Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Okay, let's create the Python interpreter for your custom assembly language. We'll need to simulate: 1. Registers (R1-R8) 2. Memory (a list that grows) 3. Program Counter (PC) 4. Comparison Flag (for JT/JF) 5. Labels

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import re

def evaluate(program_string):
    """
    Interprets the custom assembly program and returns the final memory state.

    Args:
        program_string: A string containing the assembly program.

    Returns:
        A list representing the final state of the memory used for storing primes.
    """

    lines = program_string.strip().split('\n')
    instructions = []
    labels = {}
    pc_line_map = {} # Maps actual instruction index to original line number for errors

    # --- Preprocessing: Parse instructions and find labels ---
    current_instruction_index = 0
    for i, line in enumerate(lines):
        line = line.strip()
        if not line or line.startswith('//'):
            continue # Skip empty lines and comments

        # Check for labels
        label_match = re.match(r'^([a-zA-Z_][a-zA-Z0-9_]*):$', line)
        if label_match:
            label_name = label_match.group(1)
            if label_name in labels:
                raise ValueError(f"Duplicate label '{label_name}' found at line {i+1}")
            labels[label_name] = current_instruction_index
            # Don't add labels as instructions
            continue

        # Remove inline comments if any (e.g., "SET R1 2 // comment")
        line = line.split('//')[0].strip()
        if not line: # Line might have only contained a comment
             continue

        instructions.append(line)
        pc_line_map[current_instruction_index] = i + 1 # Store original line number
        current_instruction_index += 1

    # --- Simulation State ---
    registers = {f"R{i}": 0 for i in range(1, 9)} # R1 to R8 initialized to 0
    memory = []
    pc = 0 # Program Counter (index into the 'instructions' list)
    comparison_flag = False # Result of the last EQ or GT comparison

    # --- Execution Loop ---
    max_steps = 1000000 # Safety break to prevent infinite loops
    steps = 0

    while 0 <= pc < len(instructions) and steps < max_steps:
        current_line_num = pc_line_map.get(pc, "Unknown")
        instruction = instructions[pc]
        parts = instruction.split()
        opcode = parts[0].upper()
        operands = parts[1:]
        
        # Default behavior: advance PC by 1 unless it's a jump
        next_pc = pc + 1

        try:
            if opcode == "SET": # SET Rx value
                if len(operands) != 2: raise ValueError("SET requires 2 operands")
                reg = operands[0].upper()
                if reg not in registers: raise ValueError(f"Invalid register '{reg}'")
                try:
                    value = int(operands[1])
                except ValueError:
                    raise ValueError(f"Invalid immediate value '{operands[1]}'")
                registers[reg] = value

            elif opcode == "INC": # INC Rx
                if len(operands) != 1: raise ValueError("INC requires 1 operand")
                reg = operands[0].upper()
                if reg not in registers: raise ValueError(f"Invalid register '{reg}'")
                registers[reg] += 1

            elif opcode == "EQ": # EQ Rx Ry
                if len(operands) != 2: raise ValueError("EQ requires 2 operands")
                reg1, reg2 = operands[0].upper(), operands[1].upper()
                if reg1 not in registers: raise ValueError(f"Invalid register '{reg1}'")
                if reg2 not in registers: raise ValueError(f"Invalid register '{reg2}'")
                comparison_flag = (registers[reg1] == registers[reg2])

            elif opcode == "GT": # GT Rx Ry
                if len(operands) != 2: raise ValueError("GT requires 2 operands")
                reg1, reg2 = operands[0].upper(), operands[1].upper()
                if reg1 not in registers: raise ValueError(f"Invalid register '{reg1}'")
                if reg2 not in registers: raise ValueError(f"Invalid register '{reg2}'")
                comparison_flag = (registers[reg1] > registers[reg2])

            elif opcode == "JF": # JF label
                if len(operands) != 1: raise ValueError("JF requires 1 operand")
                label = operands[0]
                if label not in labels: raise ValueError(f"Undefined label '{label}'")
                if not comparison_flag:
                    next_pc = labels[label]

