Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import re

def evaluate(program):
    memory = {}
    registers = {}
    labels = {}

    # Extract labels and their corresponding line numbers
    lines = program.strip().split('\n')
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i

    # Initialize program counter
    pc = 0

    # Helper function to get the value of a register or memory address
    def get_value(operand):
        if operand in registers:
            return registers[operand]
        elif operand.isdigit():
            return int(operand)
        else:
            return memory.get(operand, 0)  # Return 0 for uninitialized memory

    # Instruction execution loop
    while pc < len(lines):
        line = lines[pc].strip()
        if not line or line.startswith('//'):  # Ignore empty lines and comments
            pc += 1
            continue

        # Extract instruction and operands
        parts = re.split(r'[,\s]+', line)
        instruction = parts[0]
        operands = parts[1:]

        # Instruction execution
        if instruction == 'SET':
            registers[operands[0]] = get_value(operands[1])
        elif instruction == 'INC':
            registers[operands[0]] = get_value(operands[0]) + 1
        elif instruction == 'MUL':
            registers[operands[0]] = get_value(operands[1]) * get_value(operands[2])
        elif instruction == 'MOD':
            registers[operands[0]] = get_value(operands[1]) % get_value(operands[2])
        elif instruction == 'GT':
            registers['FLAG'] = 1 if get_value(operands[0]) > get_value(operands[1]) else 0
        elif instruction == 'EQ':
            registers['FLAG'] = 1 if get_value(operands[0]) == get_value(operands[1]) else 0
        elif instruction == 'JT':
            if registers.get('FLAG', 0) == 1:
                pc = labels[operands[0]]
                continue
        elif instruction == 'JF':
            if registers.get('FLAG', 0) == 0:
                pc = labels[operands[0]]
                continue
        elif instruction == 'JMP':
            pc = labels[operands[0]]
            continue
        elif instruction == 'STORE':
            memory[operands[1]] = get_value(operands[0])

        pc += 1

    # Return the memory state as a list
    return list(memory.values())

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

result = evaluate(program)
print(result)  # Output: [2, 3, 5, 7, ...] 

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import re

def evaluate(program):
    memory = {}
    registers = {}
    labels = {}

    # Extract labels and their corresponding line numbers
    lines = program.strip().split('\n')
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i

    # Initialize program counter
    pc = 0

    # Helper function to get the value of a register or memory address
    def get_value(operand):
        if operand in registers:
            return registers[operand]
        elif operand.isdigit():
            return int(operand)
        else:
            return memory.get(operand, 0)  # Return 0 for uninitialized memory

    # Instruction execution loop
    while pc < len(lines):
        line = lines[pc].strip()
        if not line or line.startswith('//'):  # Ignore empty lines and comments
            pc += 1
            continue

        # Extract instruction and operands
        parts = re.split(r'[,\s]+', line)
        instruction = parts[0]
        operands = parts[1:]

        # Instruction execution
        if instruction == 'SET':
            registers[operands[0]] = get_value(operands[1])
        elif instruction == 'INC':
            registers[operands[0]] = get_value(operands[0]) + 1
        elif instruction == 'MUL':
            registers[operands[0]] = get_value(operands[1]) * get_value(operands[2])
        elif instruction == 'MOD':
            registers[operands[0]] = get_value(operands[1]) % get_value(operands[2])
        elif instruction == 'GT':
            registers['FLAG'] = 1 if get_value(operands[0]) > get_value(operands[1]) else 0
        elif instruction == 'EQ':
            registers['FLAG'] = 1 if get_value(operands[0]) == get_value(operands[1]) else 0
        elif instruction == 'JT':
            if registers.get('FLAG', 0) == 1:
                pc = labels[operands[0]]
                continue
        elif instruction == 'JF':
            if registers.get('FLAG', 0) == 0:
                pc = labels[operands[0]]
                continue
        elif instruction == 'JMP':
            pc = labels[operands[0]]
            continue
        elif instruction == 'STORE':
            memory[operands[1]] = get_value(operands[0])

        pc += 1

    # Return the memory state as a list
    return list(memory.values())

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

result = evaluate(program)
print(result)  # Output: [2, 3, 5, 7, ...]

