Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

## Python Interpreter for the Assembly Language

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def evaluate(program):
  """
  Evaluates the given assembly program and returns the resulting memory state.

  Args:
    program: The assembly program as a string.

  Returns:
    A list containing the values stored in memory after program execution.
  """

  # Initialize registers and memory
  registers = {
      "R1": 2,
      "R2": 0,
      "R3": 0,
      "R4": 0,
      "R5": 0,
      "R6": 0,
      "R7": 0,
      "R8": 0,
  }
  memory = []

  # Define instructions and their corresponding functions
  instructions = {
      "SET": set_register,
      "JMP": jump,
      "EQ": compare_and_jump_if_equal,
      "GT": compare_and_jump_if_greater,
      "JF": jump_if_false,
      "INC": increment_register,
      "STORE": store_in_memory,
      "MOD": modulo,
      "JT": jump_if_true,
  }

  # Split the program into lines and remove comments
  lines = program.splitlines()
  lines = [line.strip() for line in lines if not line.startswith("//")]

  # Initialize program counter
  pc = 0

  # Main execution loop
  while pc < len(lines):
    line = lines[pc]

    # Extract instruction and operands
    instruction, *operands = line.split()

    # Execute the instruction
    instructions[instruction](registers, memory, operands)

    # Update program counter
    pc += 1

  return memory

def set_register(registers, memory, operands):
  """Sets the value of a register."""
  register, value = operands
  registers[register] = int(value)

def jump(registers, memory, operands):
  """Jumps to the specified label."""
  label = operands[0]
  global lines
  for i, line in enumerate(lines):
    if line.startswith(label + ":"):
      pc = i
      break

def compare_and_jump_if_equal(registers, memory, operands):
  """Compares two registers and jumps if they are equal."""
  register1, register2 = operands
  if registers[register1] == registers[register2]:
    jump(registers, memory, [operands[2]])

def compare_and_jump_if_greater(registers, memory, operands):
  """Compares two registers and jumps if the first is greater than the second."""
  register1, register2 = operands
  if registers[register1] > registers[register2]:
    jump(registers, memory, [operands[2]])

def jump_if_false(registers, memory, operands):
  """Jumps to the specified label if the given register is 0."""
  register, label = operands
  if registers[register] == 0:
    jump(registers, memory, [label])

def increment_register(registers, memory, operands):
  """Increments the value of a register."""
  register = operands[0]
  registers[register] += 1

def store_in_memory(registers, memory, operands):
  """Stores the value of a register in memory."""
  register, address = operands
  memory.append(registers[register])

def modulo(registers, memory, operands):
  """Calculates the modulo of two registers and stores the result in a register."""
  register1, register2, result_register = operands
  registers[result_register] = registers[register1] % registers[register2]

def jump_if_true(registers, memory, operands):
  """Jumps to the specified label if the given register is not 0."""
  register, label = operands
  if registers[register] != 0:
    jump(registers, memory, [label])

# Example usage
program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

memory = evaluate(program)
print(memory)
This Python interpreter parses the assembly program, executes the instructions, and returns the resulting memory state. The interpreter handles various instructions like setting registers, jumping, comparing and jumping, incrementing, storing in memory, modulo operation, and jumping based on conditions.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def evaluate(program):
  """
  Evaluates the given assembly program and returns the resulting memory state.

  Args:
    program: The assembly program as a string.

  Returns:
    A list containing the values stored in memory after program execution.
  """

  # Initialize registers and memory
  registers = {
      "R1": 2,
      "R2": 0,
      "R3": 0,
      "R4": 0,
      "R5": 0,
      "R6": 0,
      "R7": 0,
      "R8": 0,
  }
  memory = []

  # Define instructions and their corresponding functions
  instructions = {
      "SET": set_register,
      "JMP": jump,
      "EQ": compare_and_jump_if_equal,
      "GT": compare_and_jump_if_greater,
      "JF": jump_if_false,
      "INC": increment_register,
      "STORE": store_in_memory,
      "MOD": modulo,
      "JT": jump_if_true,
  }

  # Split the program into lines and remove comments
  lines = program.splitlines()
  lines = [line.strip() for line in lines if not line.startswith("//")]

