Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Certainly! Below is a Python interpreter for the described assembly language. This interpreter will evaluate the assembly program and return the resulting memory state.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | class AssemblyInterpreter: def __init__(self): self.registers = [0] * 8 self.flag = False self.memory = [0] * 100 self.instruction_pointer = 0 self.labels = {} self.instructions = [] def parse(self, program): lines = program.strip().split('\n') for i, line in enumerate(lines): line = line.strip() if not line: continue if line.endswith(':'): self.labels[line[:-1]] = i else: self.instructions.append(line) def evaluate(self, program): self.parse(program) while self.instruction_pointer < len(self.instructions): instruction = self.instructions[self.instruction_pointer] self.execute_instruction(instruction) return self.memory def execute_instruction(self, instruction): parts = instruction.split() op = parts[0] if op == 'SET': _, r, c = parts self.registers[int(r[1]) - 1] = int(c) elif op == 'ADD': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] + self.registers[int(r3[1]) - 1] elif op == 'SUB': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] - self.registers[int(r3[1]) - 1] elif op == 'MUL': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] * self.registers[int(r3[1]) - 1] elif op == 'DIV': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] // self.registers[int(r3[1]) - 1] elif op == 'MOD': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] % self.registers[int(r3[1]) - 1] elif op == 'EQ': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] == self.registers[int(r2[1]) - 1] elif op == 'NEQ': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] != self.registers[int(r2[1]) - 1] elif op == 'LT': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] < self.registers[int(r2[1]) - 1] elif op == 'LTE': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] <= self.registers[int(r2[1]) - 1] elif op == 'GT': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] > self.registers[int(r2[1]) - 1] elif op == 'GTE': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] >= self.registers[int(r2[1]) - 1] elif op == 'INC': _, r = parts self.registers[int(r[1]) - 1] += 1 elif op == 'DEC': _, r = parts self.registers[int(r[1]) - 1] -= 1 elif op == 'JMP': _, label = parts self.instruction_pointer = self.labels[label] return elif op == 'JT': _, label = parts if self.flag: self.instruction_pointer = self.labels[label] return elif op == 'JF': _, label = parts if not self.flag: self.instruction_pointer = self.labels[label] return elif op == 'LOAD': _, r, m = parts self.registers[int(r[1]) - 1] = self.memory[int(m)] elif op == 'STORE': _, r, m = parts self.memory[int(m)] = self.registers[int(r[1]) - 1] elif op == 'HCF': raise SystemExit('HCF: Stopping the program.') self.instruction_pointer += 1 def evaluate(program): interpreter = AssemblyInterpreter() return interpreter.evaluate(program) # Example usage program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | class AssemblyInterpreter: def __init__(self): self.registers = [0] * 8 self.flag = False self.memory = [0] * 100 self.instruction_pointer = 0 self.labels = {} self.instructions = [] def parse(self, program): lines = program.strip().split('\n') for i, line in enumerate(lines): line = line.strip() if not line: continue if line.endswith(':'): self.labels[line[:-1]] = i else: self.instructions.append(line) def evaluate(self, program): self.parse(program) while self.instruction_pointer < len(self.instructions): instruction = self.instructions[self.instruction_pointer] self.execute_instruction(instruction) return self.memory def execute_instruction(self, instruction): parts = instruction.split() op = parts[0] if op == 'SET': _, r, c = parts self.registers[int(r[1]) - 1] = int(c) elif op == 'ADD': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] + self.registers[int(r3[1]) - 1] elif op == 'SUB': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] - self.registers[int(r3[1]) - 1] elif op == 'MUL': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] * self.registers[int(r3[1]) - 1] elif op == 'DIV': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] // self.registers[int(r3[1]) - 1] elif op == 'MOD': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] % self.registers[int(r3[1]) - 1] elif op == 'EQ': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] == self.registers[int(r2[1]) - 1] elif op == 'NEQ': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] != self.registers[int(r2[1]) - 1] elif op == 'LT': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] < self.registers[int(r2[1]) - 1] elif op == 'LTE': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] <= self.registers[int(r2[1]) - 1] elif op == 'GT': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] > self.registers[int(r2[1]) - 1] elif op == 'GTE': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] >= self.registers[int(r2[1]) - 1] elif op == 'INC': _, r = parts self.registers[int(r[1]) - 1] += 1 elif op == 'DEC': _, r = parts self.registers[int(r[1]) - 1] -= 1 elif op == 'JMP': _, label = parts self.instruction_pointer = self.labels[label] return elif op == 'JT': _, label = parts if self.flag: self.instruction_pointer = self.labels[label] return elif op == 'JF': _, label = parts if not self.flag: self.instruction_pointer = self.labels[label] return elif op == 'LOAD': _, r, m = parts self.registers[int(r[1]) - 1] = self.memory[int(m)] elif op == 'STORE': _, r, m = parts self.memory[int(m)] = self.registers[int(r[1]) - 1] elif op == 'HCF': raise SystemExit('HCF: Stopping the program.') self.instruction_pointer += 1 def evaluate(program): interpreter = AssemblyInterpreter() return interpreter.evaluate(program) # Example usage program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | class AssemblyInterpreter: def __init__(self): self.registers = [0] * 8 self.flag = False