Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def evaluate(program):
    memory = {}
    registers = {"R1": 0, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0}
    labels = {}
    pc = 0

    # Parse the program and extract labels
    for line in program.splitlines():
        if ":" in line:
            label, instruction = line.split(":")
            labels[label] = pc
        pc += 1

    # Execute the program
    while pc < len(program):
        line = program[pc]
        if line.startswith("SET"):
            register, value = line.split(" ")
            registers[register] = int(value)
        elif line.startswith("JMP"):
            label = line.split(" ")[1]
            pc = labels[label]
        elif line.startswith("EQ"):
            register, value = line.split(" ")
            registers[register] = 1 if registers[register] == int(value) else 0
        elif line.startswith("JF"):
            label = line.split(" ")[1]
            if registers["R2"] == 0:
                pc = labels[label]
        elif line.startswith("INC"):
            register = line.split(" ")[1]
            registers[register] += 1
        elif line.startswith("STORE"):
            register, address = line.split(" ")
            memory[int(address)] = registers[register]
        elif line.startswith("MUL"):
            register1, register2, register3 = line.split(" ")
            registers[register3] = registers[register1] * registers[register2]
        elif line.startswith("GT"):
            register1, register2 = line.split(" ")
            registers["R2"] = 1 if registers[register1] > registers[register2] else 0
        elif line.startswith("JT"):
            label = line.split(" ")[1]
            if registers["R2"] == 1:
                pc = labels[label]
        elif line.startswith("MOD"):
            register1, register2, register3 = line.split(" ")
            registers[register3] = registers[register1] % registers[register2]
        elif line.startswith("NOT"):
            register = line.split(" ")[1]
            registers[register] = 0 if registers[register] == 1 else 1
        elif line.startswith("END"):
            break
        pc += 1

    # Return the resulting memory state
    return [memory[i] for i in sorted(memory.keys())]

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def evaluate(program):
    memory = {}
    registers = {"R1": 0, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0}
    labels = {}
    pc = 0

    # Parse the program and extract labels
    for line in program.splitlines():
        if ":" in line:
            label, instruction = line.split(":")
            labels[label] = pc
        pc += 1

    # Execute the program
    while pc < len(program):
        line = program[pc]
        if line.startswith("SET"):
            register, value = line.split(" ")
            registers[register] = int(value)
        elif line.startswith("JMP"):
            label = line.split(" ")[1]
            pc = labels[label]
        elif line.startswith("EQ"):
            register, value = line.split(" ")
            registers[register] = 1 if registers[register] == int(value) else 0
        elif line.startswith("JF"):
            label = line.split(" ")[1]
            if registers["R2"] == 0:
                pc = labels[label]
        elif line.startswith("INC"):
            register = line.split(" ")[1]
            registers[register] += 1
        elif line.startswith("STORE"):
            register, address = line.split(" ")
            memory[int(address)] = registers[register]
        elif line.startswith("MUL"):
            register1, register2, register3 = line.split(" ")
            registers[register3] = registers[register1] * registers[register2]
        elif line.startswith("GT"):
            register1, register2 = line.split(" ")
            registers["R2"] = 1 if registers[register1] > registers[register2] else 0
        elif line.startswith("JT"):
            label = line.split(" ")[1]
            if registers["R2"] == 1:
                pc = labels[label]
        elif line.startswith("MOD"):
            register1, register2, register3 = line.split(" ")
            registers[register3] = registers[register1] % registers[register2]
        elif line.startswith("NOT"):
            register = line.split(" ")[1]
            registers[register] = 0 if registers[register] == 1 else 1
        elif line.startswith("END"):
            break
        pc += 1

    # Return the resulting memory state
    return [memory[i] for i in sorted(memory.keys())]

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def evaluate(program):
    memory = {}
    registers = {"R1": 0, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0}
    labels = {}
    pc = 0

