Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here's a Python interpreter `evaluate(str)` function that takes the assembly code as a string and returns the resulting memory state after running the program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def evaluate(program):
    lines = program.split('\n')
    registers = [0] * 10  # 10 registers (R0 to R9)
    memory = {}  # Memory storage
    labels = {}  # Label addresses

    # First pass: Find label addresses
    pc = 0  # Program counter
    for line in lines:
        line = line.strip()
        if not line or line.startswith('//'):
            continue
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = pc
        else:
            pc += 1

    # Second pass: Execute instructions
    pc = 0  # Reset program counter
    while pc < len(lines):
        line = lines[pc].strip()
        if not line or line.startswith('//'):
            pc += 1
            continue

        parts = line.split()
        instruction = parts[0]

        if instruction == 'SET':
            reg = int(parts[1][1:])
            value = int(parts[2])
            registers[reg] = value
        elif instruction == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif instruction == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif instruction == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] > registers[reg2])
        elif instruction == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] == registers[reg2])
        elif instruction == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif instruction == 'JT':
            label = parts[1]
            if registers[9]:
                pc = labels[label]
                continue
        elif instruction == 'JF':
            label = parts[1]
            if not registers[9]:
                pc = labels[label]
                continue
        elif instruction == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]
        elif instruction == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]

        pc += 1

    return [memory[i] for i in range(registers[8])]

# Example usage
program = '''
... (assembly code) ...
'''

result = evaluate(program)
print(result)
In this implementation: 1. The assembly code is split into lines. 2. The registers and memory are initialized. The registers are represented as a list of 10 elements (R0 to R9), and the memory is represented as a dictionary. 3. The first pass iterates through the lines to find label addresses and store them in the `labels` dictionary. 4. The second pass executes the instructions: - `SET` sets a register to a specific value. - `INC` increments a register by 1. - `MUL` multiplies the values of two registers and stores the result in another register. - `GT` sets the flag register (R9) to 1 if the first register is greater than the second, otherwise sets it to 0. - `EQ` sets the flag register (R9) to 1 if the two registers are equal, otherwise sets it to 0. - `JMP` jumps to a specific label. - `JT` jumps to a label if the flag register is true (non-zero). - `JF` jumps to a label if the flag register is false (zero). - `MOD` calculates the modulo of two registers and stores the result in another register. - `STORE` stores the value of a register in memory at the address specified by another register. 5. After executing all the instructions, the function returns the memory values stored at the addresses from 0 to the value of R8 (which represents the count of prime numbers). You can call the `evaluate` function with your assembly code as a string, and it will return the resulting memory state, which should be the list of prime numbers found by the program.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def evaluate(program):
    lines = program.split('\n')
    registers = [0] * 10  # 10 registers (R0 to R9)
    memory = {}  # Memory storage
    labels = {}  # Label addresses

    # First pass: Find label addresses
    pc = 0  # Program counter
    for line in lines:
        line = line.strip()
        if not line or line.startswith('//'):
            continue
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = pc
        else:
            pc += 1

    # Second pass: Execute instructions
    pc = 0  # Reset program counter
    while pc < len(lines):
        line = lines[pc].strip()
        if not line or line.startswith('//'):
            pc += 1
            continue

        parts = line.split()
        instruction = parts[0]

        if instruction == 'SET':
            reg = int(parts[1][1:])
            value = int(parts[2])
            registers[reg] = value
        elif instruction == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif instruction == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif instruction == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] > registers[reg2])
        elif instruction == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] == registers[reg2])
        elif instruction == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif instruction == 'JT':
            label = parts[1]
            if registers[9]:
                pc = labels[label]
                continue
        elif instruction == 'JF':
            label = parts[1]
            if not registers[9]:
                pc = labels[label]
                continue
        elif instruction == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]
        elif instruction == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]

        pc += 1

    return [memory[i] for i in range(registers[8])]

# Example usage
program = '''
... (assembly code) ...
'''

result = evaluate(program)
print(result)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def evaluate(program):
    lines = program.split('\n')
    registers = [0] * 10  # 10 registers (R0 to R9)
    memory = {}  # Memory storage
    labels = {}  # Label addresses

