment_register, "STORE": store_in_memory, "MOD": modulo, "JT": jump_if_true, } # Split the program into lines and remove comments lines = program.splitlines() lines = [line.strip() for line in lines if not line.startswith("//")] # Initialize program counter pc = 0 # Main execution loop while pc < len(lines): line = lines[pc] # Extract instruction and operands instruction, *operands = line.split() # Execute the instruction instructions[instruction](registers, memory, operands) # Update program counter pc += 1 return memory def set_register(registers, memory, operands): """Sets the value of a register.""" register, value = operands registers[register] = int(value) def jump(registers, memory, operands): """Jumps to the specified label.""" label = operands[0] global lines for i, line in enumerate(lines): if line.startswith(label + ":"): pc = i break def compare_and_jump_if_equal(registers, memory, operands): """Compares two registers and jumps if they are equal.""" register1, register2 = operands if registers[register1] == registers[register2]: jump(registers, memory, [operands[2]]) def compare_and_jump_if_greater(registers, memory, operands): """Compares two registers and jumps if the first is greater than the second.""" register1, register2 = operands if registers[register1] > registers[register2]: jump(registers, memory, [operands[2]]) def jump_if_false(registers, memory, operands): """Jumps to the specified label if the given register is 0.""" register, label = operands if registers[register] == 0: jump(registers, memory, [label]) def increment_register(registers, memory, operands): """Increments the value of a register.""" register = operands[0] registers[register] += 1 def store_in_memory(registers, memory, operands): """Stores the value of a register in memory.""" register, address = operands memory.append(registers[register]) def modulo(registers, memory, operands): """Calculates the modulo of two registers and stores the result in a register.""" register1, register2, result_register = operands registers[result_register] = registers[register1] % registers[register2] def jump_if_true(registers, memory, operands): """Jumps to the specified label if the given register is not 0.""" register, label = operands if registers[register] != 0: jump(registers, memory, [label]) # Example usage program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ memory = evaluate(program) print(memory) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 152, in <module>
memory = evaluate(program)
File "/usr/src/app/main.py", line 51, in evaluate
instruction, *operands = line.split()
ValueError: not enough values to unpack (expected at least 1, got 0)
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
## Python Interpreter for the Assembly Language Here's the Python interpreter `evaluate(str)` that executes the assembly program and returns the resulting memory state:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | def evaluate(program): """ Evaluates the assembly program and returns the final memory state. Args: program: The assembly program as a string. Returns: A list containing the values stored in memory after program execution. """ # Initialize registers and memory registers = { "R1": 2, "R2": 0, "R3": 0, "R4": 0, "R6": 0, "R7": 0, "R8": 0, } memory = [] # Helper functions for instructions def SET(register, value): registers[register] = value def INC(register): registers[register] += 1 def EQ(register1, register2): return registers[register1] == registers[register2] def GT(register1, register2): return registers[register1] > registers[register2] def JF(label): if registers["R7"] == 0: jump_to(label) def JT(label): if registers["R7"] == 1: jump_to(label) def MOD(register1, register2, register3): registers[register1] = registers[register2] % registers[register3] def STORE(register, address): memory[address] = registers[register] def jump_to(label): # Find the line number of the label for i, line in enumerate(program.splitlines()): if line.strip().startswith(label + ":"): current_line = i break # Jump to the line after the label return current_line + 1 # Main execution loop current_line = 0 while current_line < len(program.splitlines()): line = program.splitlines()[current_line] instruction, *args = line.strip().split() if instruction == "SET": SET(*args) elif instruction == "INC": INC(*args) elif instruction == "EQ": EQ(*args) elif instruction == "GT": GT(*args) elif instruction == "JF": JF(*args) elif instruction == "JT": JT(*args) elif instruction == "MOD": MOD(*args) elif instruction == "STORE": STORE(*args) elif instruction.endswith(":"): # Skip labels pass elif instruction == "JMP": current_line = jump_to(*args) continue current_line += 1 return memory # Example usage program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ memory = evaluate(program) print(memory) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | def evaluate(program): """ Evaluates the assembly program and returns the final memory state. Args: program: The assembly program as a string. Returns: A list containing the values stored in memory after program execution. """ # Initialize registers and memory registers = { "R1": 2, "R2": 0, "R3": 0, "R4": 0, "R6": 0, "R7": 0, "R8": 0, } memory = [] # Helper functions for instructions def SET(register, value): registers[register] = value def INC(register): registers[register] += 1 def EQ(register1, register2): return registers[register1] == registers[register2] def GT(register1, register2): return registers[register1] > registers[register2] def JF(label): if registers["R7"] == 0: jump_to(label) def JT(label): if registers["R7"] == 1: jump_to(label) def MOD(register1, register2, register3): registers[register1] = registers[register2] % registers[register3] def STORE(register, address): memory[address] = registers[register] def jump_to(label): # Find the line number of the label for i, line in enumerate(program.splitlines()): if