    # Parse the program and extract labels
    for line in program.splitlines():
        if ":" in line:
            label, instruction = line.split(":")
            labels[label] = pc
        pc += 1

    # Execute the program
    while pc < len(program):
        line = program[pc]
        if line.startswith("SET"):
            register, value = line.split(" ")
            registers[register] = int(value)
        elif line.startswith("JMP"):
            label = line.split(" ")[1]
            pc = labels[label]
        elif line.startswith("EQ"):
            register, value = line.split(" ")
            registers[register] = 1 if registers[register] == int(value) else 0
        elif line.startswith("JF"):
            label = line.split(" ")[1]
            if registers["R2"] == 0:
                pc = labels[label]
        elif line.startswith("INC"):
            register = line.split(" ")[1]
            registers[register] += 1
        elif line.startswith("STORE"):
            register, address = line.split(" ")
            memory[int(address)] = registers[register]
        elif line.startswith("MUL"):
            register1, register2, register3 = line.split(" ")
            registers[register3] = registers[register1] * registers[register2]
        elif line.startswith("GT"):
            register1, register2 = line.split(" ")
            registers["R2"] = 1 if registers[register1] > registers[register2] else 0
        elif line.startswith("JT"):
            label = line.split(" ")[1]
            if registers["R2"] == 1:
                pc = labels[label]
        elif line.startswith("MOD"):
            register1, register2, register3 = line.split(" ")
            registers[register3] = registers[register1] % registers[register2]
        elif line.startswith("NOT"):
            register = line.split(" ")[1]
            registers[register] = 0 if registers[register] == 1 else 1
        elif line.startswith("END"):
            break
        pc += 1

    # Return the resulting memory state
    return [memory[i] for i in sorted(memory.keys())]





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 77, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [] instead of [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def evaluate(program):
  """
  Evaluate the given assembly program and return the resulting memory state.

  The program is a string of assembly instructions, each on a separate line.
  The memory state is a list of integers, representing the contents of memory.

  The program counter (PC) is initially set to 0.
  The registers (R1, R2, R3, ...) are initially set to 0.

  The program is executed by repeatedly fetching the instruction at the PC,
  incrementing the PC, and executing the instruction.

  Instructions are of the form:

    - SET R<n> <value>
    - EQ R<n> <value>
    - JF <label>
    - JT <label>
    - INC R<n>
    - STORE R<n> <address>

  where:

    - R<n> is a register
    - <value> is an integer
    - <label> is a label
    - <address> is a memory address

  The following instructions are also supported:

    - JMP <label>
    - MOD R<n> R<m> R<o>
    - MUL R<n> R<m> R<o>
    - GT R<n> R<m>

  where:

    - MOD R<n> R<m> R<o> sets R<n> to the remainder of R<m> / R<o>
    - MUL R<n> R<m> R<o> sets R<n> to the product of R<m> * R<o>
    - GT R<n> R<m> sets the flag to 1 if R<n> > R<m>, and 0 otherwise

  The program terminates when the PC reaches the end of the program.

  The resulting memory state is returned as a list of integers.
  """

  # Parse the program into a list of instructions.

  instructions = program.split('\n')

  # Initialize the memory state.

  memory = [0] * 1000

  # Initialize the registers.

  registers = {}
  for i in range(1, 10):
    registers[f'R{i}'] = 0

  # Initialize the program counter.

  pc = 0

  # Execute the program.

  while pc < len(instructions):
    # Fetch the instruction.

    instruction = instructions[pc]