self.memory = [0] * 100 self.instruction_pointer = 0 self.labels = {} self.instructions = [] def parse(self, program): lines = program.strip().split('\n') for i, line in enumerate(lines): line = line.strip() if not line: continue if line.endswith(':'): self.labels[line[:-1]] = i else: self.instructions.append(line) def evaluate(self, program): self.parse(program) while self.instruction_pointer < len(self.instructions): instruction = self.instructions[self.instruction_pointer] self.execute_instruction(instruction) return self.memory def execute_instruction(self, instruction): parts = instruction.split() op = parts[0] if op == 'SET': _, r, c = parts self.registers[int(r[1]) - 1] = int(c) elif op == 'ADD': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] + self.registers[int(r3[1]) - 1] elif op == 'SUB': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] - self.registers[int(r3[1]) - 1] elif op == 'MUL': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] * self.registers[int(r3[1]) - 1] elif op == 'DIV': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] // self.registers[int(r3[1]) - 1] elif op == 'MOD': _, r1, r2, r3 = parts self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] % self.registers[int(r3[1]) - 1] elif op == 'EQ': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] == self.registers[int(r2[1]) - 1] elif op == 'NEQ': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] != self.registers[int(r2[1]) - 1] elif op == 'LT': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] < self.registers[int(r2[1]) - 1] elif op == 'LTE': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] <= self.registers[int(r2[1]) - 1] elif op == 'GT': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] > self.registers[int(r2[1]) - 1] elif op == 'GTE': _, r1, r2 = parts self.flag = self.registers[int(r1[1]) - 1] >= self.registers[int(r2[1]) - 1] elif op == 'INC': _, r = parts self.registers[int(r[1]) - 1] += 1 elif op == 'DEC': _, r = parts self.registers[int(r[1]) - 1] -= 1 elif op == 'JMP': _, label = parts self.instruction_pointer = self.labels[label] return elif op == 'JT': _, label = parts if self.flag: self.instruction_pointer = self.labels[label] return elif op == 'JF': _, label = parts if not self.flag: self.instruction_pointer = self.labels[label] return elif op == 'LOAD': _, r, m = parts self.registers[int(r[1]) - 1] = self.memory[int(m)] elif op == 'STORE': _, r, m = parts self.memory[int(m)] = self.registers[int(r[1]) - 1] elif op == 'HCF': raise SystemExit('HCF: Stopping the program.') self.instruction_pointer += 1 def evaluate(program): interpreter = AssemblyInterpreter() return interpreter.evaluate(program) # Example usage program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 123, in <module>
print(evaluate(program))
File "/usr/src/app/main.py", line 103, in evaluate
return interpreter.evaluate(program)
File "/usr/src/app/main.py", line 26, in evaluate
self.execute_instruction(instruction)
File "/usr/src/app/main.py", line 35, in execute_instruction
_, r, c = parts
ValueError: too many values to unpack (expected 3)
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Creating an interpreter for the described assembly language involves parsing the instructions, maintaining the state of the registers and memory, and executing the instructions as described. Here's a Python implementation of the interpreter:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | class AssemblyInterpreter: def __init__(self): self.registers = [0] * 8 self.flag = False self.memory = [0] * 100 self.instruction_pointer = 0 self.labels = {} def parse_program(self, program): self.instructions = program.strip().split('\n') self.instructions = [line.split('//')[0].strip() for line in self.instructions] self.instructions = [line for line in self.instructions if line] # Find all labels and store their positions for i, line in enumerate(self.instructions): if ':' in line: label = line[:-1] self.labels[label] = i def execute(self): while self.instruction_pointer < len(self.instructions): instruction = self.instructions[self.instruction_pointer] if ':' in instruction: self.instruction_pointer += 1 continue parts = instruction.split() op = parts[0] args = parts[1:] if op == 'SET': self.set_register(*args) elif op == 'ADD': self.add(*args) elif op == 'SUB': self.sub(*args) elif op == 'MUL': self.mul(*args) elif op == 'DIV': self.div(*args) elif op == 'MOD': self.mod(*args) elif op == 'EQ': self.eq(*args) elif op == 'NEQ': self.neq(*args) elif op == 'LT': self.lt(*args) elif op == 'LTE': self.lte(*args) elif op == 'GT': self.gt(*args) elif op == 'GTE': self.gte(*args) elif op == 'INC': self.inc(*args) elif op == 'DEC': self.dec(*args) elif op == 'JMP': self.jmp(*args) elif op == 'JT': self.jt(*args) elif op == 'JF': self.jf(*args) elif op == 'LOAD': self.load(*args) elif op == 'STORE': self.store(*args) elif op == 'HCF': break self.instruction_pointer += 1 def get_value(self, arg): if arg.startswith('R'): return self.registers[int(arg[1]) - 1] else: return int(arg) def set_register(self, reg, value): self.registers[int(reg[1]) - 1] = self.get_value(value) def add(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) + self.get_value(src2) def sub(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) - self.get_value(src2) def mul(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) * self.get_value(src2) def div(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) // self.get_value(src2) def mod(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) % self.get_value(src2) def eq(self, reg1, reg2): self.flag = self.get_value(reg1) == self.get_value(reg2) def neq(self, reg1, reg2): self.flag = self.get_value(reg1) != self.get_value(reg2) def lt(self, reg1, reg2): self.flag = self.get_value(reg1) < self.get_value(reg2) def lte(self, reg1, reg2): self.flag = self.get_value(reg1) <= self.get_value(reg2) def gt(self, reg1, reg2): self.flag = self.get_value(reg1) > self.get_value(reg2) def