Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Certainly! Below is a Python interpreter for the described assembly language. This interpreter will evaluate the assembly program and return the resulting memory state.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
class AssemblyInterpreter:
    def __init__(self):
        self.registers = [0] * 8
        self.flag = False
        self.memory = [0] * 100
        self.instruction_pointer = 0
        self.labels = {}
        self.instructions = []

    def parse(self, program):
        lines = program.strip().split('\n')
        for i, line in enumerate(lines):
            line = line.strip()
            if not line:
                continue
            if line.endswith(':'):
                self.labels[line[:-1]] = i
            else:
                self.instructions.append(line)

    def evaluate(self, program):
        self.parse(program)
        while self.instruction_pointer < len(self.instructions):
            instruction = self.instructions[self.instruction_pointer]
            self.execute_instruction(instruction)

        return self.memory

    def execute_instruction(self, instruction):
        parts = instruction.split()
        op = parts[0]

        if op == 'SET':
            _, r, c = parts
            self.registers[int(r[1]) - 1] = int(c)
        elif op == 'ADD':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] + self.registers[int(r3[1]) - 1]
        elif op == 'SUB':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] - self.registers[int(r3[1]) - 1]
        elif op == 'MUL':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] * self.registers[int(r3[1]) - 1]
        elif op == 'DIV':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] // self.registers[int(r3[1]) - 1]
        elif op == 'MOD':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] % self.registers[int(r3[1]) - 1]
        elif op == 'EQ':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] == self.registers[int(r2[1]) - 1]
        elif op == 'NEQ':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] != self.registers[int(r2[1]) - 1]
        elif op == 'LT':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] < self.registers[int(r2[1]) - 1]
        elif op == 'LTE':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] <= self.registers[int(r2[1]) - 1]
        elif op == 'GT':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] > self.registers[int(r2[1]) - 1]
        elif op == 'GTE':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] >= self.registers[int(r2[1]) - 1]
        elif op == 'INC':
            _, r = parts
            self.registers[int(r[1]) - 1] += 1
        elif op == 'DEC':
            _, r = parts
            self.registers[int(r[1]) - 1] -= 1
        elif op == 'JMP':
            _, label = parts
            self.instruction_pointer = self.labels[label]
            return
        elif op == 'JT':
            _, label = parts
            if self.flag:
                self.instruction_pointer = self.labels[label]
                return
        elif op == 'JF':
            _, label = parts
            if not self.flag:
                self.instruction_pointer = self.labels[label]
                return
        elif op == 'LOAD':
            _, r, m = parts
            self.registers[int(r[1]) - 1] = self.memory[int(m)]
        elif op == 'STORE':
            _, r, m = parts
            self.memory[int(m)] = self.registers[int(r[1]) - 1]
        elif op == 'HCF':
            raise SystemExit('HCF: Stopping the program.')

        self.instruction_pointer += 1

def evaluate(program):
    interpreter = AssemblyInterpreter()
    return interpreter.evaluate(program)

# Example usage
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

print(evaluate(program))
This interpreter reads the assembly program, parses it into instructions and labels, and then executes the instructions in order. The `evaluate` function returns the resulting memory state after the program completes. You can test it with the given example program, which computes the first 20 square numbers and stores them in memory. The output will be a list of the first 20 square numbers.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
class AssemblyInterpreter:
    def __init__(self):
        self.registers = [0] * 8
        self.flag = False
        self.memory = [0] * 100
        self.instruction_pointer = 0
        self.labels = {}
        self.instructions = []

    def parse(self, program):
        lines = program.strip().split('\n')
        for i, line in enumerate(lines):
            line = line.strip()
            if not line:
                continue
            if line.endswith(':'):
                self.labels[line[:-1]] = i
            else:
                self.instructions.append(line)

    def evaluate(self, program):
        self.parse(program)
        while self.instruction_pointer < len(self.instructions):
            instruction = self.instructions[self.instruction_pointer]
            self.execute_instruction(instruction)

        return self.memory

    def execute_instruction(self, instruction):
        parts = instruction.split()
        op = parts[0]

        if op == 'SET':
            _, r, c = parts
            self.registers[int(r[1]) - 1] = int(c)
        elif op == 'ADD':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] + self.registers[int(r3[1]) - 1]
        elif op == 'SUB':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] - self.registers[int(r3[1]) - 1]
        elif op == 'MUL':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] * self.registers[int(r3[1]) - 1]
        elif op == 'DIV':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] // self.registers[int(r3[1]) - 1]
        elif op == 'MOD':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] % self.registers[int(r3[1]) - 1]
        elif op == 'EQ':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] == self.registers[int(r2[1]) - 1]
        elif op == 'NEQ':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] != self.registers[int(r2[1]) - 1]
        elif op == 'LT':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] < self.registers[int(r2[1]) - 1]
        elif op == 'LTE':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] <= self.registers[int(r2[1]) - 1]
        elif op == 'GT':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] > self.registers[int(r2[1]) - 1]
        elif op == 'GTE':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] >= self.registers[int(r2[1]) - 1]
        elif op == 'INC':
            _, r = parts
            self.registers[int(r[1]) - 1] += 1
        elif op == 'DEC':
            _, r = parts
            self.registers[int(r[1]) - 1] -= 1
        elif op == 'JMP':
            _, label = parts
            self.instruction_pointer = self.labels[label]
            return
        elif op == 'JT':
            _, label = parts
            if self.flag:
                self.instruction_pointer = self.labels[label]
                return
        elif op == 'JF':
            _, label = parts
            if not self.flag:
                self.instruction_pointer = self.labels[label]
                return
        elif op == 'LOAD':
            _, r, m = parts
            self.registers[int(r[1]) - 1] = self.memory[int(m)]
        elif op == 'STORE':
            _, r, m = parts
            self.memory[int(m)] = self.registers[int(r[1]) - 1]
        elif op == 'HCF':
            raise SystemExit('HCF: Stopping the program.')