            elif opcode == "JT": # JT label
                if len(operands) != 1: raise ValueError("JT requires 1 operand")
                label = operands[0]
                if label not in labels: raise ValueError(f"Undefined label '{label}'")
                if comparison_flag:
                    next_pc = labels[label]

            elif opcode == "JMP": # JMP label
                if len(operands) != 1: raise ValueError("JMP requires 1 operand")
                label = operands[0]
                if label not in labels: raise ValueError(f"Undefined label '{label}'")
                # Handle the specific 'is_prime' -> 'ready_prime' return mechanism
                # This isn't a general call stack, just how this specific program uses JMP
                next_pc = labels[label]

            elif opcode == "STORE": # STORE Rx Ry (Store value in Rx at address in Ry)
                if len(operands) != 2: raise ValueError("STORE requires 2 operands")
                reg_val, reg_addr = operands[0].upper(), operands[1].upper()
                if reg_val not in registers: raise ValueError(f"Invalid register '{reg_val}'")
                if reg_addr not in registers: raise ValueError(f"Invalid register '{reg_addr}'")

                value_to_store = registers[reg_val]
                address = registers[reg_addr]

                if address < 0:
                    raise ValueError(f"Attempted to store at negative memory address {address}")

                # Ensure memory is large enough, fill with 0 if needed (though list append might be better if R8 is always sequential)
                # Using append based on the program's logic where R8 increments sequentially
                if address == len(memory):
                     memory.append(value_to_store)
                elif address < len(memory):
                     # Overwrite existing memory if address is valid but not the end
                     # This might deviate if R8 wasn't just used sequentially
                     print(f"Warning: Overwriting memory at address {address}. Expected sequential writes.")
                     memory[address] = value_to_store
                else:
                     # Fill gaps if address skips indices - indicates non-sequential use of R8
                     print(f"Warning: Non-sequential memory write to address {address}. Filling gaps.")
                     memory.extend([0] * (address - len(memory)))
                     memory.append(value_to_store)


            elif opcode == "MUL": # MUL Rd Rx Ry
                if len(operands) != 3: raise ValueError("MUL requires 3 operands")
                reg_d, reg_x, reg_y = operands[0].upper(), operands[1].upper(), operands[2].upper()
                if reg_d not in registers: raise ValueError(f"Invalid register '{reg_d}'")
                if reg_x not in registers: raise ValueError(f"Invalid register '{reg_x}'")
                if reg_y not in registers: raise ValueError(f"Invalid register '{reg_y}'")
                registers[reg_d] = registers[reg_x] * registers[reg_y]

            elif opcode == "MOD": # MOD Rd Rx Ry
                if len(operands) != 3: raise ValueError("MOD requires 3 operands")
                reg_d, reg_x, reg_y = operands[0].upper(), operands[1].upper(), operands[2].upper()
                if reg_d not in registers: raise ValueError(f"Invalid register '{reg_d}'")
                if reg_x not in registers: raise ValueError(f"Invalid register '{reg_x}'")
                if reg_y not in registers: raise ValueError(f"Invalid register '{reg_y}'")
                divisor = registers[reg_y]
                if divisor == 0:
                    raise ZeroDivisionError(f"Division by zero in MOD operation at line {current_line_num}")
                registers[reg_d] = registers[reg_x] % divisor

            else:
                raise ValueError(f"Unknown opcode '{opcode}'")

        except Exception as e:
            print(f"Error executing instruction at original line {current_line_num}: '{instruction}'")
            print(f"Current State: PC={pc}, Registers={registers}, Flag={comparison_flag}")
            raise e # Re-raise the exception

        pc = next_pc
        steps += 1

    if steps >= max_steps:
        print(f"Warning: Maximum execution steps ({max_steps}) reached. Possible infinite loop.")
        print(f"Final State: PC={pc}, Registers={registers}, Flag={comparison_flag}")


    # The program stores primes sequentially using R8 as the index/count
    # Return the memory list which should contain the primes
    return memory