gte(self, reg1, reg2): self.flag = self.get_value(reg1) >= self.get_value(reg2) def inc(self, reg): self.registers[int(reg[1]) - 1] += 1 def dec(self, reg): self.registers[int(reg[1]) - 1] -= 1 def jmp(self, label): self.instruction_pointer = self.labels[label] def jt(self, label): if self.flag: self.instruction_pointer = self.labels[label] def jf(self, label): if not self.flag: self.instruction_pointer = self.labels[label] def load(self, reg, mem): self.registers[int(reg[1]) - 1] = self.memory[self.get_value(mem)] def store(self, reg, mem): self.memory[self.get_value(mem)] = self.get_value(reg) def evaluate(program): interpreter = AssemblyInterpreter() interpreter.parse_program(program) interpreter.execute() return interpreter.memory # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ resulting_memory = evaluate(program) print(resulting_memory[:20]) # Should print the first 20 square numbers |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | class AssemblyInterpreter: def __init__(self): self.registers = [0] * 8 self.flag = False self.memory = [0] * 100 self.instruction_pointer = 0 self.labels = {} def parse_program(self, program): self.instructions = program.strip().split('\n') self.instructions = [line.split('//')[0].strip() for line in self.instructions] self.instructions = [line for line in self.instructions if line] # Find all labels and store their positions for i, line in enumerate(self.instructions): if ':' in line: label = line[:-1] self.labels[label] = i def execute(self): while self.instruction_pointer < len(self.instructions): instruction = self.instructions[self.instruction_pointer] if ':' in instruction: self.instruction_pointer += 1 continue parts = instruction.split() op = parts[0] args = parts[1:] if op == 'SET': self.set_register(*args) elif op == 'ADD': self.add(*args) elif op == 'SUB': self.sub(*args) elif op == 'MUL': self.mul(*args) elif op == 'DIV': self.div(*args) elif op == 'MOD': self.mod(*args) elif op == 'EQ': self.eq(*args) elif op == 'NEQ': self.neq(*args) elif op == 'LT': self.lt(*args) elif op == 'LTE': self.lte(*args) elif op == 'GT': self.gt(*args) elif op == 'GTE': self.gte(*args) elif op == 'INC': self.inc(*args) elif op == 'DEC': self.dec(*args) elif op == 'JMP': self.jmp(*args) elif op == 'JT': self.jt(*args) elif op == 'JF': self.jf(*args) elif op == 'LOAD': self.load(*args) elif op == 'STORE': self.store(*args) elif op == 'HCF': break self.instruction_pointer += 1 def get_value(self, arg): if arg.startswith('R'): return self.registers[int(arg[1]) - 1] else: return int(arg) def set_register(self, reg, value): self.registers[int(reg[1]) - 1] = self.get_value(value) def add(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) + self.get_value(src2) def sub(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) - self.get_value(src2) def mul(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) * self.get_value(src2) def div(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) // self.get_value(src2) def mod(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) % self.get_value(src2) def eq(self, reg1, reg2): self.flag = self.get_value(reg1) == self.get_value(reg2) def neq(self, reg1, reg2): self.flag = self.get_value(reg1) != self.get_value(reg2) def lt(self, reg1, reg2): self.flag = self.get_value(reg1) < self.get_value(reg2) def lte(self, reg1, reg2): self.flag = self.get_value(reg1) <= self.get_value(reg2) def gt(self, reg1, reg2): self.flag = self.get_value(reg1) > self.get_value(reg2) def gte(self, reg1, reg2): self.flag = self.get_value(reg1) >= self.get_value(reg2) def inc(self, reg): self.registers[int(reg[1]) - 1] += 1 def dec(self, reg): self.registers[int(reg[1]) - 1] -= 1 def jmp(self, label): self.instruction_pointer = self.labels[label] def jt(self, label): if self.flag: self.instruction_pointer = self.labels[label] def jf(self, label): if not self.flag: self.instruction_pointer = self.labels[label] def load(self, reg, mem): self.registers[int(reg[1]) - 1] = self.memory[self.get_value(mem)] def store(self, reg, mem): self.memory[self.get_value(mem)] = self.get_value(reg) def evaluate(program): interpreter = AssemblyInterpreter() interpreter.parse_program(program) interpreter.execute() return interpreter.memory # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ resulting_memory = evaluate(program) print(resulting_memory[:20]) # Should print the first 20 square numbers |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | class AssemblyInterpreter: def __init__(self): self.registers = [0] * 8 self.flag = False self.memory = [0] * 100 self.instruction_pointer = 0 self.labels = {} def parse_program(self, program): self.instructions = program.strip().split('\n') self.instructions = [line.split('//')[0].strip() for line in self.instructions] self.instructions = [line for line in self.instructions if line] # Find all labels and store their positions for i, line in enumerate(self.instructions): if ':' in line: label = line[:-1] self.labels[label] = i def execute(self): while self.instruction_pointer < len(self.instructions): instruction = self.instructions[self.instruction_pointer] if ':' in instruction: self.instruction_pointer += 1 continue parts = instruction.split() op = parts[0] args = parts[1:] if op == 'SET': self.set_register(*args) elif op == 'ADD': self.add(*args) elif op == 'SUB': self.sub(*args) elif op == 'MUL': self.mul(*args) elif op == 'DIV': self.div(*args) elif op == 'MOD': self.mod(*args) elif op == 'EQ': self.eq(*args) elif op == 'NEQ': self.neq(*args) elif op == 'LT': self.lt(*args) elif op == 'LTE': self.lte(*args) elif op == 'GT': self.gt(*args) elif op == 'GTE': self.gte(*args) elif op == 'INC': self.inc(*args) elif op == 'DEC': self.dec(*args) elif op == 'JMP': self.jmp(*args) elif op == 'JT': self.jt(*args) elif op == 'JF': self.jf(*args) elif op == 'LOAD': self.load(*args) elif op == 'STORE': self.store(*args) elif op == 'HCF': break self.instruction_pointer += 1 def get_value(self, arg): if