line.strip().startswith(label + ":"): current_line = i break # Jump to the line after the label return current_line + 1 # Main execution loop current_line = 0 while current_line < len(program.splitlines()): line = program.splitlines()[current_line] instruction, *args = line.strip().split() if instruction == "SET": SET(*args) elif instruction == "INC": INC(*args) elif instruction == "EQ": EQ(*args) elif instruction == "GT": GT(*args) elif instruction == "JF": JF(*args) elif instruction == "JT": JT(*args) elif instruction == "MOD": MOD(*args) elif instruction == "STORE": STORE(*args) elif instruction.endswith(":"): # Skip labels pass elif instruction == "JMP": current_line = jump_to(*args) continue current_line += 1 return memory # Example usage program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ memory = evaluate(program) print(memory) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | def evaluate(program): """ Evaluates the assembly program and returns the final memory state. Args: program: The assembly program as a string. Returns: A list containing the values stored in memory after program execution. """ # Initialize registers and memory registers = { "R1": 2, "R2": 0, "R3": 0, "R4": 0, "R6": 0, "R7": 0, "R8": 0, } memory = [] # Helper functions for instructions def SET(register, value): registers[register] = value def INC(register): registers[register] += 1 def EQ(register1, register2): return registers[register1] == registers[register2] def GT(register1, register2): return registers[register1] > registers[register2] def JF(label): if registers["R7"] == 0: jump_to(label) def JT(label): if registers["R7"] == 1: jump_to(label) def MOD(register1, register2, register3): registers[register1] = registers[register2] % registers[register3] def STORE(register, address): memory[address] = registers[register] def jump_to(label): # Find the line number of the label for i, line in enumerate(program.splitlines()): if line.strip().startswith(label + ":"): current_line = i break # Jump to the line after the label return current_line + 1 # Main execution loop current_line = 0 while current_line < len(program.splitlines()): line = program.splitlines()[current_line] instruction, *args = line.strip().split() if instruction == "SET": SET(*args) elif instruction == "INC": INC(*args) elif instruction == "EQ": EQ(*args) elif instruction == "GT": GT(*args) elif instruction == "JF": JF(*args) elif instruction == "JT": JT(*args) elif instruction == "MOD": MOD(*args) elif instruction == "STORE": STORE(*args) elif instruction.endswith(":"): # Skip labels pass elif instruction == "JMP": current_line = jump_to(*args) continue current_line += 1 return memory # Example usage program = """ SET R1 2 start_find_primes: JMP is_prime ready_prime: SET R7 1 EQ R2 R7 JF increment STORE R1 R8 INC R8 SET R7 100 EQ R8 R7 JF increment JMP end increment: INC R1 JMP start_find_primes is_prime: SET R2 1 SET R3 2 start_loop: MUL R4 R3 R3 GT R4 R1 JT is_prime_end MOD R6 R1 R3 SET R7 0 EQ R7 R6 JT not_prime INC R3 JMP start_loop not_prime: SET R2 0 is_prime_end: JMP ready_prime end: """ memory = evaluate(program) print(memory) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 132, in <module>
memory = evaluate(program)
File "/usr/src/app/main.py", line 65, in evaluate
instruction, *args = line.strip().split()
ValueError: not enough values to unpack (expected at least 1, got 0)
Testing if the previous output contains the string All tests passed
: False
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
Here is an example program from a new assmebly language I made up that computes primes:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: |
## Python Interpreter for the Assembly Language Here's the Python interpreter `evaluate(str)` for the assembly language you described:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | def evaluate(program): """ Evaluates the given assembly program and returns the resulting memory state. Args: program: The assembly program as a string. Returns: A list containing the values stored in memory after program execution. """ # Initialize memory and registers memory = [0] * 256 registers = {"R1": 0, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0} # Parse the program into instructions instructions = program.splitlines() # Program counter pc = 0 while pc < len(instructions): # Fetch the current instruction instruction = instructions[pc] # Split the instruction into opcode and operands opcode, *operands = instruction.split() # Execute the instruction based on its opcode if opcode == "SET": register, value = operands registers[register] = int(value) elif opcode == "JMP": label = operands[0] pc = instructions.index(label + ":") elif opcode == "JF": label, condition = operands if not eval(condition, registers): pc = instructions.index(label + ":") elif opcode == "EQ": register1, register2 = operands registers[register1] = 1 if registers[register1] == registers[register2] else 0 elif opcode == "GT": register1, register2 = operands registers[register1] = 1 if registers[register1] > registers[register2] else 0 elif opcode == "LT": register1, register2 = operands registers[register1] = 1 if registers[register1] < registers[register2] else 0 elif opcode == "INC": register = operands[0] registers[register] += 1 elif opcode == "DEC": register = operands[0] registers[register] -= 1 elif opcode == "ADD": register1, register2, result_register = operands registers[result_register] = registers[register1] + registers[register2] elif opcode == "SUB": register1, register2, result_register = operands registers[result_register] = registers[register1] - registers[register2] elif opcode == "MUL": register1, register2, result_register = operands registers[result_register] = registers[register1] * registers[register2] elif opcode == "DIV": register1, register2, result_register = operands registers[result_register] = registers[register1] // registers[register2] elif