    # Increment the program counter.

    pc += 1

    # Execute the instruction.

    if instruction.startswith('SET'):
      register, value = instruction[4:].split(' ')
      registers[register] = int(value)
    elif instruction.startswith('EQ'):
      register, value = instruction[3:].split(' ')
      registers[register] = int(registers[register] == int(value))
    elif instruction.startswith('JF'):
      label = instruction[3:]
      if registers['R2'] == 0:
        pc = instructions.index(f'{label}:')
    elif instruction.startswith('JT'):
      label = instruction[3:]
      if registers['R2'] == 1:
        pc = instructions.index(f'{label}:')
    elif instruction.startswith('INC'):
      register = instruction[4:]
      registers[register] += 1
    elif instruction.startswith('STORE'):
      register, address = instruction[6:].split(' ')
      memory[int(address)] = registers[register]
    elif instruction.startswith('JMP'):
      label = instruction[4:]
      pc = instructions.index(f'{label}:')
    elif instruction.startswith('MOD'):
      register1, register2, register3 = instruction[4:].split(' ')
      registers[register1] = registers[register2] % registers[register3]
    elif instruction.startswith('MUL'):
      register1, register2, register3 = instruction[4:].split(' ')
      registers[register1] = registers[register2] * registers[register3]
    elif instruction.startswith('GT'):
      register1, register2 = instruction[3:].split(' ')
      registers['FLAG'] = int(registers[register1] > registers[register2])

  # Return the resulting memory state.

  return memory

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def evaluate(program):
  """
  Evaluate the given assembly program and return the resulting memory state.

  The program is a string of assembly instructions, each on a separate line.
  The memory state is a list of integers, representing the contents of memory.

  The program counter (PC) is initially set to 0.
  The registers (R1, R2, R3, ...) are initially set to 0.

  The program is executed by repeatedly fetching the instruction at the PC,
  incrementing the PC, and executing the instruction.

  Instructions are of the form:

    - SET R<n> <value>
    - EQ R<n> <value>
    - JF <label>
    - JT <label>
    - INC R<n>
    - STORE R<n> <address>

  where:

    - R<n> is a register
    - <value> is an integer
    - <label> is a label
    - <address> is a memory address

  The following instructions are also supported:

    - JMP <label>
    - MOD R<n> R<m> R<o>
    - MUL R<n> R<m> R<o>
    - GT R<n> R<m>

  where:

    - MOD R<n> R<m> R<o> sets R<n> to the remainder of R<m> / R<o>
    - MUL R<n> R<m> R<o> sets R<n> to the product of R<m> * R<o>
    - GT R<n> R<m> sets the flag to 1 if R<n> > R<m>, and 0 otherwise

  The program terminates when the PC reaches the end of the program.

  The resulting memory state is returned as a list of integers.
  """

  # Parse the program into a list of instructions.

  instructions = program.split('\n')

  # Initialize the memory state.

  memory = [0] * 1000

  # Initialize the registers.

  registers = {}
  for i in range(1, 10):
    registers[f'R{i}'] = 0

  # Initialize the program counter.

  pc = 0

  # Execute the program.

  while pc < len(instructions):
    # Fetch the instruction.

    instruction = instructions[pc]

    # Increment the program counter.

    pc += 1

    # Execute the instruction.

    if instruction.startswith('SET'):
      register, value = instruction[4:].split(' ')
      registers[register] = int(value)
    elif instruction.startswith('EQ'):
      register, value = instruction[3:].split(' ')
      registers[register] = int(registers[register] == int(value))
    elif instruction.startswith('JF'):
      label = instruction[3:]
      if registers['R2'] == 0:
        pc = instructions.index(f'{label}:')
    elif instruction.startswith('JT'):
      label = instruction[3:]
      if registers['R2'] == 1:
        pc = instructions.index(f'{label}:')
    elif instruction.startswith('INC'):
      register = instruction[4:]
      registers[register] += 1
    elif instruction.startswith('STORE'):
      register, address = instruction[6:].split(' ')
      memory[int(address)] = registers[register]
    elif instruction.startswith('JMP'):
      label = instruction[4:]
      pc = instructions.index(f'{label}:')
    elif instruction.startswith('MOD'):
      register1, register2, register3 = instruction[4:].split(' ')
      registers[register1] = registers[register2] % registers[register3]
    elif instruction.startswith('MUL'):
      register1, register2, register3 = instruction[4:].split(' ')
      registers[register1] = registers[register2] * registers[register3]
    elif instruction.startswith('GT'):
      register1, register2 = instruction[3:].split(' ')
      registers['FLAG'] = int(registers[register1] > registers[register2])

  # Return the resulting memory state.

  return memory

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def evaluate(program):
  """
  Evaluate the given assembly program and return the resulting memory state.