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import re

def evaluate(program):
    memory = {}
    registers = {}
    labels = {}

    # Extract labels and their corresponding line numbers
    lines = program.strip().split('\n')
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i

    # Initialize program counter
    pc = 0

    # Helper function to get the value of a register or memory address
    def get_value(operand):
        if operand in registers:
            return registers[operand]
        elif operand.isdigit():
            return int(operand)
        else:
            return memory.get(operand, 0)  # Return 0 for uninitialized memory

    # Instruction execution loop
    while pc < len(lines):
        line = lines[pc].strip()
        if not line or line.startswith('//'):  # Ignore empty lines and comments
            pc += 1
            continue

        # Extract instruction and operands
        parts = re.split(r'[,\s]+', line)
        instruction = parts[0]
        operands = parts[1:]

        # Instruction execution
        if instruction == 'SET':
            registers[operands[0]] = get_value(operands[1])
        elif instruction == 'INC':
            registers[operands[0]] = get_value(operands[0]) + 1
        elif instruction == 'MUL':
            registers[operands[0]] = get_value(operands[1]) * get_value(operands[2])
        elif instruction == 'MOD':
            registers[operands[0]] = get_value(operands[1]) % get_value(operands[2])
        elif instruction == 'GT':
            registers['FLAG'] = 1 if get_value(operands[0]) > get_value(operands[1]) else 0
        elif instruction == 'EQ':
            registers['FLAG'] = 1 if get_value(operands[0]) == get_value(operands[1]) else 0
        elif instruction == 'JT':
            if registers.get('FLAG', 0) == 1:
                pc = labels[operands[0]]
                continue
        elif instruction == 'JF':
            if registers.get('FLAG', 0) == 0:
                pc = labels[operands[0]]
                continue
        elif instruction == 'JMP':
            pc = labels[operands[0]]
            continue
        elif instruction == 'STORE':
            memory[operands[1]] = get_value(operands[0])

        pc += 1

    # Return the memory state as a list
    return list(memory.values())

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

result = evaluate(program)
print(result)  # Output: [2, 3, 5, 7, ...] 





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 123, in <module> result = evaluate(program) File "/usr/src/app/main.py", line 61, in evaluate pc = labels[operands[0]] KeyError: 'start_loop'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import re

def evaluate(program):
    """
    Evaluates a program written in a custom assembly language and returns the memory state.

    Args:
    program (str): The program code.

    Returns:
    list: The memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers
    labels = {}  # Store label addresses

    # Preprocess: Find and store label addresses
    lines = program.strip().split("\n")
    pc = 0
    for line in lines:
        line = line.strip()
        if line.endswith(":"):
            labels[line[:-1]] = pc
        elif not line.startswith("//") and line:  # Ignore comments and empty lines
            pc += 1

    # Execute the program
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        if line.startswith("//") or not line:  # Ignore comments and empty lines
            pc += 1
            continue

        parts = re.split(r"[, ]+", line)
        instruction = parts[0]

        if instruction == "SET":
            registers[parts[1]] = int(parts[2])

        elif instruction == "INC":
            registers[parts[1]] += 1

        elif instruction == "MUL":
            registers[parts[1]] = registers[parts[2]] * registers[parts[3]]

        elif instruction == "MOD":
            registers[parts[1]] = registers[parts[2]] % registers[parts[3]]

        elif instruction == "ADD":
            registers[parts[1]] = registers[parts[2]] + registers[parts[3]]

        elif instruction == "EQ":
            registers["R7"] = 1 if registers[parts[1]] == int(parts[2]) else 0

        elif instruction == "GT":
            registers["R7"] = 1 if registers[parts[1]] > registers[parts[2]] else 0

        elif instruction == "JT":
            if registers["R7"] == 1:
                pc = labels[parts[1]]
                continue

        elif instruction == "JF":
            if registers["R7"] == 0:
                pc = labels[parts[1]]
                continue

        elif instruction == "JMP":
            pc = labels[parts[1]]
            continue

        elif instruction == "STORE":
            memory[registers[parts[2]]] = registers[parts[1]]

        pc += 1

    return [x for x in memory if x != 0]  # Return non-zero memory values

# Example usage
program = """

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime        // Control will return after executing is_prime