    # First pass: Find label addresses
    pc = 0  # Program counter
    for line in lines:
        line = line.strip()
        if not line or line.startswith('//'):
            continue
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = pc
        else:
            pc += 1

    # Second pass: Execute instructions
    pc = 0  # Reset program counter
    while pc < len(lines):
        line = lines[pc].strip()
        if not line or line.startswith('//'):
            pc += 1
            continue

        parts = line.split()
        instruction = parts[0]

        if instruction == 'SET':
            reg = int(parts[1][1:])
            value = int(parts[2])
            registers[reg] = value
        elif instruction == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif instruction == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif instruction == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] > registers[reg2])
        elif instruction == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] == registers[reg2])
        elif instruction == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif instruction == 'JT':
            label = parts[1]
            if registers[9]:
                pc = labels[label]
                continue
        elif instruction == 'JF':
            label = parts[1]
            if not registers[9]:
                pc = labels[label]
                continue
        elif instruction == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]
        elif instruction == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]

        pc += 1

    return [memory[i] for i in range(registers[8])]

# Example usage
program = '''
... (assembly code) ...
'''

result = evaluate(program)
print(result)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [] Traceback (most recent call last): File "/usr/src/app/main.py", line 104, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' AssertionError: Wrong answer; got [] instead of [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here's a Python interpreter `evaluate(str)` that simulates the assembly language program you provided and returns the resulting memory state after running the program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def evaluate(program):
    lines = program.strip().split('\n')
    registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0}
    memory = [0] * 100
    labels = {}
    pc = 0

    # First pass: extract labels
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    while pc < len(lines):
        line = lines[pc].strip()
        if '//' in line:
            line = line.split('//')[0].strip()

        if not line:
            pc += 1
            continue

        parts = line.split()
        opcode = parts[0]

        if opcode == 'SET':
            reg, val = parts[1], int(parts[2])
            registers[reg] = val
        elif opcode == 'INC':
            reg = parts[1]
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1, reg2 = parts[1], parts[2]
            registers['FLAG'] = int(registers[reg1] > registers[reg2])
        elif opcode == 'EQ':
            reg1, reg2 = parts[1], parts[2]
            registers['FLAG'] = int(registers[reg1] == registers[reg2])
        elif opcode == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif opcode == 'JT':
            label = parts[1]
            if registers['FLAG']:
                pc = labels[label]
                continue
        elif opcode == 'JF':
            label = parts[1]
            if not registers['FLAG']:
                pc = labels[label]
                continue
        elif opcode == 'MOD':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[reg1] = registers[reg2] % registers[reg3]
        elif opcode == 'STORE':
            reg, addr = parts[1], registers[parts[2]]
            memory[addr] = registers[reg]

        pc += 1

    primes = [num for num in memory if num != 0]
    return primes
This interpreter does the following: 1. It splits the program into individual lines and initializes the registers, memory, labels, and program counter (pc). 2. In the first pass, it extracts the labels and their corresponding line numbers and stores them in the `labels` dictionary. 3. It starts executing the program from the first line and continues until the program counter reaches the end of the program. 4. For each line, it extracts the opcode and operands (if any) and performs the corresponding operation based on the opcode. 5. The `SET`, `INC`, `MUL`, `GT`, `EQ`, `MOD`, and `STORE` opcodes perform the respective operations on the registers and memory. 6. The `JMP`, `JT`, and `JF` opcodes handle

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def evaluate(program):
    lines = program.strip().split('\n')
    registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0}
    memory = [0] * 100
    labels = {}
    pc = 0

    # First pass: extract labels
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    while pc < len(lines):
        line = lines[pc].strip()
        if '//' in line:
            line = line.split('//')[0].strip()

        if not line:
            pc += 1
            continue

        parts = line.split()
        opcode = parts[0]

