Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

To write a Python interpreter for the given assembly language, we need to understand the instructions and their functionality. Here's a Python function `evaluate(str)` that interprets the given assembly language and returns the resulting memory state after running the program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def evaluate(program):
    # Split the program into lines and remove empty lines and comments
    lines = [line.strip() for line in program.split('\n') if line.strip() and not line.strip().startswith('//')]

    # Initialize registers and memory
    registers = [0] * 10
    memory = [0] * 101  # Assuming memory size of 101 to store primes

    # Dictionary to store labels and their corresponding line numbers
    labels = {}

    # Find labels and store their line numbers
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    # Execute the program
    i = 0
    while i < len(lines):
        line = lines[i]
        parts = line.split()
        instruction = parts[0]

        if instruction == 'SET':
            reg = int(parts[1][1])
            value = int(parts[2])
            registers[reg] = value
        elif instruction == 'JMP':
            label = parts[1]
            i = labels[label]
            continue
        elif instruction == 'EQ':
            reg1 = int(parts[1][1])
            reg2_or_value = parts[2]
            if reg2_or_value.startswith('R'):
                reg2 = int(reg2_or_value[1])
                registers[8] = int(registers[reg1] == registers[reg2])
            else:
                value = int(reg2_or_value)
                registers[8] = int(registers[reg1] == value)
        elif instruction == 'JF':
            label = parts[1]
            if registers[8] == 0:
                i = labels[label]
                continue
        elif instruction == 'STORE':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            memory[registers[reg2]] = registers[reg1]
        elif instruction == 'INC':
            reg = int(parts[1][1])
            registers[reg] += 1
        elif instruction == 'MUL':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            reg3 = int(parts[3][1])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif instruction == 'GT':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            registers[8] = int(registers[reg1] > registers[reg2])
        elif instruction == 'JT':
            label = parts[1]
            if registers[8] == 1:
                i = labels[label]
                continue
        elif instruction == 'MOD':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            reg3 = int(parts[3][1])
            registers[reg1] = registers[reg2] % registers[reg3]

        i += 1

    return memory[1:registers[8]]
In this implementation: 1. The program is split into lines, and empty lines and comments are removed. 2. Registers and memory are initialized. We assume a memory size of 101 to store the primes. 3. Labels and their corresponding line numbers are stored in a dictionary for easy access. 4. The program is executed line by line, interpreting each instruction accordingly. 5. After the execution is complete, the function returns the memory contents from index 1 to the value stored in register R8, which represents the count of prime numbers found. You can call the `evaluate(program)` function with the given assembly language program as a string, and it will return the resulting list of prime numbers.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def evaluate(program):
    # Split the program into lines and remove empty lines and comments
    lines = [line.strip() for line in program.split('\n') if line.strip() and not line.strip().startswith('//')]

    # Initialize registers and memory
    registers = [0] * 10
    memory = [0] * 101  # Assuming memory size of 101 to store primes

    # Dictionary to store labels and their corresponding line numbers
    labels = {}

    # Find labels and store their line numbers
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    # Execute the program
    i = 0
    while i < len(lines):
        line = lines[i]
        parts = line.split()
        instruction = parts[0]

        if instruction == 'SET':
            reg = int(parts[1][1])
            value = int(parts[2])
            registers[reg] = value
        elif instruction == 'JMP':
            label = parts[1]
            i = labels[label]
            continue
        elif instruction == 'EQ':
            reg1 = int(parts[1][1])
            reg2_or_value = parts[2]
            if reg2_or_value.startswith('R'):
                reg2 = int(reg2_or_value[1])
                registers[8] = int(registers[reg1] == registers[reg2])
            else:
                value = int(reg2_or_value)
                registers[8] = int(registers[reg1] == value)
        elif instruction == 'JF':
            label = parts[1]
            if registers[8] == 0:
                i = labels[label]
                continue
        elif instruction == 'STORE':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            memory[registers[reg2]] = registers[reg1]
        elif instruction == 'INC':
            reg = int(parts[1][1])
            registers[reg] += 1
        elif instruction == 'MUL':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            reg3 = int(parts[3][1])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif instruction == 'GT':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            registers[8] = int(registers[reg1] > registers[reg2])
        elif instruction == 'JT':
            label = parts[1]
            if registers[8] == 1:
                i = labels[label]
                continue
        elif instruction == 'MOD':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            reg3 = int(parts[3][1])
            registers[reg1] = registers[reg2] % registers[reg3]

        i += 1

    return memory[1:registers[8]]