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

primes = evaluate(program)
print(primes)
**Explanation:** 1. **Initialization:** - `memory`: A list representing memory, initialized with zeros. - `registers`: A dictionary to store register values, initialized with zeros. - `labels`: A dictionary to store the memory addresses of labels for jumps. 2. **Preprocessing (Finding Labels):** - The code first iterates through the program lines to find and store the memory addresses (line numbers) of all labels in the `labels` dictionary. 3. **Execution Loop:** - The code uses a `while` loop to simulate the fetch-decode-execute cycle of a processor. - **Fetch:** It fetches a line of code (ignoring comments and empty lines). - **Decode:** It splits the line into parts (instruction and operands). - **Execute:** It executes the instruction based on its type: - **Arithmetic and Logic Instructions:** `SET`, `INC`, `MUL`, `MOD`, `ADD`, `EQ`, `GT` - update registers based on the operation. - **Control Flow Instructions:** - `JT` (Jump if True): Jumps to the label if `R7` is 1. - `JF` (Jump if False): Jumps to the label if `R7` is 0. - `JMP` (Jump): Jumps to the label unconditionally. - **Memory Instructions:** - `STORE`: Stores a value from a register into memory. - **Update Program Counter:** The `pc` (program counter) is updated to move to the next instruction. 4. **Return Memory:** - After the execution loop completes, the function returns the `memory` list, which now contains the results of the program execution (non-zero values represent the computed primes). **Example Usage:** The provided example program calculates the first 100 prime numbers and stores them in memory. The `evaluate(program)` call executes this program, and the output will be a list containing the first 100 prime numbers.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import re

def evaluate(program):
    """
    Evaluates a program written in a custom assembly language and returns the memory state.

    Args:
    program (str): The program code.

    Returns:
    list: The memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers
    labels = {}  # Store label addresses

    # Preprocess: Find and store label addresses
    lines = program.strip().split("\n")
    pc = 0
    for line in lines:
        line = line.strip()
        if line.endswith(":"):
            labels[line[:-1]] = pc
        elif not line.startswith("//") and line:  # Ignore comments and empty lines
            pc += 1

    # Execute the program
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        if line.startswith("//") or not line:  # Ignore comments and empty lines
            pc += 1
            continue

        parts = re.split(r"[, ]+", line)
        instruction = parts[0]

        if instruction == "SET":
            registers[parts[1]] = int(parts[2])

        elif instruction == "INC":
            registers[parts[1]] += 1

        elif instruction == "MUL":
            registers[parts[1]] = registers[parts[2]] * registers[parts[3]]

        elif instruction == "MOD":
            registers[parts[1]] = registers[parts[2]] % registers[parts[3]]

        elif instruction == "ADD":
            registers[parts[1]] = registers[parts[2]] + registers[parts[3]]

        elif instruction == "EQ":
            registers["R7"] = 1 if registers[parts[1]] == int(parts[2]) else 0

        elif instruction == "GT":
            registers["R7"] = 1 if registers[parts[1]] > registers[parts[2]] else 0

        elif instruction == "JT":
            if registers["R7"] == 1:
                pc = labels[parts[1]]
                continue

        elif instruction == "JF":
            if registers["R7"] == 0:
                pc = labels[parts[1]]
                continue

        elif instruction == "JMP":
            pc = labels[parts[1]]
            continue

        elif instruction == "STORE":
            memory[registers[parts[2]]] = registers[parts[1]]

        pc += 1

    return [x for x in memory if x != 0]  # Return non-zero memory values

# Example usage
program = """

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime        // Control will return after executing is_prime

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

primes = evaluate(program)
print(primes)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import re

def evaluate(program):
    """
    Evaluates a program written in a custom assembly language and returns the memory state.

    Args:
    program (str): The program code.

    Returns:
    list: The memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers
    labels = {}  # Store label addresses

    # Preprocess: Find and store label addresses
    lines = program.strip().split("\n")
    pc = 0
    for line in lines:
        line = line.strip()
        if line.endswith(":"):
            labels[line[:-1]] = pc
        elif not line.startswith("//") and line:  # Ignore comments and empty lines
            pc += 1

    # Execute the program
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        if line.startswith("//") or not line:  # Ignore comments and empty lines
            pc += 1
            continue

        parts = re.split(r"[, ]+", line)
        instruction = parts[0]

        if instruction == "SET":
            registers[parts[1]] = int(parts[2])

        elif instruction == "INC":
            registers[parts[1]] += 1

        elif instruction == "MUL":
            registers[parts[1]] = registers[parts[2]] * registers[parts[3]]

        elif instruction == "MOD":
            registers[parts[1]] = registers[parts[2]] % registers[parts[3]]

        elif instruction == "ADD":
            registers[parts[1]] = registers[parts[2]] + registers[parts[3]]

        elif instruction == "EQ":
            registers["R7"] = 1 if registers[parts[1]] == int(parts[2]) else 0

        elif instruction == "GT":
            registers["R7"] = 1 if registers[parts[1]] > registers[parts[2]] else 0

        elif instruction == "JT":
            if registers["R7"] == 1:
                pc = labels[parts[1]]
                continue

        elif instruction == "JF":
            if registers["R7"] == 0:
                pc = labels[parts[1]]
                continue

        elif instruction == "JMP":
            pc = labels[parts[1]]
            continue

        elif instruction == "STORE":
            memory[registers[parts[2]]] = registers[parts[1]]

        pc += 1

    return [x for x in memory if x != 0]  # Return non-zero memory values

# Example usage
program = """

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime        // Control will return after executing is_prime