        self.instruction_pointer += 1

def evaluate(program):
    interpreter = AssemblyInterpreter()
    return interpreter.evaluate(program)

# Example usage
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
class AssemblyInterpreter:
    def __init__(self):
        self.registers = [0] * 8
        self.flag = False
        self.memory = [0] * 100
        self.instruction_pointer = 0
        self.labels = {}
        self.instructions = []

    def parse(self, program):
        lines = program.strip().split('\n')
        for i, line in enumerate(lines):
            line = line.strip()
            if not line:
                continue
            if line.endswith(':'):
                self.labels[line[:-1]] = i
            else:
                self.instructions.append(line)

    def evaluate(self, program):
        self.parse(program)
        while self.instruction_pointer < len(self.instructions):
            instruction = self.instructions[self.instruction_pointer]
            self.execute_instruction(instruction)

        return self.memory

    def execute_instruction(self, instruction):
        parts = instruction.split()
        op = parts[0]

        if op == 'SET':
            _, r, c = parts
            self.registers[int(r[1]) - 1] = int(c)
        elif op == 'ADD':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] + self.registers[int(r3[1]) - 1]
        elif op == 'SUB':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] - self.registers[int(r3[1]) - 1]
        elif op == 'MUL':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] * self.registers[int(r3[1]) - 1]
        elif op == 'DIV':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] // self.registers[int(r3[1]) - 1]
        elif op == 'MOD':
            _, r1, r2, r3 = parts
            self.registers[int(r1[1]) - 1] = self.registers[int(r2[1]) - 1] % self.registers[int(r3[1]) - 1]
        elif op == 'EQ':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] == self.registers[int(r2[1]) - 1]
        elif op == 'NEQ':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] != self.registers[int(r2[1]) - 1]
        elif op == 'LT':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] < self.registers[int(r2[1]) - 1]
        elif op == 'LTE':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] <= self.registers[int(r2[1]) - 1]
        elif op == 'GT':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] > self.registers[int(r2[1]) - 1]
        elif op == 'GTE':
            _, r1, r2 = parts
            self.flag = self.registers[int(r1[1]) - 1] >= self.registers[int(r2[1]) - 1]
        elif op == 'INC':
            _, r = parts
            self.registers[int(r[1]) - 1] += 1
        elif op == 'DEC':
            _, r = parts
            self.registers[int(r[1]) - 1] -= 1
        elif op == 'JMP':
            _, label = parts
            self.instruction_pointer = self.labels[label]
            return
        elif op == 'JT':
            _, label = parts
            if self.flag:
                self.instruction_pointer = self.labels[label]
                return
        elif op == 'JF':
            _, label = parts
            if not self.flag:
                self.instruction_pointer = self.labels[label]
                return
        elif op == 'LOAD':
            _, r, m = parts
            self.registers[int(r[1]) - 1] = self.memory[int(m)]
        elif op == 'STORE':
            _, r, m = parts
            self.memory[int(m)] = self.registers[int(r[1]) - 1]
        elif op == 'HCF':
            raise SystemExit('HCF: Stopping the program.')

        self.instruction_pointer += 1

def evaluate(program):
    interpreter = AssemblyInterpreter()
    return interpreter.evaluate(program)

# Example usage
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 123, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 103, in evaluate return interpreter.evaluate(program) File "/usr/src/app/main.py", line 26, in evaluate self.execute_instruction(instruction) File "/usr/src/app/main.py", line 35, in execute_instruction _, r, c = parts ValueError: too many values to unpack (expected 3)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Creating an interpreter for the described assembly language involves parsing the instructions, maintaining the state of the registers and memory, and executing the instructions as described. Here's a Python implementation of the interpreter:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
class AssemblyInterpreter:
    def __init__(self):
        self.registers = [0] * 8
        self.flag = False
        self.memory = [0] * 100
        self.instruction_pointer = 0
        self.labels = {}

    def parse_program(self, program):
        self.instructions = program.strip().split('\n')
        self.instructions = [line.split('//')[0].strip() for line in self.instructions]
        self.instructions = [line for line in self.instructions if line]

        # Find all labels and store their positions
        for i, line in enumerate(self.instructions):
            if ':' in line:
                label = line[:-1]
                self.labels[label] = i

    def execute(self):
        while self.instruction_pointer < len(self.instructions):
            instruction = self.instructions[self.instruction_pointer]
            if ':' in instruction:
                self.instruction_pointer += 1
                continue

            parts = instruction.split()
            op = parts[0]
            args = parts[1:]

            if op == 'SET':
                self.set_register(*args)
            elif op == 'ADD':
                self.add(*args)
            elif op == 'SUB':
                self.sub(*args)
            elif op == 'MUL':
                self.mul(*args)
            elif op == 'DIV':
                self.div(*args)
            elif op == 'MOD':
                self.mod(*args)
            elif op == 'EQ':
                self.eq(*args)
            elif op == 'NEQ':
                self.neq(*args)
            elif op == 'LT':
                self.lt(*args)
            elif op == 'LTE':
                self.lte(*args)
            elif op == 'GT':
                self.gt(*args)
            elif op == 'GTE':
                self.gte(*args)
            elif op == 'INC':
                self.inc(*args)
            elif op == 'DEC':
                self.dec(*args)
            elif op == 'JMP':
                self.jmp(*args)
            elif op == 'JT':
                self.jt(*args)
            elif op == 'JF':
                self.jf(*args)
            elif op == 'LOAD':
                self.load(*args)
            elif op == 'STORE':
                self.store(*args)
            elif op == 'HCF':
                break