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def evaluate(program):
    # Split the program into lines and remove empty lines and comments
    lines = [line.strip() for line in program.split('\n') if line.strip() and not line.strip().startswith('//')]

    # Initialize registers and memory
    registers = [0] * 10
    memory = [0] * 101  # Assuming memory size of 101 to store primes

    # Dictionary to store labels and their corresponding line numbers
    labels = {}

    # Find labels and store their line numbers
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    # Execute the program
    i = 0
    while i < len(lines):
        line = lines[i]
        parts = line.split()
        instruction = parts[0]

        if instruction == 'SET':
            reg = int(parts[1][1])
            value = int(parts[2])
            registers[reg] = value
        elif instruction == 'JMP':
            label = parts[1]
            i = labels[label]
            continue
        elif instruction == 'EQ':
            reg1 = int(parts[1][1])
            reg2_or_value = parts[2]
            if reg2_or_value.startswith('R'):
                reg2 = int(reg2_or_value[1])
                registers[8] = int(registers[reg1] == registers[reg2])
            else:
                value = int(reg2_or_value)
                registers[8] = int(registers[reg1] == value)
        elif instruction == 'JF':
            label = parts[1]
            if registers[8] == 0:
                i = labels[label]
                continue
        elif instruction == 'STORE':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            memory[registers[reg2]] = registers[reg1]
        elif instruction == 'INC':
            reg = int(parts[1][1])
            registers[reg] += 1
        elif instruction == 'MUL':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            reg3 = int(parts[3][1])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif instruction == 'GT':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            registers[8] = int(registers[reg1] > registers[reg2])
        elif instruction == 'JT':
            label = parts[1]
            if registers[8] == 1:
                i = labels[label]
                continue
        elif instruction == 'MOD':
            reg1 = int(parts[1][1])
            reg2 = int(parts[2][1])
            reg3 = int(parts[3][1])
            registers[reg1] = registers[reg2] % registers[reg3]

        i += 1

    return memory[1:registers[8]]





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 96, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [] instead of [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here's a Python interpreter `evaluate(str)` that returns the resulting memory state after running the program in your custom assembly language:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def evaluate(program):
    lines = program.split('\n')
    memory = [0] * 1000  # Memory array to store values
    registers = [0] * 10  # Registers R0 to R9
    pc = 0  # Program counter

    def get_value(operand):
        if operand.startswith('R'):
            return registers[int(operand[1:])]
        else:
            return int(operand)

    while pc < len(lines):
        line = lines[pc].strip()
        if not line or line.startswith('//'):
            pc += 1
            continue

        parts = line.split()
        opcode = parts[0]

        if opcode == 'SET':
            reg = int(parts[1][1:])
            value = get_value(parts[2])
            registers[reg] = value
        elif opcode == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[8] = 1 if registers[reg1] > registers[reg2] else 0
        elif opcode == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[8] = 1 if registers[reg1] == registers[reg2] else 0
        elif opcode == 'JMP':
            label = parts[1]
            pc = lines.index(label + ':')
            continue
        elif opcode == 'JT':
            label = parts[1]
            if registers[8] == 1:
                pc = lines.index(label + ':')
                continue
        elif opcode == 'JF':
            label = parts[1]
            if registers[8] == 0:
                pc = lines.index(label + ':')
                continue
        elif opcode == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]
        elif opcode == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]

        pc += 1

    return memory[:registers[8]]
This interpreter does the following: 1. It splits the program into lines and initializes memory and registers. 2. It iterates over each line of the program using a program counter (`pc`). 3. It skips empty lines and comments. 4. It splits each line into parts to extract the opcode and operands. 5. Based on the opcode, it performs the corresponding operation: - `SET`: Sets a register to a value. - `INC`: Increments a register. - `MUL`: Multiplies the values of two registers and stores the result in a third register. - `GT`: Sets register R8 to 1 if the value in the first register is greater than the value in the second register, else sets R8 to 0. - `EQ`: Sets register R8 to 1 if the values in the two registers are equal, else sets R8 to 0. - `JMP`: Jumps to a label. - `JT`: Jumps to a label if register R8 is 1. - `JF`: Jumps to a label if register R8 is 0. - `MOD`: Computes the modulo of the values in two registers and stores the result in a third register. - `STORE`: Stores the value from a register into memory at the address pointed by another register. 6. After executing all the instructions, it returns the memory state up to the value stored in register R8. You can call the `evaluate` function with your program as a string, and it will return the resulting memory state containing the prime numbers.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def evaluate(program):
    lines = program.split('\n')
    memory = [0] * 1000  # Memory array to store values
    registers = [0] * 10  # Registers R0 to R9
    pc = 0  # Program counter