arg.startswith('R'): return self.registers[int(arg[1]) - 1] else: return int(arg) def set_register(self, reg, value): self.registers[int(reg[1]) - 1] = self.get_value(value) def add(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) + self.get_value(src2) def sub(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) - self.get_value(src2) def mul(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) * self.get_value(src2) def div(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) // self.get_value(src2) def mod(self, dest, src1, src2): self.registers[int(dest[1]) - 1] = self.get_value(src1) % self.get_value(src2) def eq(self, reg1, reg2): self.flag = self.get_value(reg1) == self.get_value(reg2) def neq(self, reg1, reg2): self.flag = self.get_value(reg1) != self.get_value(reg2) def lt(self, reg1, reg2): self.flag = self.get_value(reg1) < self.get_value(reg2) def lte(self, reg1, reg2): self.flag = self.get_value(reg1) <= self.get_value(reg2) def gt(self, reg1, reg2): self.flag = self.get_value(reg1) > self.get_value(reg2) def gte(self, reg1, reg2): self.flag = self.get_value(reg1) >= self.get_value(reg2) def inc(self, reg): self.registers[int(reg[1]) - 1] += 1 def dec(self, reg): self.registers[int(reg[1]) - 1] -= 1 def jmp(self, label): self.instruction_pointer = self.labels[label] def jt(self, label): if self.flag: self.instruction_pointer = self.labels[label] def jf(self, label): if not self.flag: self.instruction_pointer = self.labels[label] def load(self, reg, mem): self.registers[int(reg[1]) - 1] = self.memory[self.get_value(mem)] def store(self, reg, mem): self.memory[self.get_value(mem)] = self.get_value(reg) def evaluate(program): interpreter = AssemblyInterpreter() interpreter.parse_program(program) interpreter.execute() return interpreter.memory # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ resulting_memory = evaluate(program) print(resulting_memory[:20]) # Should print the first 20 square numbers answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Sure, I can help you write a Python interpreter for the described assembly language. Below is the implementation of the `evaluate` function that interprets the assembly code and returns the resulting memory state:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | def evaluate(program: str): # Initialize registers, memory, flag, and instruction pointer registers = {f'R{i}': 0 for i in range(1, 9)} memory = [0] * 100 flag = False instruction_pointer = 0 # Parse the program into a list of instructions instructions = [line.strip() for line in program.strip().split('\n') if line.strip()] # Create a dictionary to map labels to instruction indices labels = {} for i, instruction in enumerate(instructions): if ':' in instruction: label = instruction.split(':')[0] labels[label] = i # Define a helper function to get the value of an argument def get_value(arg): if arg.startswith('R'): return registers[arg] return int(arg) # Define the main loop to execute instructions while instruction_pointer < len(instructions): instruction = instructions[instruction_pointer] if ':' in instruction: instruction_pointer += 1 continue parts = instruction.split() op = parts[0] if op == 'SET': _, reg, val = parts registers[reg] = get_value(val) elif op == 'ADD': _, reg, val1, val2 = parts registers[reg] = get_value(val1) + get_value(val2) elif op == 'SUB': _, reg, val1, val2 = parts registers[reg] = get_value(val1) - get_value(val2) elif op == 'MUL': _, reg, val1, val2 = parts registers[reg] = get_value(val1) * get_value(val2) elif op == 'DIV': _, reg, val1, val2 = parts registers[reg] = get_value(val1) // get_value(val2) elif op == 'MOD': _, reg, val1, val2 = parts registers[reg] = get_value(val1) % get_value(val2) elif op == 'EQ': _, val1, val2 = parts flag = get_value(val1) == get_value(val2) elif op == 'NEQ': _, val1, val2 = parts flag = get_value(val1) != get_value(val2) elif op == 'LT': _, val1, val2 = parts flag = get_value(val1) < get_value(val2) elif op == 'LTE': _, val1, val2 = parts flag = get_value(val1) <= get_value(val2) elif op == 'GT': _, val1, val2 = parts flag = get_value(val1) > get_value(val2) elif op == 'GTE': _, val1, val2 = parts flag = get_value(val1) >= get_value(val2) elif op == 'INC': _, reg = parts registers[reg] += 1 elif op == 'DEC': _, reg = parts registers[reg] -= 1 elif op == 'JMP': _, label = parts instruction_pointer = labels[label] continue elif op == 'JT': _, label = parts if flag: instruction_pointer = labels[label] continue elif op == 'JF': _, label = parts if not flag: instruction_pointer = labels[label] continue elif op == 'LOAD': _, reg, addr = parts registers[reg] = memory[get_value(addr)] elif op == 'STORE': _, reg, addr = parts memory[get_value(addr)] = registers[reg] elif op == 'HCF': break instruction_pointer += 1 return memory # Example usage program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ result = evaluate(program) print(result) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | def evaluate(program: str): # Initialize registers, memory, flag, and instruction pointer registers = {f'R{i}': 0 for i in range(1, 9)} memory = [0] * 100 flag = False instruction_pointer = 0 # Parse the program into a list of instructions instructions = [line.strip() for line in program.strip().split('\n') if line.strip()] # Create a dictionary to map labels to instruction indices labels = {} for i, instruction in enumerate(instructions): if ':' in instruction: label = instruction.split(':')[0] labels[label] = i # Define a helper function to get the value of an argument def get_value(arg): if arg.startswith('R'): return registers[arg] return int(arg) # Define the main loop to execute instructions while instruction_pointer < len(instructions): instruction = instructions[instruction_pointer] if ':' in instruction: instruction_pointer += 1 continue parts = instruction.split() op = parts[0] if op == 'SET': _, reg, val = parts registers[reg] = get_value(val) elif op == 'ADD': _, reg, val1, val2 = parts