            self.instruction_pointer += 1

    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[int(arg[1]) - 1]
        else:
            return int(arg)

    def set_register(self, reg, value):
        self.registers[int(reg[1]) - 1] = self.get_value(value)

    def add(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) + self.get_value(src2)

    def sub(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) - self.get_value(src2)

    def mul(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) * self.get_value(src2)

    def div(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) // self.get_value(src2)

    def mod(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) % self.get_value(src2)

    def eq(self, reg1, reg2):
        self.flag = self.get_value(reg1) == self.get_value(reg2)

    def neq(self, reg1, reg2):
        self.flag = self.get_value(reg1) != self.get_value(reg2)

    def lt(self, reg1, reg2):
        self.flag = self.get_value(reg1) < self.get_value(reg2)

    def lte(self, reg1, reg2):
        self.flag = self.get_value(reg1) <= self.get_value(reg2)

    def gt(self, reg1, reg2):
        self.flag = self.get_value(reg1) > self.get_value(reg2)

    def gte(self, reg1, reg2):
        self.flag = self.get_value(reg1) >= self.get_value(reg2)

    def inc(self, reg):
        self.registers[int(reg[1]) - 1] += 1

    def dec(self, reg):
        self.registers[int(reg[1]) - 1] -= 1

    def jmp(self, label):
        self.instruction_pointer = self.labels[label]

    def jt(self, label):
        if self.flag:
            self.instruction_pointer = self.labels[label]

    def jf(self, label):
        if not self.flag:
            self.instruction_pointer = self.labels[label]

    def load(self, reg, mem):
        self.registers[int(reg[1]) - 1] = self.memory[self.get_value(mem)]

    def store(self, reg, mem):
        self.memory[self.get_value(mem)] = self.get_value(reg)

def evaluate(program):
    interpreter = AssemblyInterpreter()
    interpreter.parse_program(program)
    interpreter.execute()
    return interpreter.memory

# Example usage:
program = """
    SET R1 0      // Counter for storing squares
    SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

resulting_memory = evaluate(program)
print(resulting_memory[:20])  # Should print the first 20 square numbers
This implementation defines an `AssemblyInterpreter` class that handles the state and execution of the assembly program. The `evaluate` function initializes the interpreter, parses the program, and executes it, returning the final state of the memory. The example usage demonstrates how to run the provided program and print the first 20 square numbers stored in memory.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
class AssemblyInterpreter:
    def __init__(self):
        self.registers = [0] * 8
        self.flag = False
        self.memory = [0] * 100
        self.instruction_pointer = 0
        self.labels = {}

    def parse_program(self, program):
        self.instructions = program.strip().split('\n')
        self.instructions = [line.split('//')[0].strip() for line in self.instructions]
        self.instructions = [line for line in self.instructions if line]

        # Find all labels and store their positions
        for i, line in enumerate(self.instructions):
            if ':' in line:
                label = line[:-1]
                self.labels[label] = i

    def execute(self):
        while self.instruction_pointer < len(self.instructions):
            instruction = self.instructions[self.instruction_pointer]
            if ':' in instruction:
                self.instruction_pointer += 1
                continue

            parts = instruction.split()
            op = parts[0]
            args = parts[1:]

            if op == 'SET':
                self.set_register(*args)
            elif op == 'ADD':
                self.add(*args)
            elif op == 'SUB':
                self.sub(*args)
            elif op == 'MUL':
                self.mul(*args)
            elif op == 'DIV':
                self.div(*args)
            elif op == 'MOD':
                self.mod(*args)
            elif op == 'EQ':
                self.eq(*args)
            elif op == 'NEQ':
                self.neq(*args)
            elif op == 'LT':
                self.lt(*args)
            elif op == 'LTE':
                self.lte(*args)
            elif op == 'GT':
                self.gt(*args)
            elif op == 'GTE':
                self.gte(*args)
            elif op == 'INC':
                self.inc(*args)
            elif op == 'DEC':
                self.dec(*args)
            elif op == 'JMP':
                self.jmp(*args)
            elif op == 'JT':
                self.jt(*args)
            elif op == 'JF':
                self.jf(*args)
            elif op == 'LOAD':
                self.load(*args)
            elif op == 'STORE':
                self.store(*args)
            elif op == 'HCF':
                break

            self.instruction_pointer += 1

    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[int(arg[1]) - 1]
        else:
            return int(arg)

    def set_register(self, reg, value):
        self.registers[int(reg[1]) - 1] = self.get_value(value)

    def add(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) + self.get_value(src2)

    def sub(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) - self.get_value(src2)

    def mul(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) * self.get_value(src2)

    def div(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) // self.get_value(src2)

    def mod(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) % self.get_value(src2)

    def eq(self, reg1, reg2):
        self.flag = self.get_value(reg1) == self.get_value(reg2)

    def neq(self, reg1, reg2):
        self.flag = self.get_value(reg1) != self.get_value(reg2)

    def lt(self, reg1, reg2):
        self.flag = self.get_value(reg1) < self.get_value(reg2)