    def get_value(operand):
        if operand.startswith('R'):
            return registers[int(operand[1:])]
        else:
            return int(operand)

    while pc < len(lines):
        line = lines[pc].strip()
        if not line or line.startswith('//'):
            pc += 1
            continue

        parts = line.split()
        opcode = parts[0]

        if opcode == 'SET':
            reg = int(parts[1][1:])
            value = get_value(parts[2])
            registers[reg] = value
        elif opcode == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[8] = 1 if registers[reg1] > registers[reg2] else 0
        elif opcode == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[8] = 1 if registers[reg1] == registers[reg2] else 0
        elif opcode == 'JMP':
            label = parts[1]
            pc = lines.index(label + ':')
            continue
        elif opcode == 'JT':
            label = parts[1]
            if registers[8] == 1:
                pc = lines.index(label + ':')
                continue
        elif opcode == 'JF':
            label = parts[1]
            if registers[8] == 0:
                pc = lines.index(label + ':')
                continue
        elif opcode == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]
        elif opcode == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]

        pc += 1

    return memory[:registers[8]]

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def evaluate(program):
    lines = program.split('\n')
    memory = [0] * 1000  # Memory array to store values
    registers = [0] * 10  # Registers R0 to R9
    pc = 0  # Program counter

    def get_value(operand):
        if operand.startswith('R'):
            return registers[int(operand[1:])]
        else:
            return int(operand)

    while pc < len(lines):
        line = lines[pc].strip()
        if not line or line.startswith('//'):
            pc += 1
            continue

        parts = line.split()
        opcode = parts[0]

        if opcode == 'SET':
            reg = int(parts[1][1:])
            value = get_value(parts[2])
            registers[reg] = value
        elif opcode == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[8] = 1 if registers[reg1] > registers[reg2] else 0
        elif opcode == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[8] = 1 if registers[reg1] == registers[reg2] else 0
        elif opcode == 'JMP':
            label = parts[1]
            pc = lines.index(label + ':')
            continue
        elif opcode == 'JT':
            label = parts[1]
            if registers[8] == 1:
                pc = lines.index(label + ':')
                continue
        elif opcode == 'JF':
            label = parts[1]
            if registers[8] == 0:
                pc = lines.index(label + ':')
                continue
        elif opcode == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]
        elif opcode == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]

        pc += 1

    return memory[:registers[8]]





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 75, in <module> answer = evaluate(""" ^^^^^^^^^^^^ File "/usr/src/app/main.py", line 65, in evaluate memory[registers[reg2]] = registers[reg1] ~~~~~~^^^^^^^^^^^^^^^^^ IndexError: list assignment index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here's a Python interpreter `evaluate(str)` that simulates the execution of the given assembly language program and returns the resulting memory state:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def evaluate(program):
    lines = program.strip().split('\n')
    labels = {}
    instructions = []

    # Parse the program and extract labels and instructions
    for line in lines:
        line = line.strip()
        if not line or line.startswith('//'):
            continue
        if ':' in line:
            label, instruction = line.split(':', 1)
            labels[label.strip()] = len(instructions)
            if instruction.strip():
                instructions.append(instruction.strip())
        else:
            instructions.append(line)