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

primes = evaluate(program)
print(primes)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Timeout: function took too long to complete

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import re

def evaluate(program):
    """
    Evaluates the given assembly program and returns the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: A list representing the memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers
    labels = {}  # Store label addresses

    # Preprocess: Find and store label addresses
    lines = program.strip().split("\n")
    pc = 0
    for line in lines:
        line = line.strip()
        if line.endswith(":"):
            labels[line[:-1]] = pc
        elif not line.startswith("//") and line:  # Skip comments and empty lines
            pc += 1

    # Execute the program
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        if line.startswith("//") or not line:  # Skip comments and empty lines
            pc += 1
            continue

        instruction = line.split()[0]
        operands = line.split()[1:]

        if instruction == "SET":
            registers[operands[0]] = int(operands[1])
        elif instruction == "INC":
            registers[operands[0]] += 1
        elif instruction == "STORE":
            memory[registers[operands[1]]] = registers[operands[0]]
        elif instruction == "JMP":
            pc = labels[operands[0]]
            continue
        elif instruction == "EQ":
            registers["R7"] = 1 if registers[operands[0]] == int(operands[1]) else 0
        elif instruction == "GT":
            registers["R7"] = 1 if registers[operands[0]] > int(operands[1]) else 0
        elif instruction == "JT":
            if registers["R7"] == 1:
                pc = labels[operands[0]]
                continue
        elif instruction == "JF":
            if registers["R7"] == 0:
                pc = labels[operands[0]]
                continue
        elif instruction == "MUL":
            registers[operands[0]] = registers[operands[1]] * registers[operands[2]]
        elif instruction == "MOD":
            registers[operands[0]] = registers[operands[1]] % registers[operands[2]]
        else:
            raise ValueError(f"Invalid instruction: {instruction}")

        pc += 1

    return [x for x in memory if x != 0]

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

primes = evaluate(program)
print(primes) 
**Explanation:** 1. **Initialization:** - `memory`: A list representing memory, initialized with zeros. - `registers`: A dictionary to store register values, initialized with R0 to R9 as keys and 0 as their initial values. - `labels`: A dictionary to store label names and their corresponding program counter (pc) values. 2. **Preprocessing (Finding Labels):** - The code iterates through each line of the program. - If a line ends with ":", it's considered a label. The label's name and the current `pc` are stored in the `labels` dictionary. - The `pc` is incremented for each non-comment and non-empty line, representing the address of the next instruction. 3. **Execution Loop:** - The code enters a `while` loop that continues until the `pc` goes beyond the program's length. - **Fetching and Decoding:** In each iteration, the instruction and operands are extracted from the current line. - **Instruction Execution:** A series of `if` and `elif` blocks handle different instructions based on their names: - **Data Manipulation:** `SET`, `INC`, `STORE`, `MUL`, `MOD` directly modify registers or memory based on their operands. - **Control Flow:** - `JMP` unconditionally sets the `pc` to the target label's address. - `EQ` and `GT` perform comparisons and set the "flag" register `R7` to 1 (true) or 0 (false). - `JT` (jump if true) and `JF` (jump if false) conditionally change the `pc` based on the value of `R7`. - **Incrementing PC:** If the instruction doesn't modify the `pc` (like `JMP`, `JT`, `JF`), the `pc` is incremented to move to the next instruction. 4. **Returning Memory State:** - After the loop completes (program execution finishes), the function returns the `memory` list, which now contains the results of the program's computation.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import re

def evaluate(program):
    """
    Evaluates the given assembly program and returns the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: A list representing the memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers
    labels = {}  # Store label addresses

    # Preprocess: Find and store label addresses
    lines = program.strip().split("\n")
    pc = 0
    for line in lines:
        line = line.strip()
        if line.endswith(":"):
            labels[line[:-1]] = pc
        elif not line.startswith("//") and line:  # Skip comments and empty lines
            pc += 1