    def lte(self, reg1, reg2):
        self.flag = self.get_value(reg1) <= self.get_value(reg2)

    def gt(self, reg1, reg2):
        self.flag = self.get_value(reg1) > self.get_value(reg2)

    def gte(self, reg1, reg2):
        self.flag = self.get_value(reg1) >= self.get_value(reg2)

    def inc(self, reg):
        self.registers[int(reg[1]) - 1] += 1

    def dec(self, reg):
        self.registers[int(reg[1]) - 1] -= 1

    def jmp(self, label):
        self.instruction_pointer = self.labels[label]

    def jt(self, label):
        if self.flag:
            self.instruction_pointer = self.labels[label]

    def jf(self, label):
        if not self.flag:
            self.instruction_pointer = self.labels[label]

    def load(self, reg, mem):
        self.registers[int(reg[1]) - 1] = self.memory[self.get_value(mem)]

    def store(self, reg, mem):
        self.memory[self.get_value(mem)] = self.get_value(reg)

def evaluate(program):
    interpreter = AssemblyInterpreter()
    interpreter.parse_program(program)
    interpreter.execute()
    return interpreter.memory

# Example usage:
program = """
    SET R1 0      // Counter for storing squares
    SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

resulting_memory = evaluate(program)
print(resulting_memory[:20])  # Should print the first 20 square numbers

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
class AssemblyInterpreter:
    def __init__(self):
        self.registers = [0] * 8
        self.flag = False
        self.memory = [0] * 100
        self.instruction_pointer = 0
        self.labels = {}

    def parse_program(self, program):
        self.instructions = program.strip().split('\n')
        self.instructions = [line.split('//')[0].strip() for line in self.instructions]
        self.instructions = [line for line in self.instructions if line]

        # Find all labels and store their positions
        for i, line in enumerate(self.instructions):
            if ':' in line:
                label = line[:-1]
                self.labels[label] = i

    def execute(self):
        while self.instruction_pointer < len(self.instructions):
            instruction = self.instructions[self.instruction_pointer]
            if ':' in instruction:
                self.instruction_pointer += 1
                continue

            parts = instruction.split()
            op = parts[0]
            args = parts[1:]

            if op == 'SET':
                self.set_register(*args)
            elif op == 'ADD':
                self.add(*args)
            elif op == 'SUB':
                self.sub(*args)
            elif op == 'MUL':
                self.mul(*args)
            elif op == 'DIV':
                self.div(*args)
            elif op == 'MOD':
                self.mod(*args)
            elif op == 'EQ':
                self.eq(*args)
            elif op == 'NEQ':
                self.neq(*args)
            elif op == 'LT':
                self.lt(*args)
            elif op == 'LTE':
                self.lte(*args)
            elif op == 'GT':
                self.gt(*args)
            elif op == 'GTE':
                self.gte(*args)
            elif op == 'INC':
                self.inc(*args)
            elif op == 'DEC':
                self.dec(*args)
            elif op == 'JMP':
                self.jmp(*args)
            elif op == 'JT':
                self.jt(*args)
            elif op == 'JF':
                self.jf(*args)
            elif op == 'LOAD':
                self.load(*args)
            elif op == 'STORE':
                self.store(*args)
            elif op == 'HCF':
                break

            self.instruction_pointer += 1

    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[int(arg[1]) - 1]
        else:
            return int(arg)

    def set_register(self, reg, value):
        self.registers[int(reg[1]) - 1] = self.get_value(value)

    def add(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) + self.get_value(src2)

    def sub(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) - self.get_value(src2)

    def mul(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) * self.get_value(src2)

    def div(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) // self.get_value(src2)

    def mod(self, dest, src1, src2):
        self.registers[int(dest[1]) - 1] = self.get_value(src1) % self.get_value(src2)

    def eq(self, reg1, reg2):
        self.flag = self.get_value(reg1) == self.get_value(reg2)

    def neq(self, reg1, reg2):
        self.flag = self.get_value(reg1) != self.get_value(reg2)

    def lt(self, reg1, reg2):
        self.flag = self.get_value(reg1) < self.get_value(reg2)

    def lte(self, reg1, reg2):
        self.flag = self.get_value(reg1) <= self.get_value(reg2)

    def gt(self, reg1, reg2):
        self.flag = self.get_value(reg1) > self.get_value(reg2)

    def gte(self, reg1, reg2):
        self.flag = self.get_value(reg1) >= self.get_value(reg2)

    def inc(self, reg):
        self.registers[int(reg[1]) - 1] += 1

    def dec(self, reg):
        self.registers[int(reg[1]) - 1] -= 1

    def jmp(self, label):
        self.instruction_pointer = self.labels[label]

    def jt(self, label):
        if self.flag:
            self.instruction_pointer = self.labels[label]

    def jf(self, label):
        if not self.flag:
            self.instruction_pointer = self.labels[label]

    def load(self, reg, mem):
        self.registers[int(reg[1]) - 1] = self.memory[self.get_value(mem)]

    def store(self, reg, mem):
        self.memory[self.get_value(mem)] = self.get_value(reg)

def evaluate(program):
    interpreter = AssemblyInterpreter()
    interpreter.parse_program(program)
    interpreter.execute()
    return interpreter.memory

# Example usage:
program = """
    SET R1 0      // Counter for storing squares
    SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

resulting_memory = evaluate(program)
print(resulting_memory[:20])  # Should print the first 20 square numbers