    # Initialize registers and memory
    registers = [0] * 10
    memory = [0] * 100

    # Execute the program
    pc = 0
    while pc < len(instructions):
        instruction = instructions[pc]
        parts = instruction.split()
        opcode = parts[0]

        if opcode == 'SET':
            reg = int(parts[1][1:])
            value = int(parts[2])
            registers[reg] = value
        elif opcode == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif opcode == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2])
            registers[reg1] = int(registers[reg1] == reg2)
        elif opcode == 'JF':
            label = parts[1]
            if not registers[0]:
                pc = labels[label]
                continue
        elif opcode == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]
        elif opcode == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[reg1] = int(registers[reg1] > registers[reg2])
        elif opcode == 'JT':
            label = parts[1]
            if registers[0]:
                pc = labels[label]
                continue
        elif opcode == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]
        else:
            raise ValueError(f"Unknown opcode: {opcode}")

        pc += 1

    return memory[:registers[8]]
The `evaluate` function takes the assembly language program as a string and returns the resulting memory state after executing the program. Here's how it works: 1. The program is split into individual lines, and each line is parsed to extract labels and instructions. Labels are stored in a dictionary (`labels`) with their corresponding instruction indices, and instructions are stored in a list (`instructions`). 2. Registers and memory are initialized with zeros. 3. The program is executed instruction by instruction using a program counter (`pc`). The opcode of each instruction is extracted, and the corresponding operation is performed based on the opcode. 4. The `SET` instruction sets a register to a specific value. 5. The `JMP` instruction jumps to a specified label by updating the program counter. 6. The `EQ` instruction compares two registers and sets the result in the first register. 7. The `JF` instruction jumps to a specified label if the flag register (register 0) is zero. 8. The `STORE` instruction stores the value of a register in memory at the address pointed to by another register. 9. The `INC` instruction increments a register by 1. 10. The `MUL` instruction multiplies two registers and stores the result in a third register. 11. The `GT` instruction compares two registers and sets the flag register if the first register is greater than the second. 12. The `JT` instruction jumps to a specified label if the flag register is non-zero. 13. The `MOD` instruction calculates the modulo of two registers and stores the result in a third register. 14. If an unknown opcode is encountered, a `ValueError` is raised. 15. After the program execution is complete, the memory state up to the value of register 8 (which represents the count of prime numbers) is returned. You can call the `evaluate` function with the assembly language program as a string, and it will return the resulting memory state containing the prime numbers found.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def evaluate(program):
    lines = program.strip().split('\n')
    labels = {}
    instructions = []

    # Parse the program and extract labels and instructions
    for line in lines:
        line = line.strip()
        if not line or line.startswith('//'):
            continue
        if ':' in line:
            label, instruction = line.split(':', 1)
            labels[label.strip()] = len(instructions)
            if instruction.strip():
                instructions.append(instruction.strip())
        else:
            instructions.append(line)

    # Initialize registers and memory
    registers = [0] * 10
    memory = [0] * 100

    # Execute the program
    pc = 0
    while pc < len(instructions):
        instruction = instructions[pc]
        parts = instruction.split()
        opcode = parts[0]

        if opcode == 'SET':
            reg = int(parts[1][1:])
            value = int(parts[2])
            registers[reg] = value
        elif opcode == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif opcode == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2])
            registers[reg1] = int(registers[reg1] == reg2)
        elif opcode == 'JF':
            label = parts[1]
            if not registers[0]:
                pc = labels[label]
                continue
        elif opcode == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]
        elif opcode == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[reg1] = int(registers[reg1] > registers[reg2])
        elif opcode == 'JT':
            label = parts[1]
            if registers[0]:
                pc = labels[label]
                continue
        elif opcode == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]
        else:
            raise ValueError(f"Unknown opcode: {opcode}")

        pc += 1

    return memory[:registers[8]]

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def evaluate(program):
    lines = program.strip().split('\n')
    labels = {}
    instructions = []

    # Parse the program and extract labels and instructions
    for line in lines:
        line = line.strip()
        if not line or line.startswith('//'):
            continue
        if ':' in line:
            label, instruction = line.split(':', 1)
            labels[label.strip()] = len(instructions)
            if instruction.strip():
                instructions.append(instruction.strip())
        else:
            instructions.append(line)

    # Initialize registers and memory
    registers = [0] * 10
    memory = [0] * 100

    # Execute the program
    pc = 0
    while pc < len(instructions):
        instruction = instructions[pc]
        parts = instruction.split()
        opcode = parts[0]

        if opcode == 'SET':
            reg = int(parts[1][1:])
            value = int(parts[2])
            registers[reg] = value
        elif opcode == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif opcode == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2])
            registers[reg1] = int(registers[reg1] == reg2)
        elif opcode == 'JF':
            label = parts[1]
            if not registers[0]:
                pc = labels[label]
                continue
        elif opcode == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]
        elif opcode == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[reg1] = int(registers[reg1] > registers[reg2])
        elif opcode == 'JT':
            label = parts[1]
            if registers[0]:
                pc = labels[label]
                continue
        elif opcode == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]
        else:
            raise ValueError(f"Unknown opcode: {opcode}")

        pc += 1

    return memory[:registers[8]]