registers[reg] = get_value(val1) + get_value(val2) elif op == 'SUB': _, reg, val1, val2 = parts registers[reg] = get_value(val1) - get_value(val2) elif op == 'MUL': _, reg, val1, val2 = parts registers[reg] = get_value(val1) * get_value(val2) elif op == 'DIV': _, reg, val1, val2 = parts registers[reg] = get_value(val1) // get_value(val2) elif op == 'MOD': _, reg, val1, val2 = parts registers[reg] = get_value(val1) % get_value(val2) elif op == 'EQ': _, val1, val2 = parts flag = get_value(val1) == get_value(val2) elif op == 'NEQ': _, val1, val2 = parts flag = get_value(val1) != get_value(val2) elif op == 'LT': _, val1, val2 = parts flag = get_value(val1) < get_value(val2) elif op == 'LTE': _, val1, val2 = parts flag = get_value(val1) <= get_value(val2) elif op == 'GT': _, val1, val2 = parts flag = get_value(val1) > get_value(val2) elif op == 'GTE': _, val1, val2 = parts flag = get_value(val1) >= get_value(val2) elif op == 'INC': _, reg = parts registers[reg] += 1 elif op == 'DEC': _, reg = parts registers[reg] -= 1 elif op == 'JMP': _, label = parts instruction_pointer = labels[label] continue elif op == 'JT': _, label = parts if flag: instruction_pointer = labels[label] continue elif op == 'JF': _, label = parts if not flag: instruction_pointer = labels[label] continue elif op == 'LOAD': _, reg, addr = parts registers[reg] = memory[get_value(addr)] elif op == 'STORE': _, reg, addr = parts memory[get_value(addr)] = registers[reg] elif op == 'HCF': break instruction_pointer += 1 return memory # Example usage program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ result = evaluate(program) print(result) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | def evaluate(program: str): # Initialize registers, memory, flag, and instruction pointer registers = {f'R{i}': 0 for i in range(1, 9)} memory = [0] * 100 flag = False instruction_pointer = 0 # Parse the program into a list of instructions instructions = [line.strip() for line in program.strip().split('\n') if line.strip()] # Create a dictionary to map labels to instruction indices labels = {} for i, instruction in enumerate(instructions): if ':' in instruction: label = instruction.split(':')[0] labels[label] = i # Define a helper function to get the value of an argument def get_value(arg): if arg.startswith('R'): return registers[arg] return int(arg) # Define the main loop to execute instructions while instruction_pointer < len(instructions): instruction = instructions[instruction_pointer] if ':' in instruction: instruction_pointer += 1 continue parts = instruction.split() op = parts[0] if op == 'SET': _, reg, val = parts registers[reg] = get_value(val) elif op == 'ADD': _, reg, val1, val2 = parts registers[reg] = get_value(val1) + get_value(val2) elif op == 'SUB': _, reg, val1, val2 = parts registers[reg] = get_value(val1) - get_value(val2) elif op == 'MUL': _, reg, val1, val2 = parts registers[reg] = get_value(val1) * get_value(val2) elif op == 'DIV': _, reg, val1, val2 = parts registers[reg] = get_value(val1) // get_value(val2) elif op == 'MOD': _, reg, val1, val2 = parts registers[reg] = get_value(val1) % get_value(val2) elif op == 'EQ': _, val1, val2 = parts flag = get_value(val1) == get_value(val2) elif op == 'NEQ': _, val1, val2 = parts flag = get_value(val1) != get_value(val2) elif op == 'LT': _, val1, val2 = parts flag = get_value(val1) < get_value(val2) elif op == 'LTE': _, val1, val2 = parts flag = get_value(val1) <= get_value(val2) elif op == 'GT': _, val1, val2 = parts flag = get_value(val1) > get_value(val2) elif op == 'GTE': _, val1, val2 = parts flag = get_value(val1) >= get_value(val2) elif op == 'INC': _, reg = parts registers[reg] += 1 elif op == 'DEC': _, reg = parts registers[reg] -= 1 elif op == 'JMP': _, label = parts instruction_pointer = labels[label] continue elif op == 'JT': _, label = parts if flag: instruction_pointer = labels[label] continue elif op == 'JF': _, label = parts if not flag: instruction_pointer = labels[label] continue elif op == 'LOAD': _, reg, addr = parts registers[reg] = memory[get_value(addr)] elif op == 'STORE': _, reg, addr = parts memory[get_value(addr)] = registers[reg] elif op == 'HCF': break instruction_pointer += 1 return memory # Example usage program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ result = evaluate(program) print(result) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 123, in <module>
result = evaluate(program)
File "/usr/src/app/main.py", line 37, in evaluate
_, reg, val = parts
ValueError: too many values to unpack (expected 3)
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Sure! Below is a Python interpreter for the described assembly language. This interpreter will parse and execute the given assembly code and then return the resulting memory state.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | def evaluate(program): # Initialize registers, memory, flag, and instruction pointer registers = {f'R{i}': 0 for i in range(1, 9)} memory = [0] * 100 flag = False instruction_pointer = 0 instructions = program.split('\n') # Parse instructions and labels labels = {} parsed_instructions = [] for i, line in enumerate(instructions): line = line.strip() if not line: continue if ':' in line: label = line.split(':')[0] labels[label] = i else: parsed_instructions.append(line) # Helper function to get the value of an argument def get_value(arg): if arg.startswith('R'): return registers[arg] else: return int(arg) # Main execution loop while instruction_pointer < len(parsed_instructions): instruction = parsed_instructions[instruction_pointer] parts = instruction.split() op = parts[0] args = parts[1:] if op == 'SET': registers[args[0]], instruction_pointer = get_value(args[1]), instruction_pointer + 1 elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) instruction_pointer += 1 elif op == 'SUB': registers[args[0]] = get_value(args[1]) - get_value(args[2]) instruction_pointer += 1 elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) instruction_pointer += 1 elif op == 'DIV': registers[args[0]] = get_value(args[1]) // get_value(args[2]) instruction_pointer += 1 elif op == 'MOD': registers[args[0]] = get_value(args[1]) % get_value(args[2]) instruction_pointer += 1 elif op == 'EQ': flag = get_value(args[0]) == get_value(args[1]) instruction_pointer += 1 elif op == 'NEQ': flag = get_value(args[0]) != get_value(args[1]) instruction_pointer += 1 elif op == 'LT': flag = get_value(args[0]) < get_value(args[1]) instruction_pointer += 1 elif op == 'LTE': flag = get_value(args[0]) <= get_value(args[1]) instruction_pointer += 1 elif op == 'GT': flag = get_value(args[0]) > get_value(args[1]) instruction_pointer += 1 elif op == 'GTE': flag = get_value(args[0]) >= get_value(args[1]) instruction_pointer += 1 elif op == 'INC': registers[args[0]] += 1 instruction_pointer += 1 elif op == 'DEC': registers[args[0]] -= 1 instruction_pointer += 1 elif op == 'JMP': instruction_pointer = labels[args[0]] elif op == 'JT': if flag: instruction_pointer = labels[args[0]] else: instruction_pointer += 1 elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] else: instruction_pointer += 1 elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] instruction_pointer += 1 elif op == 'STORE': memory[get_value(args[1])] = get_value(args[0]) instruction_pointer += 1 elif op == 'HCF': break else: raise ValueError(f"Unknown instruction: {op}") return memory # Example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Evaluate the program resulting_memory = evaluate(program) print(resulting_memory[:20]) # Print first 20 memory addresses |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | def evaluate(program): # Initialize registers, memory, flag, and instruction pointer registers = {f'R{i}': 0 for i in range(1, 9)} memory = [0] * 100 flag = False instruction_pointer = 0 instructions = program.split('\n') # Parse instructions and labels labels = {} parsed_instructions = [] for i, line in enumerate(instructions): line = line.strip() if not line: continue if ':' in line: label = line.split(':')[0] labels[label] = i else: parsed_instructions.append(line) # Helper function to get the value of an argument def get_value(arg): if arg.startswith('R'): return registers[arg] else: return int(arg) # Main execution loop while instruction_pointer < len(parsed_instructions): instruction = parsed_instructions[instruction_pointer] parts = instruction.split() op = parts[0] args = parts[1:] if op == 'SET': registers[args[0]], instruction_pointer = get_value(args[1]), instruction_pointer + 1 elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) instruction_pointer += 1 elif op == 'SUB': registers[args[0]] = get_value(args[1]) - get_value(args[2]) instruction_pointer += 1 elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) instruction_pointer += 1 elif op == 'DIV': registers[args[0]] = get_value(args[1]) // get_value(args[2]) instruction_pointer += 1 elif op == 'MOD': registers[args[0]] = get_value(args[1]) % get_value(args[2]) instruction_pointer += 1 elif op == 'EQ': flag = get_value(args[0]) == get_value(args[1]) instruction_pointer += 1 elif op == 'NEQ': flag = get_value(args[0]) != get_value(args[1]) instruction_pointer += 1 elif op == 'LT': flag = get_value(args[0]) < get_value(args[1]) instruction_pointer += 1 elif op == 'LTE': flag = get_value(args[0]) <= get_value(args[1]) instruction_pointer += 1 elif op == 'GT': flag = get_value(args[0]) > get_value(args[1]) instruction_pointer += 1 elif op == 'GTE': flag = get_value(args[0]) >= get_value(args[1]) instruction_pointer += 1 elif op == 'INC': registers[args[0]] += 1 instruction_pointer += 1 elif op == 'DEC': registers[args[0]] -= 1 instruction_pointer += 1 elif op == 'JMP': instruction_pointer = labels[args[0]] elif op == 'JT': if flag: instruction_pointer = labels[args[0]] else: instruction_pointer += 1 elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] else: instruction_pointer += 1 elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] instruction_pointer += 1 elif op == 'STORE': memory[get_value(args[1])] = get_value(args[0]) instruction_pointer += 1 elif op == 'HCF': break else: raise ValueError(f"Unknown instruction: {op}") return memory # Example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Evaluate the program resulting_memory = evaluate(program) print(resulting_memory[:20]) # Print first 20 memory addresses |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | def evaluate(program): # Initialize registers, memory, flag, and instruction pointer registers = {f'R{i}': 0 for i in range(1, 9)} memory = [0] * 100 flag = False instruction_pointer = 0 instructions = program.split('\n') # Parse instructions and labels labels = {} parsed_instructions = [] for i, line in enumerate(instructions): line = line.strip() if not line: continue if ':' in line: label = line.split(':')[0] labels[label] = i else: parsed_instructions.append(line) # Helper function to get the value of an argument def get_value(arg): if arg.startswith('R'): return registers[arg] else: return int(arg) # Main execution loop while instruction_pointer < len(parsed_instructions): instruction = parsed_instructions[instruction_pointer] parts = instruction.split() op = parts[0] args = parts[1:] if op == 'SET': registers[args[0]], instruction_pointer = get_value(args[1]), instruction_pointer + 1 elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) instruction_pointer += 1 elif op == 'SUB': registers[args[0]] = get_value(args[1]) - get_value(args[2]) instruction_pointer += 1 elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) instruction_pointer += 1 elif op == 'DIV': registers[args[0]] = get_value(args[1]) // get_value(args[2]) instruction_pointer += 1 elif op == 'MOD': registers[args[0]] = get_value(args[1]) % get_value(args[2]) instruction_pointer += 1 elif op == 'EQ': flag = get_value(args[0]) == get_value(args[1]) instruction_pointer += 1 elif op == 'NEQ': flag = get_value(args[0]) != get_value(args[1]) instruction_pointer += 1 elif op == 'LT': flag = get_value(args[0]) < get_value(args[1]) instruction_pointer += 1 elif op == 'LTE': flag = get_value(args[0]) <= get_value(args[1]) instruction_pointer += 1 elif op == 'GT': flag = get_value(args[0]) > get_value(args[1]) instruction_pointer += 1 elif op == 'GTE': flag = get_value(args[0]) >= get_value(args[1]) instruction_pointer += 1 elif op == 'INC': registers[args[0]] += 1 instruction_pointer += 1 elif op == 'DEC': registers[args[0]] -= 1 instruction_pointer += 1 elif op == 'JMP': instruction_pointer = labels[args[0]] elif op == 'JT': if flag: instruction_pointer = labels[args[0]] else: instruction_pointer += 1 elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] else: instruction_pointer += 1 elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] instruction_pointer += 1 elif op == 'STORE': memory[get_value(args[1])] = get_value(args[0]) instruction_pointer += 1 elif op == 'HCF': break else: raise ValueError(f"Unknown instruction: {op}") return memory # Example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Evaluate the program resulting_memory = evaluate(program) print(resulting_memory[:20]) # Print first 20 memory addresses answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Traceback (most recent call last):
File "/usr/src/app/main.py", line 142, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
AssertionError: Wrong answer; got [1, 20, 20, 20, 20, 20, 20, 20, 20, 20] instead of [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Sure! Below is a Python interpreter for the given assembly language. This interpreter will parse the assembly code, execute the instructions, and return the resulting memory state.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | class AssemblyInterpreter: def __init__(self): self.registers = {f'R{i}': 0 for i in range(1, 9)} self.flag = False self.memory = [0] * 100 self.instruction_pointer = 0 self.program = [] self.labels = {} def parse(self, code): lines = code.strip().split('\n') for line in lines: line = line.strip() if not line or line.startswith('//'): continue if ':' in line: label, _ = line.split(':') self.labels[label] = len(self.program) else: self.program.append(line) def execute(self): while self.instruction_pointer < len(self.program): instruction = self.program[self.instruction_pointer] self.execute_instruction(instruction) def execute_instruction(self, instruction): parts = instruction.split() op = parts[0] args = parts[1:] if op == 'SET': self.set_register(args[0], args[1]) elif op == 'ADD': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x + y) elif op == 'SUB': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x - y) elif op == 'MUL': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x * y) elif op == 'DIV': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x // y) elif op == 'MOD': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x % y) elif op == 'EQ': self.comparison_op(args[0], args[1], lambda x, y: x == y) elif op == 'NEQ': self.comparison_op(args[0], args[1], lambda x, y: x != y) elif op == 'LT': self.comparison_op(args[0], args[1], lambda x, y: x < y) elif op == 'LTE': self.comparison_op(args[0], args[1], lambda x, y: x <= y) elif op == 'GT': self.comparison_op(args[0], args[1], lambda x, y: x > y) elif op == 'GTE': self.comparison_op(args[0], args[1], lambda x, y: x >= y) elif op == 'INC': self.inc_dec_register(args[0], 1) elif op == 'DEC': self.inc_dec_register(args[0], -1) elif op == 'JMP': self.jump(args[0]) elif op == 'JT': if self.flag: self.jump(args[0]) elif op == 'JF': if not self.flag: self.jump(args[0]) elif op == 'LOAD': self.load_store_register(args[0], args[1], True) elif op == 'STORE': self.load_store_register(args[0], args[1], False) elif op == 'HCF': self.instruction_pointer = len(self.program) else: raise ValueError(f"Unknown instruction: {op}") self.instruction_pointer += 1 def set_register(self, reg, value): if value.startswith('R'): self.registers[reg] = self.registers[value] else: self.registers[reg] = int(value) def arithmetic_op(self, dest, src1, src2, op): val1 = self.get_value(src1) val2 = self.get_value(src2) self.registers[dest] = op(val1, val2) def comparison_op(self, reg1, reg2, op): val1 = self.get_value(reg1) val2 = self.get_value(reg2) self.flag = op(val1, val2) def inc_dec_register(self, reg, amount): self.registers[reg] += amount def jump(self, label): self.instruction_pointer = self.labels[label] def load_store_register(self, reg, addr, is_load): if is_load: self.registers[reg] = self.memory[int(addr)] else: self.memory[int(addr)] = self.registers[reg] def get_value(self, arg): if arg.startswith('R'): return self.registers[arg] else: return int(arg) def evaluate(code): interpreter = AssemblyInterpreter() interpreter.parse(code) interpreter.execute() return interpreter.memory # Example usage program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop end: HCF """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | class AssemblyInterpreter: def __init__(self): self.registers = {f'R{i}': 0 for i in range(1, 9)} self.flag = False self.memory = [0] * 100 self.instruction_pointer = 0 self.program = [] self.labels = {} def parse(self, code): lines = code.strip().split('\n') for line in lines: line = line.strip() if not line or line.startswith('//'): continue if ':' in line: label, _ = line.split(':') self.labels[label] = len(self.program) else: self.program.append(line) def execute(self): while self.instruction_pointer < len(self.program): instruction = self.program[self.instruction_pointer] self.execute_instruction(instruction) def execute_instruction(self, instruction): parts = instruction.split() op = parts[0] args = parts[1:] if op == 'SET': self.set_register(args[0], args[1]) elif op == 'ADD': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x + y) elif op == 'SUB': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x - y) elif op == 'MUL': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x * y) elif