  The program is a string of assembly instructions, each on a separate line.
  The memory state is a list of integers, representing the contents of memory.

  The program counter (PC) is initially set to 0.
  The registers (R1, R2, R3, ...) are initially set to 0.

  The program is executed by repeatedly fetching the instruction at the PC,
  incrementing the PC, and executing the instruction.

  Instructions are of the form:

    - SET R<n> <value>
    - EQ R<n> <value>
    - JF <label>
    - JT <label>
    - INC R<n>
    - STORE R<n> <address>

  where:

    - R<n> is a register
    - <value> is an integer
    - <label> is a label
    - <address> is a memory address

  The following instructions are also supported:

    - JMP <label>
    - MOD R<n> R<m> R<o>
    - MUL R<n> R<m> R<o>
    - GT R<n> R<m>

  where:

    - MOD R<n> R<m> R<o> sets R<n> to the remainder of R<m> / R<o>
    - MUL R<n> R<m> R<o> sets R<n> to the product of R<m> * R<o>
    - GT R<n> R<m> sets the flag to 1 if R<n> > R<m>, and 0 otherwise

  The program terminates when the PC reaches the end of the program.

  The resulting memory state is returned as a list of integers.
  """

  # Parse the program into a list of instructions.

  instructions = program.split('\n')

  # Initialize the memory state.

  memory = [0] * 1000

  # Initialize the registers.

  registers = {}
  for i in range(1, 10):
    registers[f'R{i}'] = 0

  # Initialize the program counter.

  pc = 0

  # Execute the program.

  while pc < len(instructions):
    # Fetch the instruction.

    instruction = instructions[pc]

    # Increment the program counter.

    pc += 1

    # Execute the instruction.

    if instruction.startswith('SET'):
      register, value = instruction[4:].split(' ')
      registers[register] = int(value)
    elif instruction.startswith('EQ'):
      register, value = instruction[3:].split(' ')
      registers[register] = int(registers[register] == int(value))
    elif instruction.startswith('JF'):
      label = instruction[3:]
      if registers['R2'] == 0:
        pc = instructions.index(f'{label}:')
    elif instruction.startswith('JT'):
      label = instruction[3:]
      if registers['R2'] == 1:
        pc = instructions.index(f'{label}:')
    elif instruction.startswith('INC'):
      register = instruction[4:]
      registers[register] += 1
    elif instruction.startswith('STORE'):
      register, address = instruction[6:].split(' ')
      memory[int(address)] = registers[register]
    elif instruction.startswith('JMP'):
      label = instruction[4:]
      pc = instructions.index(f'{label}:')
    elif instruction.startswith('MOD'):
      register1, register2, register3 = instruction[4:].split(' ')
      registers[register1] = registers[register2] % registers[register3]
    elif instruction.startswith('MUL'):
      register1, register2, register3 = instruction[4:].split(' ')
      registers[register1] = registers[register2] * registers[register3]
    elif instruction.startswith('GT'):
      register1, register2 = instruction[3:].split(' ')
      registers['FLAG'] = int(registers[register1] > registers[register2])

  # Return the resulting memory state.

  return memory





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 134, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] instead of [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def evaluate(program):
    """
    Evaluate the given assembly program and return the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: The resulting memory state.
    """