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Timeout: function took too long to complete

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here's a Python interpreter `evaluate(str)` that takes the assembly language program as input and returns the resulting memory state after running the program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def evaluate(program):
    lines = program.split('\n')
    registers = [0] * 10
    memory = [0] * 1000
    pc = 0

    def get_value(operand):
        if operand.startswith('R'):
            return registers[int(operand[1:])]
        else:
            return int(operand)

    while pc < len(lines):
        line = lines[pc].strip()
        if line == '' or line.startswith('//'):
            pc += 1
            continue

        parts = line.split()
        instruction = parts[0]

        if instruction == 'SET':
            reg, value = parts[1], get_value(parts[2])
            registers[int(reg[1:])] = value
        elif instruction == 'INC':
            reg = parts[1]
            registers[int(reg[1:])] += 1
        elif instruction == 'MUL':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[int(reg1[1:])] = get_value(reg2) * get_value(reg3)
        elif instruction == 'GT':
            reg1, reg2 = parts[1], parts[2]
            registers[9] = int(get_value(reg1) > get_value(reg2))
        elif instruction == 'EQ':
            reg1, reg2 = parts[1], parts[2]
            registers[9] = int(get_value(reg1) == get_value(reg2))
        elif instruction == 'JMP':
            label = parts[1]
            pc = lines.index(label + ':')
            continue
        elif instruction == 'JT':
            label = parts[1]
            if registers[9]:
                pc = lines.index(label + ':')
                continue
        elif instruction == 'JF':
            label = parts[1]
            if not registers[9]:
                pc = lines.index(label + ':')
                continue
        elif instruction == 'MOD':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[int(reg1[1:])] = get_value(reg2) % get_value(reg3)
        elif instruction == 'STORE':
            reg1, reg2 = parts[1], parts[2]
            memory[get_value(reg2)] = get_value(reg1)

        pc += 1

    return [memory[i] for i in range(100)]

# Example usage
program = '''
SET R1 2          // Starting number to check for prime

start_find_primes:
    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
'''

result = evaluate(program)
print(result)
In this interpreter: 1. The `evaluate` function takes the assembly language program as a string input. 2. The program is split into lines, and each line is processed sequentially. 3. The interpreter maintains a set of registers (`registers`) and a memory array (`memory`) to store values during program execution. 4. The `get_value` function is used to retrieve the value of an operand, which can be either a register or an immediate value. 5. The interpreter executes each instruction based on its type (e.g., `SET`, `INC`, `MUL`, `GT`, `EQ`, `JMP`, `JT`, `JF`, `MOD`, `STORE`). 6. The program counter (`pc`) keeps track of the current line being executed. 7. The interpreter continues executing instructions until it reaches the end of the program or encounters a `JMP end` instruction. 8. Finally, the interpreter returns the first 100 values from the memory array as the resulting memory state. When you run `evaluate(program)` with the provided assembly language program, it will compute the first 100 prime numbers and return them as a list. Note: This interpreter assumes that the assembly language program is well-formed and follows the specified syntax. It doesn't include extensive error handling or validation of the program structure.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def evaluate(program):
    lines = program.split('\n')
    registers = [0] * 10
    memory = [0] * 1000
    pc = 0

    def get_value(operand):
        if operand.startswith('R'):
            return registers[int(operand[1:])]
        else:
            return int(operand)

    while pc < len(lines):
        line = lines[pc].strip()
        if line == '' or line.startswith('//'):
            pc += 1
            continue

        parts = line.split()
        instruction = parts[0]