# --- Example Usage ---
program = """

SET R1 2          // Starting number to check for prime
SET R8 0          // Initialize prime storage index/count

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count/next address

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JT end        // If 100 primes found, end program (Jump if True - R8 == 100)

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

// Subroutine to check if R1 is prime. Result in R2 (1=prime, 0=not prime)
is_prime:
    // Handle base cases: 2 is prime
    SET R7 2
    EQ R1 R7
    JT is_prime_set_true // If R1 is 2, it's prime

    SET R2 1       // Assume number is prime initially (for numbers > 2)
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Optimization: Check if divisor R3 * R3 > R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end // If R3*R3 > R1, then R1 must be prime (no smaller factors found)

    // Check for divisibility: R6 = R1 % R3
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0 (i.e., R1 % R3 == 0)
    JT not_prime   // If divisible, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

is_prime_set_true:
    SET R2 1       // Set result to 1 (prime)
    JMP is_prime_end // Go to end of subroutine

not_prime:
    SET R2 0       // Set result to 0 (not prime)
    // Fall through to is_prime_end

is_prime_end:
    JMP ready_prime // Return control to the point after the 'call'

end:
    // Program halts when PC reaches here or beyond instructions
"""

# Add a small fix to the program: Initialize R8
# Also added a check for R1=2 in is_prime for correctness.
# Changed the final check: JT end (Jump if True that R8 == 100)

primes_found = evaluate(program)

print(f"Found {len(primes_found)} primes.")
print(primes_found)

# Verification (first few primes)
expected_primes_start = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
print(f"First 10 primes match expected: {primes_found[:10] == expected_primes_start}")
# Verification (count)
print(f"Found 100 primes: {len(primes_found) == 100}")
**Explanation:** 1. **Preprocessing:** * The code first splits the input string into lines. * It iterates through the lines, removing comments (`//`) and whitespace. * Empty lines are skipped. * Lines ending with `:` are identified as labels, and their name and corresponding instruction index (where execution should jump to) are stored in the `labels` dictionary. Labels themselves are not added to the list of executable `instructions`. * Valid instruction lines are cleaned and added to the `instructions` list. * `pc_line_map` is used to remember the original line number for better error messages. 2. **Simulation State:** * `registers`: A dictionary holds the state of R1 through R8, initialized to 0. * `memory`: An empty list is used for memory. The `STORE` instruction will append or modify this list. * `pc`: The program counter starts at 0, pointing to the first instruction. * `comparison_flag`: A boolean stores the result of the last `EQ` or `GT` instruction, used by `JF` (Jump if False) and `JT` (Jump if True). 3. **Execution Loop:** * The `while 0 <= pc < len(instructions)` loop runs as long as the PC points to a valid instruction index. * A `max_steps` limit is included as a safeguard against accidental infinite loops in the assembly code. * Inside the loop: * The current instruction is fetched. * It's parsed into an `opcode` and `operands`. * An `if/elif/else` block handles each `opcode`: * **SET, INC, EQ, GT, MUL, MOD:** Update registers or the `comparison_flag` accordingly. Input validation (correct number of operands, valid registers/values) is performed. * **JMP, JF, JT:** Modify the `next_pc` based on the label lookup and the `comparison_flag` (for JF/JT). * **STORE:** Gets the value and address from the specified registers. It then carefully appends or updates the `memory` list. The implementation assumes `R8` is used sequentially starting from 0, which matches the prime-finding logic. It includes warnings if memory access seems non-sequential, although for *this specific program*, `memory.append()` is sufficient. * Error handling (`try...except`) is included to catch issues like invalid syntax, unknown opcodes, bad register names, undefined labels, or division by zero, printing informative messages. * The `pc` is updated to `next_pc` for the next iteration. 4. **Return Value:** * After the loop terminates (either by `pc` going out of bounds, which happens implicitly after the `end:` label if there are no more instructions, or by hitting `max_steps`), the function returns the `memory` list, which contains the stored prime numbers. 5. **Example Program Fixes:** * I added `SET R8 0` at the beginning, as `R8` needs to be initialized to 0 to be used correctly as the memory index/counter. * I added a specific check for `R1 == 2` in the `is_prime` routine because the loop logic (`R3*R3 > R1`) doesn't correctly handle the input 2 otherwise. * Corrected the final check `EQ R8 R7` followed by `JT end` (Jump if True, i.e., jump when 100 primes *are* found). The original `JF increment` would loop forever once 100 primes were found. This interpreter should correctly execute your prime-finding program and return the list of the first 100 prime numbers.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import re