        if opcode == 'SET':
            reg, val = parts[1], int(parts[2])
            registers[reg] = val
        elif opcode == 'INC':
            reg = parts[1]
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1, reg2 = parts[1], parts[2]
            registers['FLAG'] = int(registers[reg1] > registers[reg2])
        elif opcode == 'EQ':
            reg1, reg2 = parts[1], parts[2]
            registers['FLAG'] = int(registers[reg1] == registers[reg2])
        elif opcode == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif opcode == 'JT':
            label = parts[1]
            if registers['FLAG']:
                pc = labels[label]
                continue
        elif opcode == 'JF':
            label = parts[1]
            if not registers['FLAG']:
                pc = labels[label]
                continue
        elif opcode == 'MOD':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[reg1] = registers[reg2] % registers[reg3]
        elif opcode == 'STORE':
            reg, addr = parts[1], registers[parts[2]]
            memory[addr] = registers[reg]

        pc += 1

    primes = [num for num in memory if num != 0]
    return primes

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def evaluate(program):
    lines = program.strip().split('\n')
    registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0}
    memory = [0] * 100
    labels = {}
    pc = 0

    # First pass: extract labels
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    while pc < len(lines):
        line = lines[pc].strip()
        if '//' in line:
            line = line.split('//')[0].strip()

        if not line:
            pc += 1
            continue

        parts = line.split()
        opcode = parts[0]

        if opcode == 'SET':
            reg, val = parts[1], int(parts[2])
            registers[reg] = val
        elif opcode == 'INC':
            reg = parts[1]
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1, reg2 = parts[1], parts[2]
            registers['FLAG'] = int(registers[reg1] > registers[reg2])
        elif opcode == 'EQ':
            reg1, reg2 = parts[1], parts[2]
            registers['FLAG'] = int(registers[reg1] == registers[reg2])
        elif opcode == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif opcode == 'JT':
            label = parts[1]
            if registers['FLAG']:
                pc = labels[label]
                continue
        elif opcode == 'JF':
            label = parts[1]
            if not registers['FLAG']:
                pc = labels[label]
                continue
        elif opcode == 'MOD':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[reg1] = registers[reg2] % registers[reg3]
        elif opcode == 'STORE':
            reg, addr = parts[1], registers[parts[2]]
            memory[addr] = registers[reg]

        pc += 1

    primes = [num for num in memory if num != 0]
    return primes





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here's a Python interpreter `evaluate(str)` function that simulates the execution of the assembly language program you provided and returns the resulting memory state after running the program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def evaluate(program):
    lines = program.split('\n')
    registers = [0] * 10
    memory = [0] * 1000
    pc = 0
    labels = {}

    # First pass: Extract labels
    for i, line in enumerate(lines):
        line = line.strip()
        if line and not line.startswith('//'):
            if ':' in line:
                label = line.split(':')[0].strip()
                labels[label] = i

    # Second pass: Execute instructions
    while pc < len(lines):
        line = lines[pc].strip()
        if line and not line.startswith('//'):
            parts = line.split()
            instruction = parts[0]

            if instruction == 'SET':
                reg = int(parts[1][1:])
                value = int(parts[2])
                registers[reg] = value
            elif instruction == 'JMP':
                label = parts[1]
                pc = labels[label]
                continue
            elif instruction == 'EQ':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = 1 if registers[reg1] == registers[reg2] else 0
            elif instruction == 'JF':
                label = parts[1]
                if registers[9] == 0:
                    pc = labels[label]
                    continue
            elif instruction == 'STORE':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                memory[registers[reg2]] = registers[reg1]
            elif instruction == 'INC':
                reg = int(parts[1][1:])
                registers[reg] += 1
            elif instruction == 'JT':
                label = parts[1]
                if registers[9] == 1:
                    pc = labels[label]
                    continue
            elif instruction == 'MUL':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] * registers[reg3]
            elif instruction == 'GT':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = 1 if registers[reg1] > registers[reg2] else 0
            elif instruction == 'MOD':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] % registers[reg3]