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400] All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Sure, I can help you write a Python interpreter for the described assembly language. Below is the implementation of the `evaluate` function that interprets the assembly code and returns the resulting memory state:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def evaluate(program: str):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0

    # Parse the program into a list of instructions
    instructions = [line.strip() for line in program.strip().split('\n') if line.strip()]

    # Create a dictionary to map labels to instruction indices
    labels = {}
    for i, instruction in enumerate(instructions):
        if ':' in instruction:
            label = instruction.split(':')[0]
            labels[label] = i

    # Define a helper function to get the value of an argument
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)

    # Define the main loop to execute instructions
    while instruction_pointer < len(instructions):
        instruction = instructions[instruction_pointer]

        if ':' in instruction:
            instruction_pointer += 1
            continue

        parts = instruction.split()
        op = parts[0]

        if op == 'SET':
            _, reg, val = parts
            registers[reg] = get_value(val)
        elif op == 'ADD':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) + get_value(val2)
        elif op == 'SUB':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) - get_value(val2)
        elif op == 'MUL':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) * get_value(val2)
        elif op == 'DIV':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) // get_value(val2)
        elif op == 'MOD':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) % get_value(val2)
        elif op == 'EQ':
            _, val1, val2 = parts
            flag = get_value(val1) == get_value(val2)
        elif op == 'NEQ':
            _, val1, val2 = parts
            flag = get_value(val1) != get_value(val2)
        elif op == 'LT':
            _, val1, val2 = parts
            flag = get_value(val1) < get_value(val2)
        elif op == 'LTE':
            _, val1, val2 = parts
            flag = get_value(val1) <= get_value(val2)
        elif op == 'GT':
            _, val1, val2 = parts
            flag = get_value(val1) > get_value(val2)
        elif op == 'GTE':
            _, val1, val2 = parts
            flag = get_value(val1) >= get_value(val2)
        elif op == 'INC':
            _, reg = parts
            registers[reg] += 1
        elif op == 'DEC':
            _, reg = parts
            registers[reg] -= 1
        elif op == 'JMP':
            _, label = parts
            instruction_pointer = labels[label]
            continue
        elif op == 'JT':
            _, label = parts
            if flag:
                instruction_pointer = labels[label]
                continue
        elif op == 'JF':
            _, label = parts
            if not flag:
                instruction_pointer = labels[label]
                continue
        elif op == 'LOAD':
            _, reg, addr = parts
            registers[reg] = memory[get_value(addr)]
        elif op == 'STORE':
            _, reg, addr = parts
            memory[get_value(addr)] = registers[reg]
        elif op == 'HCF':
            break

        instruction_pointer += 1

    return memory

# Example usage
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

result = evaluate(program)
print(result)
This interpreter parses the program, keeps track of registers, memory, and the flag state, and executes the instructions according to the provided assembly language specification. The `evaluate` function returns the final state of the memory after executing the program.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def evaluate(program: str):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0

    # Parse the program into a list of instructions
    instructions = [line.strip() for line in program.strip().split('\n') if line.strip()]

    # Create a dictionary to map labels to instruction indices
    labels = {}
    for i, instruction in enumerate(instructions):
        if ':' in instruction:
            label = instruction.split(':')[0]
            labels[label] = i

    # Define a helper function to get the value of an argument
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)

    # Define the main loop to execute instructions
    while instruction_pointer < len(instructions):
        instruction = instructions[instruction_pointer]

        if ':' in instruction:
            instruction_pointer += 1
            continue

        parts = instruction.split()
        op = parts[0]

        if op == 'SET':
            _, reg, val = parts
            registers[reg] = get_value(val)
        elif op == 'ADD':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) + get_value(val2)
        elif op == 'SUB':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) - get_value(val2)
        elif op == 'MUL':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) * get_value(val2)
        elif op == 'DIV':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) // get_value(val2)
        elif op == 'MOD':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) % get_value(val2)
        elif op == 'EQ':
            _, val1, val2 = parts
            flag = get_value(val1) == get_value(val2)
        elif op == 'NEQ':
            _, val1, val2 = parts
            flag = get_value(val1) != get_value(val2)
        elif op == 'LT':
            _, val1, val2 = parts
            flag = get_value(val1) < get_value(val2)
        elif op == 'LTE':
            _, val1, val2 = parts
            flag = get_value(val1) <= get_value(val2)
        elif op == 'GT':
            _, val1, val2 = parts
            flag = get_value(val1) > get_value(val2)
        elif op == 'GTE':
            _, val1, val2 = parts
            flag = get_value(val1) >= get_value(val2)
        elif op == 'INC':
            _, reg = parts
            registers[reg] += 1
        elif op == 'DEC':
            _, reg = parts
            registers[reg] -= 1
        elif op == 'JMP':
            _, label = parts
            instruction_pointer = labels[label]
            continue
        elif op == 'JT':
            _, label = parts
            if flag:
                instruction_pointer = labels[label]
                continue
        elif op == 'JF':
            _, label = parts
            if not flag:
                instruction_pointer = labels[label]
                continue
        elif op == 'LOAD':
            _, reg, addr = parts
            registers[reg] = memory[get_value(addr)]
        elif op == 'STORE':
            _, reg, addr = parts
            memory[get_value(addr)] = registers[reg]
        elif op == 'HCF':
            break

        instruction_pointer += 1

    return memory

# Example usage
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

result = evaluate(program)
print(result)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def evaluate(program: str):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0

    # Parse the program into a list of instructions
    instructions = [line.strip() for line in program.strip().split('\n') if line.strip()]