def evaluate(program_string):
    """
    Interprets the custom assembly program and returns the final memory state.

    Args:
        program_string: A string containing the assembly program.

    Returns:
        A list representing the final state of the memory used for storing primes.
    """

    lines = program_string.strip().split('\n')
    instructions = []
    labels = {}
    pc_line_map = {} # Maps actual instruction index to original line number for errors

    # --- Preprocessing: Parse instructions and find labels ---
    current_instruction_index = 0
    for i, line in enumerate(lines):
        line = line.strip()
        if not line or line.startswith('//'):
            continue # Skip empty lines and comments

        # Check for labels
        label_match = re.match(r'^([a-zA-Z_][a-zA-Z0-9_]*):$', line)
        if label_match:
            label_name = label_match.group(1)
            if label_name in labels:
                raise ValueError(f"Duplicate label '{label_name}' found at line {i+1}")
            labels[label_name] = current_instruction_index
            # Don't add labels as instructions
            continue

        # Remove inline comments if any (e.g., "SET R1 2 // comment")
        line = line.split('//')[0].strip()
        if not line: # Line might have only contained a comment
             continue

        instructions.append(line)
        pc_line_map[current_instruction_index] = i + 1 # Store original line number
        current_instruction_index += 1

    # --- Simulation State ---
    registers = {f"R{i}": 0 for i in range(1, 9)} # R1 to R8 initialized to 0
    memory = []
    pc = 0 # Program Counter (index into the 'instructions' list)
    comparison_flag = False # Result of the last EQ or GT comparison

    # --- Execution Loop ---
    max_steps = 1000000 # Safety break to prevent infinite loops
    steps = 0

    while 0 <= pc < len(instructions) and steps < max_steps:
        current_line_num = pc_line_map.get(pc, "Unknown")
        instruction = instructions[pc]
        parts = instruction.split()
        opcode = parts[0].upper()
        operands = parts[1:]
        
        # Default behavior: advance PC by 1 unless it's a jump
        next_pc = pc + 1

        try:
            if opcode == "SET": # SET Rx value
                if len(operands) != 2: raise ValueError("SET requires 2 operands")
                reg = operands[0].upper()
                if reg not in registers: raise ValueError(f"Invalid register '{reg}'")
                try:
                    value = int(operands[1])
                except ValueError:
                    raise ValueError(f"Invalid immediate value '{operands[1]}'")
                registers[reg] = value

            elif opcode == "INC": # INC Rx
                if len(operands) != 1: raise ValueError("INC requires 1 operand")
                reg = operands[0].upper()
                if reg not in registers: raise ValueError(f"Invalid register '{reg}'")
                registers[reg] += 1

            elif opcode == "EQ": # EQ Rx Ry
                if len(operands) != 2: raise ValueError("EQ requires 2 operands")
                reg1, reg2 = operands[0].upper(), operands[1].upper()
                if reg1 not in registers: raise ValueError(f"Invalid register '{reg1}'")
                if reg2 not in registers: raise ValueError(f"Invalid register '{reg2}'")
                comparison_flag = (registers[reg1] == registers[reg2])

            elif opcode == "GT": # GT Rx Ry
                if len(operands) != 2: raise ValueError("GT requires 2 operands")
                reg1, reg2 = operands[0].upper(), operands[1].upper()
                if reg1 not in registers: raise ValueError(f"Invalid register '{reg1}'")
                if reg2 not in registers: raise ValueError(f"Invalid register '{reg2}'")
                comparison_flag = (registers[reg1] > registers[reg2])