        pc += 1

    # Extract prime numbers from memory
    primes = memory[:registers[8]]
    return primes

# Example usage
program = '''
... (your assembly language program) ...
'''

result = evaluate(program)
print(result)
In this interpreter, we first split the program into individual lines. We use two passes to process the program: 1. In the first pass, we extract the labels and store their corresponding line numbers in the `labels` dictionary. 2. In the second pass, we execute the instructions line by line. We maintain a program counter `pc` to keep track of the current line being executed. We simulate the behavior of each instruction based on its opcode and operands. The registers are stored in the `registers` list, and memory is represented by the `memory` list. - `SET`: Sets the value of a register. - `JMP`: Unconditional jump to a label. - `EQ`: Compares two registers for equality and sets the flag register (R9). - `JF`: Conditional jump if the flag register is 0. - `STORE`: Stores the value of a register in memory. - `INC`: Increments a register. - `JT`: Conditional jump if the flag register is 1. - `MUL`: Multiplies two registers and stores the result in a register. - `GT`: Compares if one register is greater than another and sets the flag register. - `MOD`: Computes the modulo of two registers and stores the result in a register. 3. After executing all the instructions, we extract the prime numbers from memory based on the value of R8 (prime count) and return them as the result. You can call the `evaluate` function with your assembly language program as a string, and it will return the list of prime numbers computed by the program. Note: This interpreter assumes that the assembly language program is well-formed and follows the specified syntax. It does not include extensive error handling or validation of the program structure.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def evaluate(program):
    lines = program.split('\n')
    registers = [0] * 10
    memory = [0] * 1000
    pc = 0
    labels = {}

    # First pass: Extract labels
    for i, line in enumerate(lines):
        line = line.strip()
        if line and not line.startswith('//'):
            if ':' in line:
                label = line.split(':')[0].strip()
                labels[label] = i

    # Second pass: Execute instructions
    while pc < len(lines):
        line = lines[pc].strip()
        if line and not line.startswith('//'):
            parts = line.split()
            instruction = parts[0]

            if instruction == 'SET':
                reg = int(parts[1][1:])
                value = int(parts[2])
                registers[reg] = value
            elif instruction == 'JMP':
                label = parts[1]
                pc = labels[label]
                continue
            elif instruction == 'EQ':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = 1 if registers[reg1] == registers[reg2] else 0
            elif instruction == 'JF':
                label = parts[1]
                if registers[9] == 0:
                    pc = labels[label]
                    continue
            elif instruction == 'STORE':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                memory[registers[reg2]] = registers[reg1]
            elif instruction == 'INC':
                reg = int(parts[1][1:])
                registers[reg] += 1
            elif instruction == 'JT':
                label = parts[1]
                if registers[9] == 1:
                    pc = labels[label]
                    continue
            elif instruction == 'MUL':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] * registers[reg3]
            elif instruction == 'GT':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = 1 if registers[reg1] > registers[reg2] else 0
            elif instruction == 'MOD':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] % registers[reg3]

        pc += 1

    # Extract prime numbers from memory
    primes = memory[:registers[8]]
    return primes

# Example usage
program = '''
... (your assembly language program) ...
'''

result = evaluate(program)
print(result)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
def evaluate(program):
    lines = program.split('\n')
    registers = [0] * 10
    memory = [0] * 1000
    pc = 0
    labels = {}

    # First pass: Extract labels
    for i, line in enumerate(lines):
        line = line.strip()
        if line and not line.startswith('//'):
            if ':' in line:
                label = line.split(':')[0].strip()
                labels[label] = i

    # Second pass: Execute instructions
    while pc < len(lines):
        line = lines[pc].strip()
        if line and not line.startswith('//'):
            parts = line.split()
            instruction = parts[0]

            if instruction == 'SET':
                reg = int(parts[1][1:])
                value = int(parts[2])
                registers[reg] = value
            elif instruction == 'JMP':
                label = parts[1]
                pc = labels[label]
                continue
            elif instruction == 'EQ':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = 1 if registers[reg1] == registers[reg2] else 0
            elif instruction == 'JF':
                label = parts[1]
                if registers[9] == 0:
                    pc = labels[label]
                    continue
            elif instruction == 'STORE':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                memory[registers[reg2]] = registers[reg1]
            elif instruction == 'INC':
                reg = int(parts[1][1:])
                registers[reg] += 1
            elif instruction == 'JT':
                label = parts[1]
                if registers[9] == 1:
                    pc = labels[label]
                    continue
            elif instruction == 'MUL':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] * registers[reg3]
            elif instruction == 'GT':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = 1 if registers[reg1] > registers[reg2] else 0
            elif instruction == 'MOD':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] % registers[reg3]

        pc += 1

    # Extract prime numbers from memory
    primes = memory[:registers[8]]
    return primes

# Example usage
program = '''
... (your assembly language program) ...
'''

result = evaluate(program)
print(result)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [] Traceback (most recent call last): File "/usr/src/app/main.py", line 99, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' AssertionError: Wrong answer; got [] instead of [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here's a Python interpreter `evaluate(str)` function that simulates the execution of the assembly language program you provided and returns the resulting memory state after running the program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
def evaluate(program):
    lines = program.strip().split('\n')
    registers = [0] * 10
    memory = [0] * 1000
    labels = {}
    