    # Create a dictionary to map labels to instruction indices
    labels = {}
    for i, instruction in enumerate(instructions):
        if ':' in instruction:
            label = instruction.split(':')[0]
            labels[label] = i

    # Define a helper function to get the value of an argument
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)

    # Define the main loop to execute instructions
    while instruction_pointer < len(instructions):
        instruction = instructions[instruction_pointer]

        if ':' in instruction:
            instruction_pointer += 1
            continue

        parts = instruction.split()
        op = parts[0]

        if op == 'SET':
            _, reg, val = parts
            registers[reg] = get_value(val)
        elif op == 'ADD':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) + get_value(val2)
        elif op == 'SUB':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) - get_value(val2)
        elif op == 'MUL':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) * get_value(val2)
        elif op == 'DIV':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) // get_value(val2)
        elif op == 'MOD':
            _, reg, val1, val2 = parts
            registers[reg] = get_value(val1) % get_value(val2)
        elif op == 'EQ':
            _, val1, val2 = parts
            flag = get_value(val1) == get_value(val2)
        elif op == 'NEQ':
            _, val1, val2 = parts
            flag = get_value(val1) != get_value(val2)
        elif op == 'LT':
            _, val1, val2 = parts
            flag = get_value(val1) < get_value(val2)
        elif op == 'LTE':
            _, val1, val2 = parts
            flag = get_value(val1) <= get_value(val2)
        elif op == 'GT':
            _, val1, val2 = parts
            flag = get_value(val1) > get_value(val2)
        elif op == 'GTE':
            _, val1, val2 = parts
            flag = get_value(val1) >= get_value(val2)
        elif op == 'INC':
            _, reg = parts
            registers[reg] += 1
        elif op == 'DEC':
            _, reg = parts
            registers[reg] -= 1
        elif op == 'JMP':
            _, label = parts
            instruction_pointer = labels[label]
            continue
        elif op == 'JT':
            _, label = parts
            if flag:
                instruction_pointer = labels[label]
                continue
        elif op == 'JF':
            _, label = parts
            if not flag:
                instruction_pointer = labels[label]
                continue
        elif op == 'LOAD':
            _, reg, addr = parts
            registers[reg] = memory[get_value(addr)]
        elif op == 'STORE':
            _, reg, addr = parts
            memory[get_value(addr)] = registers[reg]
        elif op == 'HCF':
            break

        instruction_pointer += 1

    return memory

# Example usage
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

result = evaluate(program)
print(result)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 123, in <module> result = evaluate(program) File "/usr/src/app/main.py", line 37, in evaluate _, reg, val = parts ValueError: too many values to unpack (expected 3)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Sure! Below is a Python interpreter for the described assembly language. This interpreter will parse and execute the given assembly code and then return the resulting memory state.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def evaluate(program):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0
    instructions = program.split('\n')

    # Parse instructions and labels
    labels = {}
    parsed_instructions = []
    for i, line in enumerate(instructions):
        line = line.strip()
        if not line:
            continue
        if ':' in line:
            label = line.split(':')[0]
            labels[label] = i
        else:
            parsed_instructions.append(line)

    # Helper function to get the value of an argument
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        else:
            return int(arg)

    # Main execution loop
    while instruction_pointer < len(parsed_instructions):
        instruction = parsed_instructions[instruction_pointer]
        parts = instruction.split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]], instruction_pointer = get_value(args[1]), instruction_pointer + 1
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
            instruction_pointer += 1
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
            instruction_pointer += 1
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
            instruction_pointer += 1
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
            instruction_pointer += 1
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
            instruction_pointer += 1
        elif op == 'EQ':
            flag = get_value(args[0]) == get_value(args[1])
            instruction_pointer += 1
        elif op == 'NEQ':
            flag = get_value(args[0]) != get_value(args[1])
            instruction_pointer += 1
        elif op == 'LT':
            flag = get_value(args[0]) < get_value(args[1])
            instruction_pointer += 1
        elif op == 'LTE':
            flag = get_value(args[0]) <= get_value(args[1])
            instruction_pointer += 1
        elif op == 'GT':
            flag = get_value(args[0]) > get_value(args[1])
            instruction_pointer += 1
        elif op == 'GTE':
            flag = get_value(args[0]) >= get_value(args[1])
            instruction_pointer += 1
        elif op == 'INC':
            registers[args[0]] += 1
            instruction_pointer += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
            instruction_pointer += 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
            else:
                instruction_pointer += 1
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
            else:
                instruction_pointer += 1
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
            instruction_pointer += 1
        elif op == 'STORE':
            memory[get_value(args[1])] = get_value(args[0])
            instruction_pointer += 1
        elif op == 'HCF':
            break
        else:
            raise ValueError(f"Unknown instruction: {op}")

    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

# Evaluate the program
resulting_memory = evaluate(program)
print(resulting_memory[:20])  # Print first 20 memory addresses
This interpreter parses the assembly code, executes each instruction, and updates the state of the registers and memory accordingly. It handles labels and conditional jumps as specified. The `evaluate` function returns the final memory state after executing the program.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def evaluate(program):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0
    instructions = program.split('\n')

    # Parse instructions and labels
    labels = {}
    parsed_instructions = []
    for i, line in enumerate(instructions):
        line = line.strip()
        if not line:
            continue
        if ':' in line:
            label = line.split(':')[0]
            labels[label] = i
        else:
            parsed_instructions.append(line)

    # Helper function to get the value of an argument
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        else:
            return int(arg)