            elif opcode == "JF": # JF label
                if len(operands) != 1: raise ValueError("JF requires 1 operand")
                label = operands[0]
                if label not in labels: raise ValueError(f"Undefined label '{label}'")
                if not comparison_flag:
                    next_pc = labels[label]

            elif opcode == "JT": # JT label
                if len(operands) != 1: raise ValueError("JT requires 1 operand")
                label = operands[0]
                if label not in labels: raise ValueError(f"Undefined label '{label}'")
                if comparison_flag:
                    next_pc = labels[label]

            elif opcode == "JMP": # JMP label
                if len(operands) != 1: raise ValueError("JMP requires 1 operand")
                label = operands[0]
                if label not in labels: raise ValueError(f"Undefined label '{label}'")
                # Handle the specific 'is_prime' -> 'ready_prime' return mechanism
                # This isn't a general call stack, just how this specific program uses JMP
                next_pc = labels[label]

            elif opcode == "STORE": # STORE Rx Ry (Store value in Rx at address in Ry)
                if len(operands) != 2: raise ValueError("STORE requires 2 operands")
                reg_val, reg_addr = operands[0].upper(), operands[1].upper()
                if reg_val not in registers: raise ValueError(f"Invalid register '{reg_val}'")
                if reg_addr not in registers: raise ValueError(f"Invalid register '{reg_addr}'")

                value_to_store = registers[reg_val]
                address = registers[reg_addr]

                if address < 0:
                    raise ValueError(f"Attempted to store at negative memory address {address}")

                # Ensure memory is large enough, fill with 0 if needed (though list append might be better if R8 is always sequential)
                # Using append based on the program's logic where R8 increments sequentially
                if address == len(memory):
                     memory.append(value_to_store)
                elif address < len(memory):
                     # Overwrite existing memory if address is valid but not the end
                     # This might deviate if R8 wasn't just used sequentially
                     print(f"Warning: Overwriting memory at address {address}. Expected sequential writes.")
                     memory[address] = value_to_store
                else:
                     # Fill gaps if address skips indices - indicates non-sequential use of R8
                     print(f"Warning: Non-sequential memory write to address {address}. Filling gaps.")
                     memory.extend([0] * (address - len(memory)))
                     memory.append(value_to_store)


            elif opcode == "MUL": # MUL Rd Rx Ry
                if len(operands) != 3: raise ValueError("MUL requires 3 operands")
                reg_d, reg_x, reg_y = operands[0].upper(), operands[1].upper(), operands[2].upper()
                if reg_d not in registers: raise ValueError(f"Invalid register '{reg_d}'")
                if reg_x not in registers: raise ValueError(f"Invalid register '{reg_x}'")
                if reg_y not in registers: raise ValueError(f"Invalid register '{reg_y}'")
                registers[reg_d] = registers[reg_x] * registers[reg_y]

            elif opcode == "MOD": # MOD Rd Rx Ry
                if len(operands) != 3: raise ValueError("MOD requires 3 operands")
                reg_d, reg_x, reg_y = operands[0].upper(), operands[1].upper(), operands[2].upper()
                if reg_d not in registers: raise ValueError(f"Invalid register '{reg_d}'")
                if reg_x not in registers: raise ValueError(f"Invalid register '{reg_x}'")
                if reg_y not in registers: raise ValueError(f"Invalid register '{reg_y}'")
                divisor = registers[reg_y]
                if divisor == 0:
                    raise ZeroDivisionError(f"Division by zero in MOD operation at line {current_line_num}")
                registers[reg_d] = registers[reg_x] % divisor

            else:
                raise ValueError(f"Unknown opcode '{opcode}'")

        except Exception as e:
            print(f"Error executing instruction at original line {current_line_num}: '{instruction}'")
            print(f"Current State: PC={pc}, Registers={registers}, Flag={comparison_flag}")
            raise e # Re-raise the exception

        pc = next_pc
        steps += 1

    if steps >= max_steps:
        print(f"Warning: Maximum execution steps ({max_steps}) reached. Possible infinite loop.")
        print(f"Final State: PC={pc}, Registers={registers}, Flag={comparison_flag}")