  # Initialize program counter
  pc = 0

  # Main execution loop
  while pc < len(lines):
    line = lines[pc]

    # Extract instruction and operands
    instruction, *operands = line.split()

    # Execute the instruction
    instructions[instruction](registers, memory, operands)

    # Update program counter
    pc += 1

  return memory

def set_register(registers, memory, operands):
  """Sets the value of a register."""
  register, value = operands
  registers[register] = int(value)

def jump(registers, memory, operands):
  """Jumps to the specified label."""
  label = operands[0]
  global lines
  for i, line in enumerate(lines):
    if line.startswith(label + ":"):
      pc = i
      break

def compare_and_jump_if_equal(registers, memory, operands):
  """Compares two registers and jumps if they are equal."""
  register1, register2 = operands
  if registers[register1] == registers[register2]:
    jump(registers, memory, [operands[2]])

def compare_and_jump_if_greater(registers, memory, operands):
  """Compares two registers and jumps if the first is greater than the second."""
  register1, register2 = operands
  if registers[register1] > registers[register2]:
    jump(registers, memory, [operands[2]])

def jump_if_false(registers, memory, operands):
  """Jumps to the specified label if the given register is 0."""
  register, label = operands
  if registers[register] == 0:
    jump(registers, memory, [label])

def increment_register(registers, memory, operands):
  """Increments the value of a register."""
  register = operands[0]
  registers[register] += 1

def store_in_memory(registers, memory, operands):
  """Stores the value of a register in memory."""
  register, address = operands
  memory.append(registers[register])

def modulo(registers, memory, operands):
  """Calculates the modulo of two registers and stores the result in a register."""
  register1, register2, result_register = operands
  registers[result_register] = registers[register1] % registers[register2]

def jump_if_true(registers, memory, operands):
  """Jumps to the specified label if the given register is not 0."""
  register, label = operands
  if registers[register] != 0:
    jump(registers, memory, [label])

# Example usage
program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

memory = evaluate(program)
print(memory)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def evaluate(program):
  """
  Evaluates the given assembly program and returns the resulting memory state.

  Args:
    program: The assembly program as a string.

  Returns:
    A list containing the values stored in memory after program execution.
  """

  # Initialize registers and memory
  registers = {
      "R1": 2,
      "R2": 0,
      "R3": 0,
      "R4": 0,
      "R5": 0,
      "R6": 0,
      "R7": 0,
      "R8": 0,
  }
  memory = []

  # Define instructions and their corresponding functions
  instructions = {
      "SET": set_register,
      "JMP": jump,
      "EQ": compare_and_jump_if_equal,
      "GT": compare_and_jump_if_greater,
      "JF": jump_if_false,
      "INC": increment_register,
      "STORE": store_in_memory,
      "MOD": modulo,
      "JT": jump_if_true,
  }

  # Split the program into lines and remove comments
  lines = program.splitlines()
  lines = [line.strip() for line in lines if not line.startswith("//")]

  # Initialize program counter
  pc = 0

  # Main execution loop
  while pc < len(lines):
    line = lines[pc]

    # Extract instruction and operands
    instruction, *operands = line.split()

    # Execute the instruction
    instructions[instruction](registers, memory, operands)

    # Update program counter
    pc += 1

  return memory

def set_register(registers, memory, operands):
  """Sets the value of a register."""
  register, value = operands
  registers[register] = int(value)

def jump(registers, memory, operands):
  """Jumps to the specified label."""
  label = operands[0]
  global lines
  for i, line in enumerate(lines):
    if line.startswith(label + ":"):
      pc = i
      break

def compare_and_jump_if_equal(registers, memory, operands):
  """Compares two registers and jumps if they are equal."""
  register1, register2 = operands
  if registers[register1] == registers[register2]:
    jump(registers, memory, [operands[2]])

def compare_and_jump_if_greater(registers, memory, operands):
  """Compares two registers and jumps if the first is greater than the second."""
  register1, register2 = operands
  if registers[register1] > registers[register2]:
    jump(registers, memory, [operands[2]])

def jump_if_false(registers, memory, operands):
  """Jumps to the specified label if the given register is 0."""
  register, label = operands
  if registers[register] == 0:
    jump(registers, memory, [label])

def increment_register(registers, memory, operands):
  """Increments the value of a register."""
  register = operands[0]
  registers[register] += 1

def store_in_memory(registers, memory, operands):
  """Stores the value of a register in memory."""
  register, address = operands
  memory.append(registers[register])

def modulo(registers, memory, operands):
  """Calculates the modulo of two registers and stores the result in a register."""
  register1, register2, result_register = operands
  registers[result_register] = registers[register1] % registers[register2]

def jump_if_true(registers, memory, operands):
  """Jumps to the specified label if the given register is not 0."""
  register, label = operands
  if registers[register] != 0:
    jump(registers, memory, [label])