    # Initialize the memory state.
    memory = {0: 0}

    # Initialize the registers.
    registers = {"R1": 2, "R2": 0, "R3": 0, "R4": 0, "R6": 0, "R7": 0, "R8": 0}

    # Parse the program into a list of instructions.
    instructions = program.split("\n")

    # Execute the instructions one by one.
    for instruction in instructions:
        # Parse the instruction.
        opcode, operands = instruction.split(" ")

        # Execute the instruction.
        if opcode == "SET":
            registers[operands[0]] = int(operands[1])
        elif opcode == "JMP":
            pc = operands[1]
        elif opcode == "EQ":
            registers[operands[0]] = 1 if registers[operands[1]] == registers[operands[2]] else 0
        elif opcode == "JF":
            if registers[operands[0]] == 0:
                pc = operands[1]
        elif opcode == "STORE":
            memory[registers[operands[1]]] = registers[operands[0]]
        elif opcode == "INC":
            registers[operands[0]] += 1
        elif opcode == "MUL":
            registers[operands[0]] = registers[operands[1]] * registers[operands[2]]
        elif opcode == "GT":
            registers[operands[0]] = 1 if registers[operands[1]] > registers[operands[2]] else 0
        elif opcode == "JT":
            if registers[operands[0]] == 1:
                pc = operands[1]
        elif opcode == "MOD":
            registers[operands[0]] = registers[operands[1]] % registers[operands[2]]
        elif opcode == "END":
            break

    # Return the resulting memory state.
    return list(memory.values())

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def evaluate(program):
    """
    Evaluate the given assembly program and return the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: The resulting memory state.
    """

    # Initialize the memory state.
    memory = {0: 0}

    # Initialize the registers.
    registers = {"R1": 2, "R2": 0, "R3": 0, "R4": 0, "R6": 0, "R7": 0, "R8": 0}

    # Parse the program into a list of instructions.
    instructions = program.split("\n")

    # Execute the instructions one by one.
    for instruction in instructions:
        # Parse the instruction.
        opcode, operands = instruction.split(" ")

        # Execute the instruction.
        if opcode == "SET":
            registers[operands[0]] = int(operands[1])
        elif opcode == "JMP":
            pc = operands[1]
        elif opcode == "EQ":
            registers[operands[0]] = 1 if registers[operands[1]] == registers[operands[2]] else 0
        elif opcode == "JF":
            if registers[operands[0]] == 0:
                pc = operands[1]
        elif opcode == "STORE":
            memory[registers[operands[1]]] = registers[operands[0]]
        elif opcode == "INC":
            registers[operands[0]] += 1
        elif opcode == "MUL":
            registers[operands[0]] = registers[operands[1]] * registers[operands[2]]
        elif opcode == "GT":
            registers[operands[0]] = 1 if registers[operands[1]] > registers[operands[2]] else 0
        elif opcode == "JT":
            if registers[operands[0]] == 1:
                pc = operands[1]
        elif opcode == "MOD":
            registers[operands[0]] = registers[operands[1]] % registers[operands[2]]
        elif opcode == "END":
            break

    # Return the resulting memory state.
    return list(memory.values())

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def evaluate(program):
    """
    Evaluate the given assembly program and return the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: The resulting memory state.
    """

    # Initialize the memory state.
    memory = {0: 0}

    # Initialize the registers.
    registers = {"R1": 2, "R2": 0, "R3": 0, "R4": 0, "R6": 0, "R7": 0, "R8": 0}

    # Parse the program into a list of instructions.
    instructions = program.split("\n")

    # Execute the instructions one by one.
    for instruction in instructions:
        # Parse the instruction.
        opcode, operands = instruction.split(" ")