    # Execute the program
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        if line.startswith("//") or not line:  # Skip comments and empty lines
            pc += 1
            continue

        instruction = line.split()[0]
        operands = line.split()[1:]

        if instruction == "SET":
            registers[operands[0]] = int(operands[1])
        elif instruction == "INC":
            registers[operands[0]] += 1
        elif instruction == "STORE":
            memory[registers[operands[1]]] = registers[operands[0]]
        elif instruction == "JMP":
            pc = labels[operands[0]]
            continue
        elif instruction == "EQ":
            registers["R7"] = 1 if registers[operands[0]] == int(operands[1]) else 0
        elif instruction == "GT":
            registers["R7"] = 1 if registers[operands[0]] > int(operands[1]) else 0
        elif instruction == "JT":
            if registers["R7"] == 1:
                pc = labels[operands[0]]
                continue
        elif instruction == "JF":
            if registers["R7"] == 0:
                pc = labels[operands[0]]
                continue
        elif instruction == "MUL":
            registers[operands[0]] = registers[operands[1]] * registers[operands[2]]
        elif instruction == "MOD":
            registers[operands[0]] = registers[operands[1]] % registers[operands[2]]
        else:
            raise ValueError(f"Invalid instruction: {instruction}")

        pc += 1

    return [x for x in memory if x != 0]

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

primes = evaluate(program)
print(primes)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import re

def evaluate(program):
    """
    Evaluates the given assembly program and returns the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: A list representing the memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers
    labels = {}  # Store label addresses

    # Preprocess: Find and store label addresses
    lines = program.strip().split("\n")
    pc = 0
    for line in lines:
        line = line.strip()
        if line.endswith(":"):
            labels[line[:-1]] = pc
        elif not line.startswith("//") and line:  # Skip comments and empty lines
            pc += 1

    # Execute the program
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        if line.startswith("//") or not line:  # Skip comments and empty lines
            pc += 1
            continue

        instruction = line.split()[0]
        operands = line.split()[1:]

        if instruction == "SET":
            registers[operands[0]] = int(operands[1])
        elif instruction == "INC":
            registers[operands[0]] += 1
        elif instruction == "STORE":
            memory[registers[operands[1]]] = registers[operands[0]]
        elif instruction == "JMP":
            pc = labels[operands[0]]
            continue
        elif instruction == "EQ":
            registers["R7"] = 1 if registers[operands[0]] == int(operands[1]) else 0
        elif instruction == "GT":
            registers["R7"] = 1 if registers[operands[0]] > int(operands[1]) else 0
        elif instruction == "JT":
            if registers["R7"] == 1:
                pc = labels[operands[0]]
                continue
        elif instruction == "JF":
            if registers["R7"] == 0:
                pc = labels[operands[0]]
                continue
        elif instruction == "MUL":
            registers[operands[0]] = registers[operands[1]] * registers[operands[2]]
        elif instruction == "MOD":
            registers[operands[0]] = registers[operands[1]] % registers[operands[2]]
        else:
            raise ValueError(f"Invalid instruction: {instruction}")

        pc += 1

    return [x for x in memory if x != 0]

# Example usage:
program = """
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
"""

primes = evaluate(program)
print(primes) 





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 124, in <module> primes = evaluate(program) File "/usr/src/app/main.py", line 66, in evaluate raise ValueError(f"Invalid instruction: {instruction}") ValueError: Invalid instruction: start_find_primes:

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import re

def evaluate(program):
    """
    Evaluates the given assembly program and returns the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: A list representing the memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers
    labels = {}  # Store label addresses

    # Preprocess program, find labels
    lines = program.strip().split("\n")
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        if line.endswith(":"):
            labels[line[:-1]] = pc
        pc += 1

    # Execute program
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        parts = re.split(r"[, ]+", line)

        if parts[0] == "SET":
            registers[parts[1]] = int(parts[2])
        elif parts[0] == "INC":
            registers[parts[1]] += 1
        elif parts[0] == "STORE":
            memory[registers[parts[2]]] = registers[parts[1]]
        elif parts[0] == "EQ":
            registers["R7"] = 1 if registers[parts[1]] == int(parts[2]) else 0
        elif parts[0] == "GT":
            registers["R7"] = 1 if registers[parts[1]] > registers[parts[2]] else 0
        elif parts[0] == "MUL":
            registers[parts[1]] = registers[parts[2]] * registers[parts[3]]
        elif parts[0] == "MOD":
            registers[parts[1]] = registers[parts[2]] % registers[parts[3]]
        elif parts[0] == "JMP":
            if parts[1] in labels:
                pc = labels[parts[1]] - 1  # Adjust for incrementing pc later
            else:
                raise ValueError(f"Invalid label: {parts[1]}")
        elif parts[0] == "JT":
            if registers["R7"] == 1:
                if parts[1] in labels:
                    pc = labels[parts[1]] - 1
                else:
                    raise ValueError(f"Invalid label: {parts[1]}")
        elif parts[0] == "JF":
            if registers["R7"] == 0:
                if parts[1] in labels:
                    pc = labels[parts[1]] - 1
                else:
                    raise ValueError(f"Invalid label: {parts[1]}")

        pc += 1

    return [x for x in memory if x != 0]  # Return non-zero memory values

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import re

def evaluate(program):
    """
    Evaluates the given assembly program and returns the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: A list representing the memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers
    labels = {}  # Store label addresses