# Example usage
program = """
SET R1 2
start_find_primes:
    JMP is_prime
ready_prime:
    SET R7 1
    EQ R2 R7
    JF increment
    STORE R1 R8
    INC R8
    SET R7 100
    EQ R8 R7
    JF increment
    JMP end
increment:
    INC R1
    JMP start_find_primes
is_prime:
    SET R2 1
    SET R3 2
start_loop:
    MUL R4 R3 R3
    GT R4 R1
    JT is_prime_end
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6
    JT not_prime
    INC R3
    JMP start_loop
not_prime:
    SET R2 0
is_prime_end:
    JMP ready_prime
end:
"""

memory = evaluate(program)
print(memory)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 152, in <module> memory = evaluate(program) File "/usr/src/app/main.py", line 51, in evaluate instruction, *operands = line.split() ValueError: not enough values to unpack (expected at least 1, got 0)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

## Python Interpreter for the Assembly Language Here's the Python interpreter `evaluate(str)` that executes the assembly program and returns the resulting memory state:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
def evaluate(program):
  """
  Evaluates the assembly program and returns the final memory state.

  Args:
      program: The assembly program as a string.

  Returns:
      A list containing the values stored in memory after program execution.
  """

  # Initialize registers and memory
  registers = {
      "R1": 2,
      "R2": 0,
      "R3": 0,
      "R4": 0,
      "R6": 0,
      "R7": 0,
      "R8": 0,
  }
  memory = []

  # Helper functions for instructions
  def SET(register, value):
    registers[register] = value

  def INC(register):
    registers[register] += 1

  def EQ(register1, register2):
    return registers[register1] == registers[register2]

  def GT(register1, register2):
    return registers[register1] > registers[register2]

  def JF(label):
    if registers["R7"] == 0:
      jump_to(label)

  def JT(label):
    if registers["R7"] == 1:
      jump_to(label)

  def MOD(register1, register2, register3):
    registers[register1] = registers[register2] % registers[register3]

  def STORE(register, address):
    memory[address] = registers[register]

  def jump_to(label):
    # Find the line number of the label
    for i, line in enumerate(program.splitlines()):
      if line.strip().startswith(label + ":"):
        current_line = i
        break
    # Jump to the line after the label
    return current_line + 1

  # Main execution loop
  current_line = 0
  while current_line < len(program.splitlines()):
    line = program.splitlines()[current_line]
    instruction, *args = line.strip().split()

    if instruction == "SET":
      SET(*args)
    elif instruction == "INC":
      INC(*args)
    elif instruction == "EQ":
      EQ(*args)
    elif instruction == "GT":
      GT(*args)
    elif instruction == "JF":
      JF(*args)
    elif instruction == "JT":
      JT(*args)
    elif instruction == "MOD":
      MOD(*args)
    elif instruction == "STORE":
      STORE(*args)
    elif instruction.endswith(":"):
      # Skip labels
      pass
    elif instruction == "JMP":
      current_line = jump_to(*args)
      continue

    current_line += 1

  return memory

# Example usage
program = """
SET R1 2
start_find_primes:
  JMP is_prime
ready_prime:
  SET R7 1
  EQ R2 R7
  JF increment
  STORE R1 R8
  INC R8
  SET R7 100
  EQ R8 R7
  JF increment
  JMP end
increment:
  INC R1
  JMP start_find_primes
is_prime:
  SET R2 1
  SET R3 2
start_loop:
  MUL R4 R3 R3
  GT R4 R1
  JT is_prime_end
  MOD R6 R1 R3
  SET R7 0
  EQ R7 R6
  JT not_prime
  INC R3
  JMP start_loop
not_prime:
  SET R2 0
is_prime_end:
  JMP ready_prime
end:
"""

memory = evaluate(program)
print(memory)
This interpreter defines functions for each instruction and executes them line by line. It also keeps track of the current state of the registers and memory. After the program finishes, it returns the final memory state as a list.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
def evaluate(program):
  """
  Evaluates the assembly program and returns the final memory state.