opcode == "MOD": register1, register2, result_register = operands registers[result_register] = registers[register1] % registers[register2] elif opcode == "STORE": register, address = operands memory[int(address)] = registers[register] elif opcode == "LOAD": register, address = operands registers[register] = memory[int(address)] elif opcode == "END": break # Increment program counter pc += 1 # Return the final memory state return memory |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | def evaluate(program): """ Evaluates the given assembly program and returns the resulting memory state. Args: program: The assembly program as a string. Returns: A list containing the values stored in memory after program execution. """ # Initialize memory and registers memory = [0] * 256 registers = {"R1": 0, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0} # Parse the program into instructions instructions = program.splitlines() # Program counter pc = 0 while pc < len(instructions): # Fetch the current instruction instruction = instructions[pc] # Split the instruction into opcode and operands opcode, *operands = instruction.split() # Execute the instruction based on its opcode if opcode == "SET": register, value = operands registers[register] = int(value) elif opcode == "JMP": label = operands[0] pc = instructions.index(label + ":") elif opcode == "JF": label, condition = operands if not eval(condition, registers): pc = instructions.index(label + ":") elif opcode == "EQ": register1, register2 = operands registers[register1] = 1 if registers[register1] == registers[register2] else 0 elif opcode == "GT": register1, register2 = operands registers[register1] = 1 if registers[register1] > registers[register2] else 0 elif opcode == "LT": register1, register2 = operands registers[register1] = 1 if registers[register1] < registers[register2] else 0 elif opcode == "INC": register = operands[0] registers[register] += 1 elif opcode == "DEC": register = operands[0] registers[register] -= 1 elif opcode == "ADD": register1, register2, result_register = operands registers[result_register] = registers[register1] + registers[register2] elif opcode == "SUB": register1, register2, result_register = operands registers[result_register] = registers[register1] - registers[register2] elif opcode == "MUL": register1, register2, result_register = operands registers[result_register] = registers[register1] * registers[register2] elif opcode == "DIV": register1, register2, result_register = operands registers[result_register] = registers[register1] // registers[register2] elif opcode == "MOD": register1, register2, result_register = operands registers[result_register] = registers[register1] % registers[register2] elif opcode == "STORE": register, address = operands memory[int(address)] = registers[register] elif opcode == "LOAD": register, address = operands registers[register] = memory[int(address)] elif opcode == "END": break # Increment program counter pc += 1 # Return the final memory state return memory |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | def evaluate(program): """ Evaluates the given assembly program and returns the resulting memory state. Args: program: The assembly program as a string. Returns: A list containing the values stored in memory after program execution. """ # Initialize memory and registers memory = [0] * 256 registers = {"R1": 0, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0} # Parse the program into instructions instructions = program.splitlines() # Program counter pc = 0 while pc < len(instructions): # Fetch the current instruction instruction = instructions[pc] # Split the instruction into opcode and operands opcode, *operands = instruction.split() # Execute the instruction based on its opcode if opcode == "SET": register, value = operands registers[register] = int(value) elif opcode == "JMP": label = operands[0] pc = instructions.index(label + ":") elif opcode == "JF": label, condition = operands if not eval(condition, registers): pc = instructions.index(label + ":") elif opcode == "EQ": register1, register2 = operands registers[register1] = 1 if registers[register1] == registers[register2] else 0 elif opcode == "GT": register1, register2 = operands registers[register1] = 1 if registers[register1] > registers[register2] else 0 elif opcode == "LT": register1, register2 = operands registers[register1] = 1 if registers[register1] < registers[register2] else 0 elif opcode == "INC": register = operands[0] registers[register] += 1 elif opcode == "DEC": register = operands[0] registers[register] -= 1 elif opcode == "ADD": register1, register2, result_register = operands registers[result_register] = registers[register1] + registers[register2] elif opcode == "SUB": register1, register2, result_register = operands registers[result_register] = registers[register1] - registers[register2] elif opcode == "MUL": register1, register2, result_register = operands registers[result_register] = registers[register1] * registers[register2] elif opcode == "DIV": register1, register2, result_register = operands registers[result_register] = registers[register1] // registers[register2] elif opcode == "MOD": register1, register2, result_register = operands registers[result_register] = registers[register1] % registers[register2] elif opcode == "STORE": register, address = operands memory[int(address)] = registers[register] elif opcode == "LOAD": register, address = operands registers[register] = memory[int(address)] elif opcode == "END": break # Increment program counter pc += 1 # Return the final memory state return memory answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 90, in <module>
answer = evaluate("""
File "/usr/src/app/main.py", line 27, in evaluate
opcode, *operands = instruction.split()
ValueError: not enough values to unpack (expected at least 1, got 0)
Testing if the previous output contains the string All tests passed
: False