    # Preprocess program, find labels
    lines = program.strip().split("\n")
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        if line.endswith(":"):
            labels[line[:-1]] = pc
        pc += 1

    # Execute program
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        parts = re.split(r"[, ]+", line)

        if parts[0] == "SET":
            registers[parts[1]] = int(parts[2])
        elif parts[0] == "INC":
            registers[parts[1]] += 1
        elif parts[0] == "STORE":
            memory[registers[parts[2]]] = registers[parts[1]]
        elif parts[0] == "EQ":
            registers["R7"] = 1 if registers[parts[1]] == int(parts[2]) else 0
        elif parts[0] == "GT":
            registers["R7"] = 1 if registers[parts[1]] > registers[parts[2]] else 0
        elif parts[0] == "MUL":
            registers[parts[1]] = registers[parts[2]] * registers[parts[3]]
        elif parts[0] == "MOD":
            registers[parts[1]] = registers[parts[2]] % registers[parts[3]]
        elif parts[0] == "JMP":
            if parts[1] in labels:
                pc = labels[parts[1]] - 1  # Adjust for incrementing pc later
            else:
                raise ValueError(f"Invalid label: {parts[1]}")
        elif parts[0] == "JT":
            if registers["R7"] == 1:
                if parts[1] in labels:
                    pc = labels[parts[1]] - 1
                else:
                    raise ValueError(f"Invalid label: {parts[1]}")
        elif parts[0] == "JF":
            if registers["R7"] == 0:
                if parts[1] in labels:
                    pc = labels[parts[1]] - 1
                else:
                    raise ValueError(f"Invalid label: {parts[1]}")

        pc += 1

    return [x for x in memory if x != 0]  # Return non-zero memory values

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import re

def evaluate(program):
    """
    Evaluates the given assembly program and returns the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: A list representing the memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers
    labels = {}  # Store label addresses

    # Preprocess program, find labels
    lines = program.strip().split("\n")
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        if line.endswith(":"):
            labels[line[:-1]] = pc
        pc += 1

    # Execute program
    pc = 0
    while pc < len(lines):
        line = lines[pc].strip()
        parts = re.split(r"[, ]+", line)

        if parts[0] == "SET":
            registers[parts[1]] = int(parts[2])
        elif parts[0] == "INC":
            registers[parts[1]] += 1
        elif parts[0] == "STORE":
            memory[registers[parts[2]]] = registers[parts[1]]
        elif parts[0] == "EQ":
            registers["R7"] = 1 if registers[parts[1]] == int(parts[2]) else 0
        elif parts[0] == "GT":
            registers["R7"] = 1 if registers[parts[1]] > registers[parts[2]] else 0
        elif parts[0] == "MUL":
            registers[parts[1]] = registers[parts[2]] * registers[parts[3]]
        elif parts[0] == "MOD":
            registers[parts[1]] = registers[parts[2]] % registers[parts[3]]
        elif parts[0] == "JMP":
            if parts[1] in labels:
                pc = labels[parts[1]] - 1  # Adjust for incrementing pc later
            else:
                raise ValueError(f"Invalid label: {parts[1]}")
        elif parts[0] == "JT":
            if registers["R7"] == 1:
                if parts[1] in labels:
                    pc = labels[parts[1]] - 1
                else:
                    raise ValueError(f"Invalid label: {parts[1]}")
        elif parts[0] == "JF":
            if registers["R7"] == 0:
                if parts[1] in labels:
                    pc = labels[parts[1]] - 1
                else:
                    raise ValueError(f"Invalid label: {parts[1]}")

        pc += 1

    return [x for x in memory if x != 0]  # Return non-zero memory values





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 89, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 41, in evaluate registers["R7"] = 1 if registers[parts[1]] == int(parts[2]) else 0 ValueError: invalid literal for int() with base 10: 'R6'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import re

def evaluate(program):
    """
    Evaluates the given assembly program and returns the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: A list representing the memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory with 1000 cells
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers R0-R9
    labels = {}  # Store label addresses
    pc = 0  # Program counter