  Args:
      program: The assembly program as a string.

  Returns:
      A list containing the values stored in memory after program execution.
  """

  # Initialize registers and memory
  registers = {
      "R1": 2,
      "R2": 0,
      "R3": 0,
      "R4": 0,
      "R6": 0,
      "R7": 0,
      "R8": 0,
  }
  memory = []

  # Helper functions for instructions
  def SET(register, value):
    registers[register] = value

  def INC(register):
    registers[register] += 1

  def EQ(register1, register2):
    return registers[register1] == registers[register2]

  def GT(register1, register2):
    return registers[register1] > registers[register2]

  def JF(label):
    if registers["R7"] == 0:
      jump_to(label)

  def JT(label):
    if registers["R7"] == 1:
      jump_to(label)

  def MOD(register1, register2, register3):
    registers[register1] = registers[register2] % registers[register3]

  def STORE(register, address):
    memory[address] = registers[register]

  def jump_to(label):
    # Find the line number of the label
    for i, line in enumerate(program.splitlines()):
      if line.strip().startswith(label + ":"):
        current_line = i
        break
    # Jump to the line after the label
    return current_line + 1

  # Main execution loop
  current_line = 0
  while current_line < len(program.splitlines()):
    line = program.splitlines()[current_line]
    instruction, *args = line.strip().split()

    if instruction == "SET":
      SET(*args)
    elif instruction == "INC":
      INC(*args)
    elif instruction == "EQ":
      EQ(*args)
    elif instruction == "GT":
      GT(*args)
    elif instruction == "JF":
      JF(*args)
    elif instruction == "JT":
      JT(*args)
    elif instruction == "MOD":
      MOD(*args)
    elif instruction == "STORE":
      STORE(*args)
    elif instruction.endswith(":"):
      # Skip labels
      pass
    elif instruction == "JMP":
      current_line = jump_to(*args)
      continue

    current_line += 1

  return memory

# Example usage
program = """
SET R1 2
start_find_primes:
  JMP is_prime
ready_prime:
  SET R7 1
  EQ R2 R7
  JF increment
  STORE R1 R8
  INC R8
  SET R7 100
  EQ R8 R7
  JF increment
  JMP end
increment:
  INC R1
  JMP start_find_primes
is_prime:
  SET R2 1
  SET R3 2
start_loop:
  MUL R4 R3 R3
  GT R4 R1
  JT is_prime_end
  MOD R6 R1 R3
  SET R7 0
  EQ R7 R6
  JT not_prime
  INC R3
  JMP start_loop
not_prime:
  SET R2 0
is_prime_end:
  JMP ready_prime
end:
"""

memory = evaluate(program)
print(memory)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def evaluate(program):
  """
  Evaluates the assembly program and returns the final memory state.

  Args:
      program: The assembly program as a string.

  Returns:
      A list containing the values stored in memory after program execution.
  """

  # Initialize registers and memory
  registers = {
      "R1": 2,
      "R2": 0,
      "R3": 0,
      "R4": 0,
      "R6": 0,
      "R7": 0,
      "R8": 0,
  }
  memory = []

  # Helper functions for instructions
  def SET(register, value):
    registers[register] = value

  def INC(register):
    registers[register] += 1

  def EQ(register1, register2):
    return registers[register1] == registers[register2]

  def GT(register1, register2):
    return registers[register1] > registers[register2]

  def JF(label):
    if registers["R7"] == 0:
      jump_to(label)

  def JT(label):
    if registers["R7"] == 1:
      jump_to(label)

  def MOD(register1, register2, register3):
    registers[register1] = registers[register2] % registers[register3]

  def STORE(register, address):
    memory[address] = registers[register]

  def jump_to(label):
    # Find the line number of the label
    for i, line in enumerate(program.splitlines()):
      if line.strip().startswith(label + ":"):
        current_line = i
        break
    # Jump to the line after the label
    return current_line + 1