    # First pass: Find labels and store their positions
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i
    
    # Second pass: Execute the program
    i = 0
    while i < len(lines):
        line = lines[i].strip()
        if not line or line.startswith('//'):
            i += 1
            continue
        
        parts = line.split()
        instruction = parts[0]
        
        if instruction == 'SET':
            reg = int(parts[1][1:])
            val = int(parts[2])
            registers[reg] = val
        elif instruction == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif instruction == 'MUL':
            dest_reg = int(parts[1][1:])
            reg1 = int(parts[2][1:])
            reg2 = int(parts[3][1:])
            registers[dest_reg] = registers[reg1] * registers[reg2]
        elif instruction == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] > registers[reg2])
        elif instruction == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] == registers[reg2])
        elif instruction == 'JMP':
            label = parts[1]
            i = labels[label]
            continue
        elif instruction == 'JT':
            label = parts[1]
            if registers[9]:
                i = labels[label]
                continue
        elif instruction == 'JF':
            label = parts[1]
            if not registers[9]:
                i = labels[label]
                continue
        elif instruction == 'MOD':
            dest_reg = int(parts[1][1:])
            reg1 = int(parts[2][1:])
            reg2 = int(parts[3][1:])
            registers[dest_reg] = registers[reg1] % registers[reg2]
        elif instruction == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]
        
        i += 1
    
    # Return the memory state (prime numbers)
    return [num for num in memory if num != 0]
In this implementation, the `evaluate` function takes the assembly language program as a string input and returns the resulting memory state after executing the program. The interpreter uses two passes: 1. In the first pass, it finds all the labels in the program and stores their positions in the `labels` dictionary. 2. In the second pass, it executes the program line by line, simulating the behavior of each instruction. The interpreter maintains two arrays: - `registers`: Represents the registers (R0 to R9) used in the program. - `memory`: Represents the memory space where the prime numbers are stored. The interpreter supports the following instructions: - `SET`: Sets a register to a specific value. - `INC`: Increments a register by 1. - `MUL`: Multiplies the values of two registers and stores the result in a destination register. - `GT`: Sets the flag register (R9) to 1 if the value in the first register is greater than the value in the second register, otherwise sets it to 0. - `EQ`: Sets the flag register (R9) to 1 if the values in the two registers are equal, otherwise sets it to 0. - `JMP`: Unconditional jump to a specified label. - `JT`: Jump to a specified label if the flag register (R9) is true (non-zero). - `JF`: Jump to a specified label if the flag register (R9) is false (zero). - `MOD`: Computes the modulo of the values in two registers and stores the result in a destination register. - `STORE`: Stores the value from a register to the memory location pointed to by another register. Finally, the interpreter returns the memory state, which contains the prime numbers stored during the execution of the program. You can use the `evaluate` function by passing the assembly language program as a string argument. It will return the list of prime numbers computed by the program.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
def evaluate(program):
    lines = program.strip().split('\n')
    registers = [0] * 10
    memory = [0] * 1000
    labels = {}
    
    # First pass: Find labels and store their positions
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i
    
    # Second pass: Execute the program
    i = 0
    while i < len(lines):
        line = lines[i].strip()
        if not line or line.startswith('//'):
            i += 1
            continue
        
        parts = line.split()
        instruction = parts[0]
        