    # The program stores primes sequentially using R8 as the index/count
    # Return the memory list which should contain the primes
    return memory

# --- Example Usage ---
program = """

SET R1 2          // Starting number to check for prime
SET R8 0          // Initialize prime storage index/count

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count/next address

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JT end        // If 100 primes found, end program (Jump if True - R8 == 100)

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

// Subroutine to check if R1 is prime. Result in R2 (1=prime, 0=not prime)
is_prime:
    // Handle base cases: 2 is prime
    SET R7 2
    EQ R1 R7
    JT is_prime_set_true // If R1 is 2, it's prime

    SET R2 1       // Assume number is prime initially (for numbers > 2)
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Optimization: Check if divisor R3 * R3 > R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end // If R3*R3 > R1, then R1 must be prime (no smaller factors found)

    // Check for divisibility: R6 = R1 % R3
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0 (i.e., R1 % R3 == 0)
    JT not_prime   // If divisible, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

is_prime_set_true:
    SET R2 1       // Set result to 1 (prime)
    JMP is_prime_end // Go to end of subroutine

not_prime:
    SET R2 0       // Set result to 0 (not prime)
    // Fall through to is_prime_end

is_prime_end:
    JMP ready_prime // Return control to the point after the 'call'

end:
    // Program halts when PC reaches here or beyond instructions
"""

# Add a small fix to the program: Initialize R8
# Also added a check for R1=2 in is_prime for correctness.
# Changed the final check: JT end (Jump if True that R8 == 100)

primes_found = evaluate(program)

print(f"Found {len(primes_found)} primes.")
print(primes_found)

# Verification (first few primes)
expected_primes_start = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
print(f"First 10 primes match expected: {primes_found[:10] == expected_primes_start}")
# Verification (count)
print(f"Found 100 primes: {len(primes_found) == 100}")

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import re

def evaluate(program_string):
    """
    Interprets the custom assembly program and returns the final memory state.

    Args:
        program_string: A string containing the assembly program.

    Returns:
        A list representing the final state of the memory used for storing primes.
    """

    lines = program_string.strip().split('\n')
    instructions = []
    labels = {}
    pc_line_map = {} # Maps actual instruction index to original line number for errors

    # --- Preprocessing: Parse instructions and find labels ---
    current_instruction_index = 0
    for i, line in enumerate(lines):
        line = line.strip()
        if not line or line.startswith('//'):
            continue # Skip empty lines and comments

        # Check for labels
        label_match = re.match(r'^([a-zA-Z_][a-zA-Z0-9_]*):$', line)
        if label_match:
            label_name = label_match.group(1)
            if label_name in labels:
                raise ValueError(f"Duplicate label '{label_name}' found at line {i+1}")
            labels[label_name] = current_instruction_index
            # Don't add labels as instructions
            continue

        # Remove inline comments if any (e.g., "SET R1 2 // comment")
        line = line.split('//')[0].strip()
        if not line: # Line might have only contained a comment
             continue

        instructions.append(line)
        pc_line_map[current_instruction_index] = i + 1 # Store original line number
        current_instruction_index += 1

    # --- Simulation State ---
    registers = {f"R{i}": 0 for i in range(1, 9)} # R1 to R8 initialized to 0
    memory = []
    pc = 0 # Program Counter (index into the 'instructions' list)
    comparison_flag = False # Result of the last EQ or GT comparison

    # --- Execution Loop ---
    max_steps = 1000000 # Safety break to prevent infinite loops
    steps = 0

    while 0 <= pc < len(instructions) and steps < max_steps:
        current_line_num = pc_line_map.get(pc, "Unknown")
        instruction = instructions[pc]
        parts = instruction.split()
        opcode = parts[0].upper()
        operands = parts[1:]
        