        # Execute the instruction.
        if opcode == "SET":
            registers[operands[0]] = int(operands[1])
        elif opcode == "JMP":
            pc = operands[1]
        elif opcode == "EQ":
            registers[operands[0]] = 1 if registers[operands[1]] == registers[operands[2]] else 0
        elif opcode == "JF":
            if registers[operands[0]] == 0:
                pc = operands[1]
        elif opcode == "STORE":
            memory[registers[operands[1]]] = registers[operands[0]]
        elif opcode == "INC":
            registers[operands[0]] += 1
        elif opcode == "MUL":
            registers[operands[0]] = registers[operands[1]] * registers[operands[2]]
        elif opcode == "GT":
            registers[operands[0]] = 1 if registers[operands[1]] > registers[operands[2]] else 0
        elif opcode == "JT":
            if registers[operands[0]] == 1:
                pc = operands[1]
        elif opcode == "MOD":
            registers[operands[0]] = registers[operands[1]] % registers[operands[2]]
        elif opcode == "END":
            break

    # Return the resulting memory state.
    return list(memory.values())





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 60, in <module> answer = evaluate(""" ^^^^^^^^^^^^ File "/usr/src/app/main.py", line 25, in evaluate opcode, operands = instruction.split(" ") ^^^^^^^^^^^^^^^^ ValueError: not enough values to unpack (expected 2, got 1)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def evaluate(program):
    """
    Evaluate an assembly program and return the resulting memory state.
    """
    memory = [0] * 256
    registers = [0] * 8
    labels = {}
    pc = 0
    while pc < len(program):
        line = program[pc]
        if line.startswith("SET"):
            _, reg, value = line.split()
            registers[int(reg[1:])] = int(value)
        elif line.startswith("JMP"):
            _, label = line.split()
            pc = labels[label]
        elif line.startswith("ready_prime"):
            pass  # Ignore this line
        elif line.startswith("increment"):
            registers[1] += 1
            pc = labels["start_find_primes"]
        elif line.startswith("is_prime"):
            registers[2] = 1  # Assume number is prime initially
            registers[3] = 2  # Start divisor from 2
            pc = labels["start_loop"]
        elif line.startswith("start_loop"):
            r4 = registers[3] * registers[3]
            if r4 > registers[1]:
                pc = labels["is_prime_end"]
            else:
                r6 = registers[1] % registers[3]
                if r6 == 0:
                    pc = labels["not_prime"]
                else:
                    registers[3] += 1
                    pc = labels["start_loop"]
        elif line.startswith("not_prime"):
            registers[2] = 0  # Set result to 0 (not prime)
            pc = labels["is_prime_end"]
        elif line.startswith("is_prime_end"):
            pc = labels["ready_prime"]
        elif line.startswith("end"):
            break
        else:
            raise Exception("Unknown instruction: " + line)
        pc += 1
    return memory

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def evaluate(program):
    """
    Evaluate an assembly program and return the resulting memory state.
    """
    memory = [0] * 256
    registers = [0] * 8
    labels = {}
    pc = 0
    while pc < len(program):
        line = program[pc]
        if line.startswith("SET"):
            _, reg, value = line.split()
            registers[int(reg[1:])] = int(value)
        elif line.startswith("JMP"):
            _, label = line.split()
            pc = labels[label]
        elif line.startswith("ready_prime"):
            pass  # Ignore this line
        elif line.startswith("increment"):
            registers[1] += 1
            pc = labels["start_find_primes"]
        elif line.startswith("is_prime"):
            registers[2] = 1  # Assume number is prime initially
            registers[3] = 2  # Start divisor from 2
            pc = labels["start_loop"]
        elif line.startswith("start_loop"):
            r4 = registers[3] * registers[3]
            if r4 > registers[1]:
                pc = labels["is_prime_end"]
            else:
                r6 = registers[1] % registers[3]
                if r6 == 0:
                    pc = labels["not_prime"]
                else:
                    registers[3] += 1
                    pc = labels["start_loop"]
        elif line.startswith("not_prime"):
            registers[2] = 0  # Set result to 0 (not prime)
            pc = labels["is_prime_end"]
        elif line.startswith("is_prime_end"):
            pc = labels["ready_prime"]
        elif line.startswith("end"):
            break
        else:
            raise Exception("Unknown instruction: " + line)
        pc += 1
    return memory