    # Main execution loop
    while instruction_pointer < len(parsed_instructions):
        instruction = parsed_instructions[instruction_pointer]
        parts = instruction.split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]], instruction_pointer = get_value(args[1]), instruction_pointer + 1
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
            instruction_pointer += 1
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
            instruction_pointer += 1
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
            instruction_pointer += 1
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
            instruction_pointer += 1
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
            instruction_pointer += 1
        elif op == 'EQ':
            flag = get_value(args[0]) == get_value(args[1])
            instruction_pointer += 1
        elif op == 'NEQ':
            flag = get_value(args[0]) != get_value(args[1])
            instruction_pointer += 1
        elif op == 'LT':
            flag = get_value(args[0]) < get_value(args[1])
            instruction_pointer += 1
        elif op == 'LTE':
            flag = get_value(args[0]) <= get_value(args[1])
            instruction_pointer += 1
        elif op == 'GT':
            flag = get_value(args[0]) > get_value(args[1])
            instruction_pointer += 1
        elif op == 'GTE':
            flag = get_value(args[0]) >= get_value(args[1])
            instruction_pointer += 1
        elif op == 'INC':
            registers[args[0]] += 1
            instruction_pointer += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
            instruction_pointer += 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
            else:
                instruction_pointer += 1
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
            else:
                instruction_pointer += 1
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
            instruction_pointer += 1
        elif op == 'STORE':
            memory[get_value(args[1])] = get_value(args[0])
            instruction_pointer += 1
        elif op == 'HCF':
            break
        else:
            raise ValueError(f"Unknown instruction: {op}")

    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

# Evaluate the program
resulting_memory = evaluate(program)
print(resulting_memory[:20])  # Print first 20 memory addresses

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def evaluate(program):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0
    instructions = program.split('\n')

    # Parse instructions and labels
    labels = {}
    parsed_instructions = []
    for i, line in enumerate(instructions):
        line = line.strip()
        if not line:
            continue
        if ':' in line:
            label = line.split(':')[0]
            labels[label] = i
        else:
            parsed_instructions.append(line)

    # Helper function to get the value of an argument
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        else:
            return int(arg)

    # Main execution loop
    while instruction_pointer < len(parsed_instructions):
        instruction = parsed_instructions[instruction_pointer]
        parts = instruction.split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]], instruction_pointer = get_value(args[1]), instruction_pointer + 1
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
            instruction_pointer += 1
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
            instruction_pointer += 1
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
            instruction_pointer += 1
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
            instruction_pointer += 1
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
            instruction_pointer += 1
        elif op == 'EQ':
            flag = get_value(args[0]) == get_value(args[1])
            instruction_pointer += 1
        elif op == 'NEQ':
            flag = get_value(args[0]) != get_value(args[1])
            instruction_pointer += 1
        elif op == 'LT':
            flag = get_value(args[0]) < get_value(args[1])
            instruction_pointer += 1
        elif op == 'LTE':
            flag = get_value(args[0]) <= get_value(args[1])
            instruction_pointer += 1
        elif op == 'GT':
            flag = get_value(args[0]) > get_value(args[1])
            instruction_pointer += 1
        elif op == 'GTE':
            flag = get_value(args[0]) >= get_value(args[1])
            instruction_pointer += 1
        elif op == 'INC':
            registers[args[0]] += 1
            instruction_pointer += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
            instruction_pointer += 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
            else:
                instruction_pointer += 1
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
            else:
                instruction_pointer += 1
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
            instruction_pointer += 1
        elif op == 'STORE':
            memory[get_value(args[1])] = get_value(args[0])
            instruction_pointer += 1
        elif op == 'HCF':
            break
        else:
            raise ValueError(f"Unknown instruction: {op}")

    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

# Evaluate the program
resulting_memory = evaluate(program)
print(resulting_memory[:20])  # Print first 20 memory addresses





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Traceback (most recent call last): File "/usr/src/app/main.py", line 142, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' AssertionError: Wrong answer; got [1, 20, 20, 20, 20, 20, 20, 20, 20, 20] instead of [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Sure! Below is a Python interpreter for the given assembly language. This interpreter will parse the assembly code, execute the instructions, and return the resulting memory state.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
class AssemblyInterpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 9)}
        self.flag = False
        self.memory = [0] * 100
        self.instruction_pointer = 0
        self.program = []
        self.labels = {}

    def parse(self, code):
        lines = code.strip().split('\n')
        for line in lines:
            line = line.strip()
            if not line or line.startswith('//'):
                continue
            if ':' in line:
                label, _ = line.split(':')
                self.labels[label] = len(self.program)
            else:
                self.program.append(line)

    def execute(self):
        while self.instruction_pointer < len(self.program):
            instruction = self.program[self.instruction_pointer]
            self.execute_instruction(instruction)