        # Default behavior: advance PC by 1 unless it's a jump
        next_pc = pc + 1

        try:
            if opcode == "SET": # SET Rx value
                if len(operands) != 2: raise ValueError("SET requires 2 operands")
                reg = operands[0].upper()
                if reg not in registers: raise ValueError(f"Invalid register '{reg}'")
                try:
                    value = int(operands[1])
                except ValueError:
                    raise ValueError(f"Invalid immediate value '{operands[1]}'")
                registers[reg] = value

            elif opcode == "INC": # INC Rx
                if len(operands) != 1: raise ValueError("INC requires 1 operand")
                reg = operands[0].upper()
                if reg not in registers: raise ValueError(f"Invalid register '{reg}'")
                registers[reg] += 1

            elif opcode == "EQ": # EQ Rx Ry
                if len(operands) != 2: raise ValueError("EQ requires 2 operands")
                reg1, reg2 = operands[0].upper(), operands[1].upper()
                if reg1 not in registers: raise ValueError(f"Invalid register '{reg1}'")
                if reg2 not in registers: raise ValueError(f"Invalid register '{reg2}'")
                comparison_flag = (registers[reg1] == registers[reg2])

            elif opcode == "GT": # GT Rx Ry
                if len(operands) != 2: raise ValueError("GT requires 2 operands")
                reg1, reg2 = operands[0].upper(), operands[1].upper()
                if reg1 not in registers: raise ValueError(f"Invalid register '{reg1}'")
                if reg2 not in registers: raise ValueError(f"Invalid register '{reg2}'")
                comparison_flag = (registers[reg1] > registers[reg2])

            elif opcode == "JF": # JF label
                if len(operands) != 1: raise ValueError("JF requires 1 operand")
                label = operands[0]
                if label not in labels: raise ValueError(f"Undefined label '{label}'")
                if not comparison_flag:
                    next_pc = labels[label]

            elif opcode == "JT": # JT label
                if len(operands) != 1: raise ValueError("JT requires 1 operand")
                label = operands[0]
                if label not in labels: raise ValueError(f"Undefined label '{label}'")
                if comparison_flag:
                    next_pc = labels[label]

            elif opcode == "JMP": # JMP label
                if len(operands) != 1: raise ValueError("JMP requires 1 operand")
                label = operands[0]
                if label not in labels: raise ValueError(f"Undefined label '{label}'")
                # Handle the specific 'is_prime' -> 'ready_prime' return mechanism
                # This isn't a general call stack, just how this specific program uses JMP
                next_pc = labels[label]

            elif opcode == "STORE": # STORE Rx Ry (Store value in Rx at address in Ry)
                if len(operands) != 2: raise ValueError("STORE requires 2 operands")
                reg_val, reg_addr = operands[0].upper(), operands[1].upper()
                if reg_val not in registers: raise ValueError(f"Invalid register '{reg_val}'")
                if reg_addr not in registers: raise ValueError(f"Invalid register '{reg_addr}'")

                value_to_store = registers[reg_val]
                address = registers[reg_addr]

                if address < 0:
                    raise ValueError(f"Attempted to store at negative memory address {address}")

                # Ensure memory is large enough, fill with 0 if needed (though list append might be better if R8 is always sequential)
                # Using append based on the program's logic where R8 increments sequentially
                if address == len(memory):
                     memory.append(value_to_store)
                elif address < len(memory):
                     # Overwrite existing memory if address is valid but not the end
                     # This might deviate if R8 wasn't just used sequentially
                     print(f"Warning: Overwriting memory at address {address}. Expected sequential writes.")
                     memory[address] = value_to_store
                else:
                     # Fill gaps if address skips indices - indicates non-sequential use of R8
                     print(f"Warning: Non-sequential memory write to address {address}. Filling gaps.")
                     memory.extend([0] * (address - len(memory)))
                     memory.append(value_to_store)