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def evaluate(program):
    """
    Evaluate an assembly program and return the resulting memory state.
    """
    memory = [0] * 256
    registers = [0] * 8
    labels = {}
    pc = 0
    while pc < len(program):
        line = program[pc]
        if line.startswith("SET"):
            _, reg, value = line.split()
            registers[int(reg[1:])] = int(value)
        elif line.startswith("JMP"):
            _, label = line.split()
            pc = labels[label]
        elif line.startswith("ready_prime"):
            pass  # Ignore this line
        elif line.startswith("increment"):
            registers[1] += 1
            pc = labels["start_find_primes"]
        elif line.startswith("is_prime"):
            registers[2] = 1  # Assume number is prime initially
            registers[3] = 2  # Start divisor from 2
            pc = labels["start_loop"]
        elif line.startswith("start_loop"):
            r4 = registers[3] * registers[3]
            if r4 > registers[1]:
                pc = labels["is_prime_end"]
            else:
                r6 = registers[1] % registers[3]
                if r6 == 0:
                    pc = labels["not_prime"]
                else:
                    registers[3] += 1
                    pc = labels["start_loop"]
        elif line.startswith("not_prime"):
            registers[2] = 0  # Set result to 0 (not prime)
            pc = labels["is_prime_end"]
        elif line.startswith("is_prime_end"):
            pc = labels["ready_prime"]
        elif line.startswith("end"):
            break
        else:
            raise Exception("Unknown instruction: " + line)
        pc += 1
    return memory





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 54, in <module> answer = evaluate(""" ^^^^^^^^^^^^ File "/usr/src/app/main.py", line 46, in evaluate raise Exception("Unknown instruction: " + line) Exception: Unknown instruction:

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def evaluate(program):
    """
    Evaluate an assembly language program and return the resulting memory state.

    Args:
        program (str): The assembly language program to evaluate.

    Returns:
        list: The resulting memory state.
    """

    # Initialize the memory state.
    memory = [0] * 1000

    # Initialize the register file.
    registers = {
        "R1": 0,
        "R2": 0,
        "R3": 0,
        "R4": 0,
        "R5": 0,
        "R6": 0,
        "R7": 0,
        "R8": 0,
    }

    # Initialize the program counter.
    pc = 0

    # Main loop: fetch, decode, and execute instructions.
    while pc < len(program):
        # Fetch the next instruction.
        instruction = program[pc]

        # Decode the instruction.
        opcode, operands = instruction.split(" ")

        # Execute the instruction.
        if opcode == "SET":
            registers[operands[0]] = int(operands[1])
        elif opcode == "INC":
            registers[operands[0]] += 1
        elif opcode == "EQ":
            registers[operands[0]] = int(registers[operands[1]] == registers[operands[2]])
        elif opcode == "JF":
            if registers[operands[0]] == 0:
                pc = program.index(operands[1]) - 1
        elif opcode == "JMP":
            pc = program.index(operands[1]) - 1
        elif opcode == "STORE":
            memory[registers[operands[1]]] = registers[operands[0]]
        elif opcode == "MOD":
            registers[operands[0]] = registers[operands[1]] % registers[operands[2]]
        elif opcode == "GT":
            registers[operands[0]] = int(registers[operands[1]] > registers[operands[2]])
        elif opcode == "JT":
            if registers[operands[0]] != 0:
                pc = program.index(operands[1]) - 1
        elif opcode == "MUL":
            registers[operands[0]] = registers[operands[1]] * registers[operands[2]]

        # Increment the program counter.
        pc += 1

    # Return the resulting memory state.
    return memory

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def evaluate(program):
    """
    Evaluate an assembly language program and return the resulting memory state.

    Args:
        program (str): The assembly language program to evaluate.