op == 'DIV': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x // y) elif op == 'MOD': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x % y) elif op == 'EQ': self.comparison_op(args[0], args[1], lambda x, y: x == y) elif op == 'NEQ': self.comparison_op(args[0], args[1], lambda x, y: x != y) elif op == 'LT': self.comparison_op(args[0], args[1], lambda x, y: x < y) elif op == 'LTE': self.comparison_op(args[0], args[1], lambda x, y: x <= y) elif op == 'GT': self.comparison_op(args[0], args[1], lambda x, y: x > y) elif op == 'GTE': self.comparison_op(args[0], args[1], lambda x, y: x >= y) elif op == 'INC': self.inc_dec_register(args[0], 1) elif op == 'DEC': self.inc_dec_register(args[0], -1) elif op == 'JMP': self.jump(args[0]) elif op == 'JT': if self.flag: self.jump(args[0]) elif op == 'JF': if not self.flag: self.jump(args[0]) elif op == 'LOAD': self.load_store_register(args[0], args[1], True) elif op == 'STORE': self.load_store_register(args[0], args[1], False) elif op == 'HCF': self.instruction_pointer = len(self.program) else: raise ValueError(f"Unknown instruction: {op}") self.instruction_pointer += 1 def set_register(self, reg, value): if value.startswith('R'): self.registers[reg] = self.registers[value] else: self.registers[reg] = int(value) def arithmetic_op(self, dest, src1, src2, op): val1 = self.get_value(src1) val2 = self.get_value(src2) self.registers[dest] = op(val1, val2) def comparison_op(self, reg1, reg2, op): val1 = self.get_value(reg1) val2 = self.get_value(reg2) self.flag = op(val1, val2) def inc_dec_register(self, reg, amount): self.registers[reg] += amount def jump(self, label): self.instruction_pointer = self.labels[label] def load_store_register(self, reg, addr, is_load): if is_load: self.registers[reg] = self.memory[int(addr)] else: self.memory[int(addr)] = self.registers[reg] def get_value(self, arg): if arg.startswith('R'): return self.registers[arg] else: return int(arg) def evaluate(code): interpreter = AssemblyInterpreter() interpreter.parse(code) interpreter.execute() return interpreter.memory # Example usage program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop end: HCF """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | class AssemblyInterpreter: def __init__(self): self.registers = {f'R{i}': 0 for i in range(1, 9)} self.flag = False self.memory = [0] * 100 self.instruction_pointer = 0 self.program = [] self.labels = {} def parse(self, code): lines = code.strip().split('\n') for line in lines: line = line.strip() if not line or line.startswith('//'): continue if ':' in line: label, _ = line.split(':') self.labels[label] = len(self.program) else: self.program.append(line) def execute(self): while self.instruction_pointer < len(self.program): instruction = self.program[self.instruction_pointer] self.execute_instruction(instruction) def execute_instruction(self, instruction): parts = instruction.split() op = parts[0] args = parts[1:] if op == 'SET': self.set_register(args[0], args[1]) elif op == 'ADD': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x + y) elif op == 'SUB': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x - y) elif op == 'MUL': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x * y) elif op == 'DIV': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x // y) elif op == 'MOD': self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x % y) elif op == 'EQ': self.comparison_op(args[0], args[1], lambda x, y: x == y) elif op == 'NEQ': self.comparison_op(args[0], args[1], lambda x, y: x != y) elif op == 'LT': self.comparison_op(args[0], args[1], lambda x, y: x < y) elif op == 'LTE': self.comparison_op(args[0], args[1], lambda x, y: x <= y) elif op == 'GT': self.comparison_op(args[0], args[1], lambda x, y: x > y) elif op == 'GTE': self.comparison_op(args[0], args[1], lambda x, y: x >= y) elif op == 'INC': self.inc_dec_register(args[0], 1) elif op == 'DEC': self.inc_dec_register(args[0], -1) elif op == 'JMP': self.jump(args[0]) elif op == 'JT': if self.flag: self.jump(args[0]) elif op == 'JF': if not self.flag: self.jump(args[0]) elif op == 'LOAD': self.load_store_register(args[0], args[1], True) elif op == 'STORE': self.load_store_register(args[0], args[1], False) elif op == 'HCF': self.instruction_pointer = len(self.program) else: raise ValueError(f"Unknown instruction: {op}") self.instruction_pointer += 1 def set_register(self, reg, value): if value.startswith('R'): self.registers[reg] = self.registers[value] else: self.registers[reg] = int(value) def arithmetic_op(self, dest, src1, src2, op): val1 = self.get_value(src1) val2 = self.get_value(src2) self.registers[dest] = op(val1, val2) def comparison_op(self, reg1, reg2, op): val1 = self.get_value(reg1) val2 = self.get_value(reg2) self.flag = op(val1, val2) def inc_dec_register(self, reg, amount): self.registers[reg] += amount def jump(self, label): self.instruction_pointer = self.labels[label] def load_store_register(self, reg, addr, is_load): if is_load: self.registers[reg] = self.memory[int(addr)] else: self.memory[int(addr)] = self.registers[reg] def get_value(self, arg): if arg.startswith('R'): return self.registers[arg] else: return int(arg) def evaluate(code): interpreter = AssemblyInterpreter() interpreter.parse(code) interpreter.execute() return interpreter.memory # Example usage program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop end: HCF """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 138, in <module>
print(evaluate(program))
File "/usr/src/app/main.py", line 117, in evaluate
interpreter.execute()
File "/usr/src/app/main.py", line 26, in execute
self.execute_instruction(instruction)
File "/usr/src/app/main.py", line 72, in execute_instruction
self.load_store_register(args[0], args[1], False)
File "/usr/src/app/main.py", line 106, in load_store_register
self.memory[int(addr)] = self.registers[reg]
ValueError: invalid literal for int() with base 10: 'R1'
Testing if the previous output contains the string All tests passed
: False