            elif opcode == "MUL": # MUL Rd Rx Ry
                if len(operands) != 3: raise ValueError("MUL requires 3 operands")
                reg_d, reg_x, reg_y = operands[0].upper(), operands[1].upper(), operands[2].upper()
                if reg_d not in registers: raise ValueError(f"Invalid register '{reg_d}'")
                if reg_x not in registers: raise ValueError(f"Invalid register '{reg_x}'")
                if reg_y not in registers: raise ValueError(f"Invalid register '{reg_y}'")
                registers[reg_d] = registers[reg_x] * registers[reg_y]

            elif opcode == "MOD": # MOD Rd Rx Ry
                if len(operands) != 3: raise ValueError("MOD requires 3 operands")
                reg_d, reg_x, reg_y = operands[0].upper(), operands[1].upper(), operands[2].upper()
                if reg_d not in registers: raise ValueError(f"Invalid register '{reg_d}'")
                if reg_x not in registers: raise ValueError(f"Invalid register '{reg_x}'")
                if reg_y not in registers: raise ValueError(f"Invalid register '{reg_y}'")
                divisor = registers[reg_y]
                if divisor == 0:
                    raise ZeroDivisionError(f"Division by zero in MOD operation at line {current_line_num}")
                registers[reg_d] = registers[reg_x] % divisor

            else:
                raise ValueError(f"Unknown opcode '{opcode}'")

        except Exception as e:
            print(f"Error executing instruction at original line {current_line_num}: '{instruction}'")
            print(f"Current State: PC={pc}, Registers={registers}, Flag={comparison_flag}")
            raise e # Re-raise the exception

        pc = next_pc
        steps += 1

    if steps >= max_steps:
        print(f"Warning: Maximum execution steps ({max_steps}) reached. Possible infinite loop.")
        print(f"Final State: PC={pc}, Registers={registers}, Flag={comparison_flag}")


    # The program stores primes sequentially using R8 as the index/count
    # Return the memory list which should contain the primes
    return memory

# --- Example Usage ---
program = """

SET R1 2          // Starting number to check for prime
SET R8 0          // Initialize prime storage index/count

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count/next address

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JT end        // If 100 primes found, end program (Jump if True - R8 == 100)

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

// Subroutine to check if R1 is prime. Result in R2 (1=prime, 0=not prime)
is_prime:
    // Handle base cases: 2 is prime
    SET R7 2
    EQ R1 R7
    JT is_prime_set_true // If R1 is 2, it's prime

    SET R2 1       // Assume number is prime initially (for numbers > 2)
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Optimization: Check if divisor R3 * R3 > R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end // If R3*R3 > R1, then R1 must be prime (no smaller factors found)

    // Check for divisibility: R6 = R1 % R3
    MOD R6 R1 R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0 (i.e., R1 % R3 == 0)
    JT not_prime   // If divisible, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

is_prime_set_true:
    SET R2 1       // Set result to 1 (prime)
    JMP is_prime_end // Go to end of subroutine

not_prime:
    SET R2 0       // Set result to 0 (not prime)
    // Fall through to is_prime_end

is_prime_end:
    JMP ready_prime // Return control to the point after the 'call'

end:
    // Program halts when PC reaches here or beyond instructions
"""

# Add a small fix to the program: Initialize R8
# Also added a check for R1=2 in is_prime for correctness.
# Changed the final check: JT end (Jump if True that R8 == 100)

primes_found = evaluate(program)

print(f"Found {len(primes_found)} primes.")
print(primes_found)

# Verification (first few primes)
expected_primes_start = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
print(f"First 10 primes match expected: {primes_found[:10] == expected_primes_start}")
# Verification (count)
print(f"Found 100 primes: {len(primes_found) == 100}")





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Error executing instruction at original line 36: 'start_loop:' Current State: PC=18, Registers={'R1': 3, 'R2': 1, 'R3': 2, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 2, 'R8': 1}, Flag=False Traceback (most recent call last): File "/usr/src/app/main.py", line 258, in <module> primes_found = evaluate(program) ^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 172, in evaluate raise e # Re-raise the exception ^^^^^^^ File "/usr/src/app/main.py", line 167, in evaluate raise ValueError(f"Unknown opcode '{opcode}'") ValueError: Unknown opcode 'START_LOOP:'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False