    # Preprocess: Find and store label addresses
    for line in program.splitlines():
        line = line.strip()
        if line and line.endswith(":"):
            labels[line[:-1]] = pc
        pc += 1

    # Reset program counter
    pc = 0

    while pc < len(program.splitlines()):
        line = program.splitlines()[pc].strip()
        if not line or line.endswith(":"):
            pc += 1
            continue

        # Instruction parsing using regular expressions
        if match := re.match(r"SET\s+R(\d+)\s+(-?\d+)", line):
            registers[f"R{match.group(1)}"] = int(match.group(2))
        elif match := re.match(r"SET\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"]
        elif match := re.match(r"ADD\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] + registers[f"R{match.group(3)}"]
        elif match := re.match(r"SUB\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] - registers[f"R{match.group(3)}"]
        elif match := re.match(r"MUL\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] * registers[f"R{match.group(3)}"]
        elif match := re.match(r"DIV\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] // registers[f"R{match.group(3)}"]
        elif match := re.match(r"MOD\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] % registers[f"R{match.group(3)}"]
        elif match := re.match(r"INC\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] += 1
        elif match := re.match(r"DEC\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] -= 1
        elif match := re.match(r"CMP\s+R(\d+)\s+R(\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] == registers[f"R{match.group(2)}"] else 0
        elif match := re.match(r"GT\s+R(\d+)\s+R(\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] > registers[f"R{match.group(2)}"] else 0
        elif match := re.match(r"LT\s+R(\d+)\s+R(\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] < registers[f"R{match.group(2)}"] else 0
        elif match := re.match(r"EQ\s+R(\d+)\s+(-?\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] == int(match.group(2)) else 0
        elif match := re.match(r"JMP\s+(\w+)", line):
            pc = labels[match.group(1)]
            continue
        elif match := re.match(r"JT\s+(\w+)", line):
            if registers["RF"] == 1:
                pc = labels[match.group(1)]
                continue
        elif match := re.match(r"JF\s+(\w+)", line):
            if registers["RF"] == 0:
                pc = labels[match.group(1)]
                continue
        elif match := re.match(r"STORE\s+R(\d+)\s+R(\d+)", line):
            memory[registers[f"R{match.group(2)}"]] = registers[f"R{match.group(1)}"]
        elif match := re.match(r"LOAD\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = memory[registers[f"R{match.group(2)}"]]
        else:
            raise ValueError(f"Invalid instruction: {line}")

        pc += 1

    return [x for x in memory if x != 0]  # Return non-zero memory values

# Test the interpreter with the provided program
program = """

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime      // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:

"""

primes = evaluate(program)
print(primes) 

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import re

def evaluate(program):
    """
    Evaluates the given assembly program and returns the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: A list representing the memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory with 1000 cells
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers R0-R9
    labels = {}  # Store label addresses
    pc = 0  # Program counter

    # Preprocess: Find and store label addresses
    for line in program.splitlines():
        line = line.strip()
        if line and line.endswith(":"):
            labels[line[:-1]] = pc
        pc += 1

    # Reset program counter
    pc = 0

    while pc < len(program.splitlines()):
        line = program.splitlines()[pc].strip()
        if not line or line.endswith(":"):
            pc += 1
            continue

        # Instruction parsing using regular expressions
        if match := re.match(r"SET\s+R(\d+)\s+(-?\d+)", line):
            registers[f"R{match.group(1)}"] = int(match.group(2))
        elif match := re.match(r"SET\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"]
        elif match := re.match(r"ADD\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] + registers[f"R{match.group(3)}"]
        elif match := re.match(r"SUB\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] - registers[f"R{match.group(3)}"]
        elif match := re.match(r"MUL\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] * registers[f"R{match.group(3)}"]
        elif match := re.match(r"DIV\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] // registers[f"R{match.group(3)}"]
        elif match := re.match(r"MOD\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] % registers[f"R{match.group(3)}"]
        elif match := re.match(r"INC\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] += 1
        elif match := re.match(r"DEC\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] -= 1
        elif match := re.match(r"CMP\s+R(\d+)\s+R(\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] == registers[f"R{match.group(2)}"] else 0
        elif match := re.match(r"GT\s+R(\d+)\s+R(\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] > registers[f"R{match.group(2)}"] else 0
        elif match := re.match(r"LT\s+R(\d+)\s+R(\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] < registers[f"R{match.group(2)}"] else 0
        elif match := re.match(r"EQ\s+R(\d+)\s+(-?\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] == int(match.group(2)) else 0
        elif match := re.match(r"JMP\s+(\w+)", line):
            pc = labels[match.group(1)]
            continue
        elif match := re.match(r"JT\s+(\w+)", line):
            if registers["RF"] == 1:
                pc = labels[match.group(1)]
                continue
        elif match := re.match(r"JF\s+(\w+)", line):
            if registers["RF"] == 0:
                pc = labels[match.group(1)]
                continue
        elif match := re.match(r"STORE\s+R(\d+)\s+R(\d+)", line):
            memory[registers[f"R{match.group(2)}"]] = registers[f"R{match.group(1)}"]
        elif match := re.match(r"LOAD\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = memory[registers[f"R{match.group(2)}"]]
        else:
            raise ValueError(f"Invalid instruction: {line}")