    Returns:
        list: The resulting memory state.
    """

    # Initialize the memory state.
    memory = [0] * 1000

    # Initialize the register file.
    registers = {
        "R1": 0,
        "R2": 0,
        "R3": 0,
        "R4": 0,
        "R5": 0,
        "R6": 0,
        "R7": 0,
        "R8": 0,
    }

    # Initialize the program counter.
    pc = 0

    # Main loop: fetch, decode, and execute instructions.
    while pc < len(program):
        # Fetch the next instruction.
        instruction = program[pc]

        # Decode the instruction.
        opcode, operands = instruction.split(" ")

        # Execute the instruction.
        if opcode == "SET":
            registers[operands[0]] = int(operands[1])
        elif opcode == "INC":
            registers[operands[0]] += 1
        elif opcode == "EQ":
            registers[operands[0]] = int(registers[operands[1]] == registers[operands[2]])
        elif opcode == "JF":
            if registers[operands[0]] == 0:
                pc = program.index(operands[1]) - 1
        elif opcode == "JMP":
            pc = program.index(operands[1]) - 1
        elif opcode == "STORE":
            memory[registers[operands[1]]] = registers[operands[0]]
        elif opcode == "MOD":
            registers[operands[0]] = registers[operands[1]] % registers[operands[2]]
        elif opcode == "GT":
            registers[operands[0]] = int(registers[operands[1]] > registers[operands[2]])
        elif opcode == "JT":
            if registers[operands[0]] != 0:
                pc = program.index(operands[1]) - 1
        elif opcode == "MUL":
            registers[operands[0]] = registers[operands[1]] * registers[operands[2]]

        # Increment the program counter.
        pc += 1

    # Return the resulting memory state.
    return memory

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def evaluate(program):
    """
    Evaluate an assembly language program and return the resulting memory state.

    Args:
        program (str): The assembly language program to evaluate.

    Returns:
        list: The resulting memory state.
    """

    # Initialize the memory state.
    memory = [0] * 1000

    # Initialize the register file.
    registers = {
        "R1": 0,
        "R2": 0,
        "R3": 0,
        "R4": 0,
        "R5": 0,
        "R6": 0,
        "R7": 0,
        "R8": 0,
    }

    # Initialize the program counter.
    pc = 0

    # Main loop: fetch, decode, and execute instructions.
    while pc < len(program):
        # Fetch the next instruction.
        instruction = program[pc]

        # Decode the instruction.
        opcode, operands = instruction.split(" ")

        # Execute the instruction.
        if opcode == "SET":
            registers[operands[0]] = int(operands[1])
        elif opcode == "INC":
            registers[operands[0]] += 1
        elif opcode == "EQ":
            registers[operands[0]] = int(registers[operands[1]] == registers[operands[2]])
        elif opcode == "JF":
            if registers[operands[0]] == 0:
                pc = program.index(operands[1]) - 1
        elif opcode == "JMP":
            pc = program.index(operands[1]) - 1
        elif opcode == "STORE":
            memory[registers[operands[1]]] = registers[operands[0]]
        elif opcode == "MOD":
            registers[operands[0]] = registers[operands[1]] % registers[operands[2]]
        elif opcode == "GT":
            registers[operands[0]] = int(registers[operands[1]] > registers[operands[2]])
        elif opcode == "JT":
            if registers[operands[0]] != 0:
                pc = program.index(operands[1]) - 1
        elif opcode == "MUL":
            registers[operands[0]] = registers[operands[1]] * registers[operands[2]]

        # Increment the program counter.
        pc += 1

    # Return the resulting memory state.
    return memory





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 73, in <module> answer = evaluate(""" ^^^^^^^^^^^^ File "/usr/src/app/main.py", line 37, in evaluate opcode, operands = instruction.split(" ") ^^^^^^^^^^^^^^^^ ValueError: not enough values to unpack (expected 2, got 1)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False