        if instruction == 'SET':
            reg, value = parts[1], get_value(parts[2])
            registers[int(reg[1:])] = value
        elif instruction == 'INC':
            reg = parts[1]
            registers[int(reg[1:])] += 1
        elif instruction == 'MUL':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[int(reg1[1:])] = get_value(reg2) * get_value(reg3)
        elif instruction == 'GT':
            reg1, reg2 = parts[1], parts[2]
            registers[9] = int(get_value(reg1) > get_value(reg2))
        elif instruction == 'EQ':
            reg1, reg2 = parts[1], parts[2]
            registers[9] = int(get_value(reg1) == get_value(reg2))
        elif instruction == 'JMP':
            label = parts[1]
            pc = lines.index(label + ':')
            continue
        elif instruction == 'JT':
            label = parts[1]
            if registers[9]:
                pc = lines.index(label + ':')
                continue
        elif instruction == 'JF':
            label = parts[1]
            if not registers[9]:
                pc = lines.index(label + ':')
                continue
        elif instruction == 'MOD':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[int(reg1[1:])] = get_value(reg2) % get_value(reg3)
        elif instruction == 'STORE':
            reg1, reg2 = parts[1], parts[2]
            memory[get_value(reg2)] = get_value(reg1)

        pc += 1

    return [memory[i] for i in range(100)]

# Example usage
program = '''
SET R1 2          // Starting number to check for prime

start_find_primes:
    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
'''

result = evaluate(program)
print(result)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def evaluate(program):
    lines = program.split('\n')
    registers = [0] * 10
    memory = [0] * 1000
    pc = 0

    def get_value(operand):
        if operand.startswith('R'):
            return registers[int(operand[1:])]
        else:
            return int(operand)

    while pc < len(lines):
        line = lines[pc].strip()
        if line == '' or line.startswith('//'):
            pc += 1
            continue

        parts = line.split()
        instruction = parts[0]

        if instruction == 'SET':
            reg, value = parts[1], get_value(parts[2])
            registers[int(reg[1:])] = value
        elif instruction == 'INC':
            reg = parts[1]
            registers[int(reg[1:])] += 1
        elif instruction == 'MUL':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[int(reg1[1:])] = get_value(reg2) * get_value(reg3)
        elif instruction == 'GT':
            reg1, reg2 = parts[1], parts[2]
            registers[9] = int(get_value(reg1) > get_value(reg2))
        elif instruction == 'EQ':
            reg1, reg2 = parts[1], parts[2]
            registers[9] = int(get_value(reg1) == get_value(reg2))
        elif instruction == 'JMP':
            label = parts[1]
            pc = lines.index(label + ':')
            continue
        elif instruction == 'JT':
            label = parts[1]
            if registers[9]:
                pc = lines.index(label + ':')
                continue
        elif instruction == 'JF':
            label = parts[1]
            if not registers[9]:
                pc = lines.index(label + ':')
                continue
        elif instruction == 'MOD':
            reg1, reg2, reg3 = parts[1], parts[2], parts[3]
            registers[int(reg1[1:])] = get_value(reg2) % get_value(reg3)
        elif instruction == 'STORE':
            reg1, reg2 = parts[1], parts[2]
            memory[get_value(reg2)] = get_value(reg1)

        pc += 1

    return [memory[i] for i in range(100)]

# Example usage
program = '''
SET R1 2          // Starting number to check for prime

start_find_primes:
    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
'''

result = evaluate(program)
print(result)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 114, in <module> result = evaluate(program) ^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 40, in evaluate pc = lines.index(label + ':') ^^^^^^^^^^^^^^^^^^^^^^^^ ValueError: 'start_loop:' is not in list

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

LLM Generation

Query

Here is an example program from a new assmebly language I made up that computes primes:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
ite me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[2, 3, 5, 7, ...]` for the above program.

Output

Here's a Python interpreter `evaluate(str)` that simulates the execution of the assembly language program you provided and returns the resulting memory state after running the program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def evaluate(program):
    lines = program.strip().split('\n')
    labels = {}
    memory = [0] * 100
    registers = [0] * 10
    pc = 0