  # Main execution loop
  current_line = 0
  while current_line < len(program.splitlines()):
    line = program.splitlines()[current_line]
    instruction, *args = line.strip().split()

    if instruction == "SET":
      SET(*args)
    elif instruction == "INC":
      INC(*args)
    elif instruction == "EQ":
      EQ(*args)
    elif instruction == "GT":
      GT(*args)
    elif instruction == "JF":
      JF(*args)
    elif instruction == "JT":
      JT(*args)
    elif instruction == "MOD":
      MOD(*args)
    elif instruction == "STORE":
      STORE(*args)
    elif instruction.endswith(":"):
      # Skip labels
      pass
    elif instruction == "JMP":
      current_line = jump_to(*args)
      continue

    current_line += 1

  return memory

# Example usage
program = """
SET R1 2
start_find_primes:
  JMP is_prime
ready_prime:
  SET R7 1
  EQ R2 R7
  JF increment
  STORE R1 R8
  INC R8
  SET R7 100
  EQ R8 R7
  JF increment
  JMP end
increment:
  INC R1
  JMP start_find_primes
is_prime:
  SET R2 1
  SET R3 2
start_loop:
  MUL R4 R3 R3
  GT R4 R1
  JT is_prime_end
  MOD R6 R1 R3
  SET R7 0
  EQ R7 R6
  JT not_prime
  INC R3
  JMP start_loop
not_prime:
  SET R2 0
is_prime_end:
  JMP ready_prime
end:
"""

memory = evaluate(program)
print(memory)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 132, in <module> memory = evaluate(program) File "/usr/src/app/main.py", line 65, in evaluate instruction, *args = line.strip().split() ValueError: not enough values to unpack (expected at least 1, got 0)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

## Python Interpreter for the Assembly Language Here's the Python interpreter `evaluate(str)` for the assembly language you described:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def evaluate(program):
  """
  Evaluates the given assembly program and returns the resulting memory state.

  Args:
      program: The assembly program as a string.

  Returns:
      A list containing the values stored in memory after program execution.
  """
  # Initialize memory and registers
  memory = [0] * 256
  registers = {"R1": 0, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0}

  # Parse the program into instructions
  instructions = program.splitlines()

  # Program counter
  pc = 0

  while pc < len(instructions):
    # Fetch the current instruction
    instruction = instructions[pc]

    # Split the instruction into opcode and operands
    opcode, *operands = instruction.split()

    # Execute the instruction based on its opcode
    if opcode == "SET":
      register, value = operands
      registers[register] = int(value)
    elif opcode == "JMP":
      label = operands[0]
      pc = instructions.index(label + ":")
    elif opcode == "JF":
      label, condition = operands
      if not eval(condition, registers):
        pc = instructions.index(label + ":")
    elif opcode == "EQ":
      register1, register2 = operands
      registers[register1] = 1 if registers[register1] == registers[register2] else 0
    elif opcode == "GT":
      register1, register2 = operands
      registers[register1] = 1 if registers[register1] > registers[register2] else 0
    elif opcode == "LT":
      register1, register2 = operands
      registers[register1] = 1 if registers[register1] < registers[register2] else 0
    elif opcode == "INC":
      register = operands[0]
      registers[register] += 1
    elif opcode == "DEC":
      register = operands[0]
      registers[register] -= 1
    elif opcode == "ADD":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] + registers[register2]
    elif opcode == "SUB":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] - registers[register2]
    elif opcode == "MUL":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] * registers[register2]
    elif opcode == "DIV":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] // registers[register2]
    elif opcode == "MOD":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] % registers[register2]
    elif opcode == "STORE":
      register, address = operands
      memory[int(address)] = registers[register]
    elif opcode == "LOAD":
      register, address = operands
      registers[register] = memory[int(address)]
    elif opcode == "END":
      break

    # Increment program counter
    pc += 1

  # Return the final memory state
  return memory
This interpreter parses the assembly instructions, maintains memory and registers, and executes each instruction accordingly. It returns the final memory state after the program finishes execution. **Note:** This interpreter assumes that the memory is initialized with zeros and the program is syntactically correct.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def evaluate(program):
  """
  Evaluates the given assembly program and returns the resulting memory state.

  Args:
      program: The assembly program as a string.