        if instruction == 'SET':
            reg = int(parts[1][1:])
            val = int(parts[2])
            registers[reg] = val
        elif instruction == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif instruction == 'MUL':
            dest_reg = int(parts[1][1:])
            reg1 = int(parts[2][1:])
            reg2 = int(parts[3][1:])
            registers[dest_reg] = registers[reg1] * registers[reg2]
        elif instruction == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] > registers[reg2])
        elif instruction == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] == registers[reg2])
        elif instruction == 'JMP':
            label = parts[1]
            i = labels[label]
            continue
        elif instruction == 'JT':
            label = parts[1]
            if registers[9]:
                i = labels[label]
                continue
        elif instruction == 'JF':
            label = parts[1]
            if not registers[9]:
                i = labels[label]
                continue
        elif instruction == 'MOD':
            dest_reg = int(parts[1][1:])
            reg1 = int(parts[2][1:])
            reg2 = int(parts[3][1:])
            registers[dest_reg] = registers[reg1] % registers[reg2]
        elif instruction == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]
        
        i += 1
    
    # Return the memory state (prime numbers)
    return [num for num in memory if num != 0]

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def evaluate(program):
    lines = program.strip().split('\n')
    registers = [0] * 10
    memory = [0] * 1000
    labels = {}
    
    # First pass: Find labels and store their positions
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i
    
    # Second pass: Execute the program
    i = 0
    while i < len(lines):
        line = lines[i].strip()
        if not line or line.startswith('//'):
            i += 1
            continue
        
        parts = line.split()
        instruction = parts[0]
        
        if instruction == 'SET':
            reg = int(parts[1][1:])
            val = int(parts[2])
            registers[reg] = val
        elif instruction == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif instruction == 'MUL':
            dest_reg = int(parts[1][1:])
            reg1 = int(parts[2][1:])
            reg2 = int(parts[3][1:])
            registers[dest_reg] = registers[reg1] * registers[reg2]
        elif instruction == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] > registers[reg2])
        elif instruction == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] == registers[reg2])
        elif instruction == 'JMP':
            label = parts[1]
            i = labels[label]
            continue
        elif instruction == 'JT':
            label = parts[1]
            if registers[9]:
                i = labels[label]
                continue
        elif instruction == 'JF':
            label = parts[1]
            if not registers[9]:
                i = labels[label]
                continue
        elif instruction == 'MOD':
            dest_reg = int(parts[1][1:])
            reg1 = int(parts[2][1:])
            reg2 = int(parts[3][1:])
            registers[dest_reg] = registers[reg1] % registers[reg2]
        elif instruction == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]
        
        i += 1
    
    # Return the memory state (prime numbers)
    return [num for num in memory if num != 0]





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here's a Python interpreter `evaluate(str)` that takes the assembly language program as a string and returns the resulting memory state after running the program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def evaluate(program):
    lines = program.strip().split('\n')
    memory = [0] * 1000  # Simulate memory with 1000 slots
    registers = [0] * 10  # 10 registers (R0 to R9)
    labels = {}

    # First pass: Find labels and store their positions
    for i, line in enumerate(lines):
        line = line.strip()
        if line and not line.startswith('//'):
            parts = line.split()
            if len(parts) == 1 and parts[0].endswith(':'):
                label = parts[0][:-1]
                labels[label] = i

    # Second pass: Execute the program
    pc = 0  # Program counter
    while pc < len(lines):
        line = lines[pc].strip()
        if line and not line.startswith('//'):
            parts = line.split()
            instruction = parts[0]

            if instruction == 'SET':
                reg = int(parts[1][1:])
                value = int(parts[2])
                registers[reg] = value
            elif instruction == 'JMP':
                label = parts[1]
                pc = labels[label]
                continue
            elif instruction == 'EQ':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = int(registers[reg1] == registers[reg2])
            elif instruction == 'JF':
                label = parts[1]
                if registers[9] == 0:
                    pc = labels[label]
                    continue
            elif instruction == 'STORE':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                memory[registers[reg2]] = registers[reg1]
            elif instruction == 'INC':
                reg = int(parts[1][1:])
                registers[reg] += 1
            elif instruction == 'MUL':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] * registers[reg3]
            elif instruction == 'GT':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = int(registers[reg1] > registers[reg2])
            elif instruction == 'JT':
                label = parts[1]
                if registers[9] == 1:
                    pc = labels[label]
                    continue
            elif instruction == 'MOD':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] % registers[reg3]

        pc += 1

    return [value for value in memory if value != 0]
To use this interpreter, you can call the `evaluate()` function with the assembly language program as a string argument. It will return the resulting memory state after running the program. For example:
1
2
3
4
5
6
program = '''
... (assembly language program) ...
'''