        pc += 1

    return [x for x in memory if x != 0]  # Return non-zero memory values

# Test the interpreter with the provided program
program = """

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime      // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:

"""

primes = evaluate(program)
print(primes)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import re

def evaluate(program):
    """
    Evaluates the given assembly program and returns the resulting memory state.

    Args:
        program (str): The assembly program to evaluate.

    Returns:
        list: A list representing the memory state after program execution.
    """

    memory = [0] * 1000  # Initialize memory with 1000 cells
    registers = {f"R{i}": 0 for i in range(10)}  # Initialize registers R0-R9
    labels = {}  # Store label addresses
    pc = 0  # Program counter

    # Preprocess: Find and store label addresses
    for line in program.splitlines():
        line = line.strip()
        if line and line.endswith(":"):
            labels[line[:-1]] = pc
        pc += 1

    # Reset program counter
    pc = 0

    while pc < len(program.splitlines()):
        line = program.splitlines()[pc].strip()
        if not line or line.endswith(":"):
            pc += 1
            continue

        # Instruction parsing using regular expressions
        if match := re.match(r"SET\s+R(\d+)\s+(-?\d+)", line):
            registers[f"R{match.group(1)}"] = int(match.group(2))
        elif match := re.match(r"SET\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"]
        elif match := re.match(r"ADD\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] + registers[f"R{match.group(3)}"]
        elif match := re.match(r"SUB\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] - registers[f"R{match.group(3)}"]
        elif match := re.match(r"MUL\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] * registers[f"R{match.group(3)}"]
        elif match := re.match(r"DIV\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] // registers[f"R{match.group(3)}"]
        elif match := re.match(r"MOD\s+R(\d+)\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = registers[f"R{match.group(2)}"] % registers[f"R{match.group(3)}"]
        elif match := re.match(r"INC\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] += 1
        elif match := re.match(r"DEC\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] -= 1
        elif match := re.match(r"CMP\s+R(\d+)\s+R(\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] == registers[f"R{match.group(2)}"] else 0
        elif match := re.match(r"GT\s+R(\d+)\s+R(\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] > registers[f"R{match.group(2)}"] else 0
        elif match := re.match(r"LT\s+R(\d+)\s+R(\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] < registers[f"R{match.group(2)}"] else 0
        elif match := re.match(r"EQ\s+R(\d+)\s+(-?\d+)", line):
            registers["RF"] = 1 if registers[f"R{match.group(1)}"] == int(match.group(2)) else 0
        elif match := re.match(r"JMP\s+(\w+)", line):
            pc = labels[match.group(1)]
            continue
        elif match := re.match(r"JT\s+(\w+)", line):
            if registers["RF"] == 1:
                pc = labels[match.group(1)]
                continue
        elif match := re.match(r"JF\s+(\w+)", line):
            if registers["RF"] == 0:
                pc = labels[match.group(1)]
                continue
        elif match := re.match(r"STORE\s+R(\d+)\s+R(\d+)", line):
            memory[registers[f"R{match.group(2)}"]] = registers[f"R{match.group(1)}"]
        elif match := re.match(r"LOAD\s+R(\d+)\s+R(\d+)", line):
            registers[f"R{match.group(1)}"] = memory[registers[f"R{match.group(2)}"]]
        else:
            raise ValueError(f"Invalid instruction: {line}")

        pc += 1

    return [x for x in memory if x != 0]  # Return non-zero memory values

# Test the interpreter with the provided program
program = """

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime      // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:

"""

primes = evaluate(program)
print(primes) 





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 139, in <module> primes = evaluate(program) File "/usr/src/app/main.py", line 79, in evaluate raise ValueError(f"Invalid instruction: {line}") ValueError: Invalid instruction: start_loop: // Label to start the loop

Substring Evaluation

Testing if the previous output contains the string All tests passed: False