  Returns:
      A list containing the values stored in memory after program execution.
  """
  # Initialize memory and registers
  memory = [0] * 256
  registers = {"R1": 0, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0}

  # Parse the program into instructions
  instructions = program.splitlines()

  # Program counter
  pc = 0

  while pc < len(instructions):
    # Fetch the current instruction
    instruction = instructions[pc]

    # Split the instruction into opcode and operands
    opcode, *operands = instruction.split()

    # Execute the instruction based on its opcode
    if opcode == "SET":
      register, value = operands
      registers[register] = int(value)
    elif opcode == "JMP":
      label = operands[0]
      pc = instructions.index(label + ":")
    elif opcode == "JF":
      label, condition = operands
      if not eval(condition, registers):
        pc = instructions.index(label + ":")
    elif opcode == "EQ":
      register1, register2 = operands
      registers[register1] = 1 if registers[register1] == registers[register2] else 0
    elif opcode == "GT":
      register1, register2 = operands
      registers[register1] = 1 if registers[register1] > registers[register2] else 0
    elif opcode == "LT":
      register1, register2 = operands
      registers[register1] = 1 if registers[register1] < registers[register2] else 0
    elif opcode == "INC":
      register = operands[0]
      registers[register] += 1
    elif opcode == "DEC":
      register = operands[0]
      registers[register] -= 1
    elif opcode == "ADD":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] + registers[register2]
    elif opcode == "SUB":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] - registers[register2]
    elif opcode == "MUL":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] * registers[register2]
    elif opcode == "DIV":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] // registers[register2]
    elif opcode == "MOD":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] % registers[register2]
    elif opcode == "STORE":
      register, address = operands
      memory[int(address)] = registers[register]
    elif opcode == "LOAD":
      register, address = operands
      registers[register] = memory[int(address)]
    elif opcode == "END":
      break

    # Increment program counter
    pc += 1

  # Return the final memory state
  return memory

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def evaluate(program):
  """
  Evaluates the given assembly program and returns the resulting memory state.

  Args:
      program: The assembly program as a string.

  Returns:
      A list containing the values stored in memory after program execution.
  """
  # Initialize memory and registers
  memory = [0] * 256
  registers = {"R1": 0, "R2": 0, "R3": 0, "R4": 0, "R5": 0, "R6": 0, "R7": 0, "R8": 0}

  # Parse the program into instructions
  instructions = program.splitlines()

  # Program counter
  pc = 0

  while pc < len(instructions):
    # Fetch the current instruction
    instruction = instructions[pc]

    # Split the instruction into opcode and operands
    opcode, *operands = instruction.split()

    # Execute the instruction based on its opcode
    if opcode == "SET":
      register, value = operands
      registers[register] = int(value)
    elif opcode == "JMP":
      label = operands[0]
      pc = instructions.index(label + ":")
    elif opcode == "JF":
      label, condition = operands
      if not eval(condition, registers):
        pc = instructions.index(label + ":")
    elif opcode == "EQ":
      register1, register2 = operands
      registers[register1] = 1 if registers[register1] == registers[register2] else 0
    elif opcode == "GT":
      register1, register2 = operands
      registers[register1] = 1 if registers[register1] > registers[register2] else 0
    elif opcode == "LT":
      register1, register2 = operands
      registers[register1] = 1 if registers[register1] < registers[register2] else 0
    elif opcode == "INC":
      register = operands[0]
      registers[register] += 1
    elif opcode == "DEC":
      register = operands[0]
      registers[register] -= 1
    elif opcode == "ADD":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] + registers[register2]
    elif opcode == "SUB":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] - registers[register2]
    elif opcode == "MUL":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] * registers[register2]
    elif opcode == "DIV":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] // registers[register2]
    elif opcode == "MOD":
      register1, register2, result_register = operands
      registers[result_register] = registers[register1] % registers[register2]
    elif opcode == "STORE":
      register, address = operands
      memory[int(address)] = registers[register]
    elif opcode == "LOAD":
      register, address = operands
      registers[register] = memory[int(address)]
    elif opcode == "END":
      break

    # Increment program counter
    pc += 1

  # Return the final memory state
  return memory






answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 90, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 27, in evaluate opcode, *operands = instruction.split() ValueError: not enough values to unpack (expected at least 1, got 0)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False