    # First pass: identify labels
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    # Second pass: execute instructions
    while pc < len(lines):
        line = lines[pc].strip()
        if ':' in line:
            pc += 1
            continue

        parts = line.split()
        if len(parts) == 0 or parts[0].startswith('//'):
            pc += 1
            continue

        opcode = parts[0]

        if opcode == 'SET':
            reg = int(parts[1][1:])
            val = int(parts[2])
            registers[reg] = val
        elif opcode == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif opcode == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2])
            registers[9] = int(registers[reg1] == reg2)
        elif opcode == 'JF':
            label = parts[1]
            if registers[9] == 0:
                pc = labels[label]
                continue
        elif opcode == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]
        elif opcode == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] > registers[reg2])
        elif opcode == 'JT':
            label = parts[1]
            if registers[9] == 1:
                pc = labels[label]
                continue
        elif opcode == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]

        pc += 1

    return memory[:registers[8]]
In this interpreter: 1. We split the program into lines and remove any trailing whitespace. 2. We create dictionaries for labels and memory, and a list for registers. 3. In the first pass, we identify the labels and store their corresponding line numbers in the `labels` dictionary. 4. In the second pass, we execute the instructions line by line: - If the line is a label or empty or a comment, we skip it. - We split the line into parts and extract the opcode and operands. - Based on the opcode, we perform the corresponding operation on the registers and memory. - For jump instructions (`JMP`, `JF`, `JT`), we update the program counter (`pc`) to jump to the corresponding label. 5. After executing all the instructions, we return the memory state up to the value stored in register R8, which represents the count of prime numbers found. You can call the `evaluate` function with your assembly language program as a string, and it will return the resulting memory state containing the prime numbers found. For example:
1
2
3
4
5
6
program = """
... (your assembly language program) ...
"""

result = evaluate(program)
print(result)
This will output the list of prime numbers found by the program, e.g., `[2, 3, 5, 7, ...]`.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def evaluate(program):
    lines = program.strip().split('\n')
    labels = {}
    memory = [0] * 100
    registers = [0] * 10
    pc = 0

    # First pass: identify labels
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    # Second pass: execute instructions
    while pc < len(lines):
        line = lines[pc].strip()
        if ':' in line:
            pc += 1
            continue

        parts = line.split()
        if len(parts) == 0 or parts[0].startswith('//'):
            pc += 1
            continue

        opcode = parts[0]

        if opcode == 'SET':
            reg = int(parts[1][1:])
            val = int(parts[2])
            registers[reg] = val
        elif opcode == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif opcode == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2])
            registers[9] = int(registers[reg1] == reg2)
        elif opcode == 'JF':
            label = parts[1]
            if registers[9] == 0:
                pc = labels[label]
                continue
        elif opcode == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]
        elif opcode == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] > registers[reg2])
        elif opcode == 'JT':
            label = parts[1]
            if registers[9] == 1:
                pc = labels[label]
                continue
        elif opcode == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]

        pc += 1

    return memory[:registers[8]]

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def evaluate(program):
    lines = program.strip().split('\n')
    labels = {}
    memory = [0] * 100
    registers = [0] * 10
    pc = 0

    # First pass: identify labels
    for i, line in enumerate(lines):
        if ':' in line:
            label = line.split(':')[0].strip()
            labels[label] = i

    # Second pass: execute instructions
    while pc < len(lines):
        line = lines[pc].strip()
        if ':' in line:
            pc += 1
            continue

        parts = line.split()
        if len(parts) == 0 or parts[0].startswith('//'):
            pc += 1
            continue

        opcode = parts[0]

        if opcode == 'SET':
            reg = int(parts[1][1:])
            val = int(parts[2])
            registers[reg] = val
        elif opcode == 'JMP':
            label = parts[1]
            pc = labels[label]
            continue
        elif opcode == 'EQ':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2])
            registers[9] = int(registers[reg1] == reg2)
        elif opcode == 'JF':
            label = parts[1]
            if registers[9] == 0:
                pc = labels[label]
                continue
        elif opcode == 'STORE':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            memory[registers[reg2]] = registers[reg1]
        elif opcode == 'INC':
            reg = int(parts[1][1:])
            registers[reg] += 1
        elif opcode == 'MUL':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] * registers[reg3]
        elif opcode == 'GT':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            registers[9] = int(registers[reg1] > registers[reg2])
        elif opcode == 'JT':
            label = parts[1]
            if registers[9] == 1:
                pc = labels[label]
                continue
        elif opcode == 'MOD':
            reg1 = int(parts[1][1:])
            reg2 = int(parts[2][1:])
            reg3 = int(parts[3][1:])
            registers[reg1] = registers[reg2] % registers[reg3]

        pc += 1

    return memory[:registers[8]]





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 94, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [] instead of [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False