result = evaluate(program)
print(result)
The interpreter simulates memory with 1000 slots and 10 registers (R0 to R9). It performs two passes over the program: 1. In the first pass, it finds the labels and stores their positions in the `labels` dictionary. 2. In the second pass, it executes the program instruction by instruction, updating the registers and memory accordingly. Finally, it returns a list of non-zero values from the memory, which represents the resulting memory state after running the program. Note: This interpreter assumes that the assembly language program is syntactically correct and follows the specified format. It does not include error handling for invalid instructions or syntax.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def evaluate(program):
    lines = program.strip().split('\n')
    memory = [0] * 1000  # Simulate memory with 1000 slots
    registers = [0] * 10  # 10 registers (R0 to R9)
    labels = {}

    # First pass: Find labels and store their positions
    for i, line in enumerate(lines):
        line = line.strip()
        if line and not line.startswith('//'):
            parts = line.split()
            if len(parts) == 1 and parts[0].endswith(':'):
                label = parts[0][:-1]
                labels[label] = i

    # Second pass: Execute the program
    pc = 0  # Program counter
    while pc < len(lines):
        line = lines[pc].strip()
        if line and not line.startswith('//'):
            parts = line.split()
            instruction = parts[0]

            if instruction == 'SET':
                reg = int(parts[1][1:])
                value = int(parts[2])
                registers[reg] = value
            elif instruction == 'JMP':
                label = parts[1]
                pc = labels[label]
                continue
            elif instruction == 'EQ':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = int(registers[reg1] == registers[reg2])
            elif instruction == 'JF':
                label = parts[1]
                if registers[9] == 0:
                    pc = labels[label]
                    continue
            elif instruction == 'STORE':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                memory[registers[reg2]] = registers[reg1]
            elif instruction == 'INC':
                reg = int(parts[1][1:])
                registers[reg] += 1
            elif instruction == 'MUL':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] * registers[reg3]
            elif instruction == 'GT':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = int(registers[reg1] > registers[reg2])
            elif instruction == 'JT':
                label = parts[1]
                if registers[9] == 1:
                    pc = labels[label]
                    continue
            elif instruction == 'MOD':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] % registers[reg3]

        pc += 1

    return [value for value in memory if value != 0]

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def evaluate(program):
    lines = program.strip().split('\n')
    memory = [0] * 1000  # Simulate memory with 1000 slots
    registers = [0] * 10  # 10 registers (R0 to R9)
    labels = {}

    # First pass: Find labels and store their positions
    for i, line in enumerate(lines):
        line = line.strip()
        if line and not line.startswith('//'):
            parts = line.split()
            if len(parts) == 1 and parts[0].endswith(':'):
                label = parts[0][:-1]
                labels[label] = i

    # Second pass: Execute the program
    pc = 0  # Program counter
    while pc < len(lines):
        line = lines[pc].strip()
        if line and not line.startswith('//'):
            parts = line.split()
            instruction = parts[0]

            if instruction == 'SET':
                reg = int(parts[1][1:])
                value = int(parts[2])
                registers[reg] = value
            elif instruction == 'JMP':
                label = parts[1]
                pc = labels[label]
                continue
            elif instruction == 'EQ':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = int(registers[reg1] == registers[reg2])
            elif instruction == 'JF':
                label = parts[1]
                if registers[9] == 0:
                    pc = labels[label]
                    continue
            elif instruction == 'STORE':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                memory[registers[reg2]] = registers[reg1]
            elif instruction == 'INC':
                reg = int(parts[1][1:])
                registers[reg] += 1
            elif instruction == 'MUL':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] * registers[reg3]
            elif instruction == 'GT':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                registers[9] = int(registers[reg1] > registers[reg2])
            elif instruction == 'JT':
                label = parts[1]
                if registers[9] == 1:
                    pc = labels[label]
                    continue
            elif instruction == 'MOD':
                reg1 = int(parts[1][1:])
                reg2 = int(parts[2][1:])
                reg3 = int(parts[3][1:])
                registers[reg1] = registers[reg2] % registers[reg3]

        pc += 1

    return [value for value in memory if value != 0]





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 92, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 31, in evaluate pc = labels[label] KeyError: 'start_loop'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False