    def execute_instruction(self, instruction):
        parts = instruction.split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            self.set_register(args[0], args[1])
        elif op == 'ADD':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x + y)
        elif op == 'SUB':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x - y)
        elif op == 'MUL':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x * y)
        elif op == 'DIV':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x // y)
        elif op == 'MOD':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x % y)
        elif op == 'EQ':
            self.comparison_op(args[0], args[1], lambda x, y: x == y)
        elif op == 'NEQ':
            self.comparison_op(args[0], args[1], lambda x, y: x != y)
        elif op == 'LT':
            self.comparison_op(args[0], args[1], lambda x, y: x < y)
        elif op == 'LTE':
            self.comparison_op(args[0], args[1], lambda x, y: x <= y)
        elif op == 'GT':
            self.comparison_op(args[0], args[1], lambda x, y: x > y)
        elif op == 'GTE':
            self.comparison_op(args[0], args[1], lambda x, y: x >= y)
        elif op == 'INC':
            self.inc_dec_register(args[0], 1)
        elif op == 'DEC':
            self.inc_dec_register(args[0], -1)
        elif op == 'JMP':
            self.jump(args[0])
        elif op == 'JT':
            if self.flag:
                self.jump(args[0])
        elif op == 'JF':
            if not self.flag:
                self.jump(args[0])
        elif op == 'LOAD':
            self.load_store_register(args[0], args[1], True)
        elif op == 'STORE':
            self.load_store_register(args[0], args[1], False)
        elif op == 'HCF':
            self.instruction_pointer = len(self.program)
        else:
            raise ValueError(f"Unknown instruction: {op}")

        self.instruction_pointer += 1

    def set_register(self, reg, value):
        if value.startswith('R'):
            self.registers[reg] = self.registers[value]
        else:
            self.registers[reg] = int(value)

    def arithmetic_op(self, dest, src1, src2, op):
        val1 = self.get_value(src1)
        val2 = self.get_value(src2)
        self.registers[dest] = op(val1, val2)

    def comparison_op(self, reg1, reg2, op):
        val1 = self.get_value(reg1)
        val2 = self.get_value(reg2)
        self.flag = op(val1, val2)

    def inc_dec_register(self, reg, amount):
        self.registers[reg] += amount

    def jump(self, label):
        self.instruction_pointer = self.labels[label]

    def load_store_register(self, reg, addr, is_load):
        if is_load:
            self.registers[reg] = self.memory[int(addr)]
        else:
            self.memory[int(addr)] = self.registers[reg]

    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[arg]
        else:
            return int(arg)

def evaluate(code):
    interpreter = AssemblyInterpreter()
    interpreter.parse(code)
    interpreter.execute()
    return interpreter.memory

# Example usage
program = """
SET R1 0
SET R2 1

loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop

end:
    HCF
"""

print(evaluate(program))
This code defines a `AssemblyInterpreter` class that can parse and execute the assembly language instructions. The `evaluate` function initializes the interpreter, parses the input code, executes it, and returns the resulting memory state. You can run the example program by calling `evaluate(program)`, which should return the list of the first 20 square numbers.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
class AssemblyInterpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 9)}
        self.flag = False
        self.memory = [0] * 100
        self.instruction_pointer = 0
        self.program = []
        self.labels = {}

    def parse(self, code):
        lines = code.strip().split('\n')
        for line in lines:
            line = line.strip()
            if not line or line.startswith('//'):
                continue
            if ':' in line:
                label, _ = line.split(':')
                self.labels[label] = len(self.program)
            else:
                self.program.append(line)

    def execute(self):
        while self.instruction_pointer < len(self.program):
            instruction = self.program[self.instruction_pointer]
            self.execute_instruction(instruction)

    def execute_instruction(self, instruction):
        parts = instruction.split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            self.set_register(args[0], args[1])
        elif op == 'ADD':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x + y)
        elif op == 'SUB':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x - y)
        elif op == 'MUL':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x * y)
        elif op == 'DIV':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x // y)
        elif op == 'MOD':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x % y)
        elif op == 'EQ':
            self.comparison_op(args[0], args[1], lambda x, y: x == y)
        elif op == 'NEQ':
            self.comparison_op(args[0], args[1], lambda x, y: x != y)
        elif op == 'LT':
            self.comparison_op(args[0], args[1], lambda x, y: x < y)
        elif op == 'LTE':
            self.comparison_op(args[0], args[1], lambda x, y: x <= y)
        elif op == 'GT':
            self.comparison_op(args[0], args[1], lambda x, y: x > y)
        elif op == 'GTE':
            self.comparison_op(args[0], args[1], lambda x, y: x >= y)
        elif op == 'INC':
            self.inc_dec_register(args[0], 1)
        elif op == 'DEC':
            self.inc_dec_register(args[0], -1)
        elif op == 'JMP':
            self.jump(args[0])
        elif op == 'JT':
            if self.flag:
                self.jump(args[0])
        elif op == 'JF':
            if not self.flag:
                self.jump(args[0])
        elif op == 'LOAD':
            self.load_store_register(args[0], args[1], True)
        elif op == 'STORE':
            self.load_store_register(args[0], args[1], False)
        elif op == 'HCF':
            self.instruction_pointer = len(self.program)
        else:
            raise ValueError(f"Unknown instruction: {op}")

        self.instruction_pointer += 1

    def set_register(self, reg, value):
        if value.startswith('R'):
            self.registers[reg] = self.registers[value]
        else:
            self.registers[reg] = int(value)

    def arithmetic_op(self, dest, src1, src2, op):
        val1 = self.get_value(src1)
        val2 = self.get_value(src2)
        self.registers[dest] = op(val1, val2)

    def comparison_op(self, reg1, reg2, op):
        val1 = self.get_value(reg1)
        val2 = self.get_value(reg2)
        self.flag = op(val1, val2)

    def inc_dec_register(self, reg, amount):
        self.registers[reg] += amount

    def jump(self, label):
        self.instruction_pointer = self.labels[label]

    def load_store_register(self, reg, addr, is_load):
        if is_load:
            self.registers[reg] = self.memory[int(addr)]
        else:
            self.memory[int(addr)] = self.registers[reg]

    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[arg]
        else:
            return int(arg)

def evaluate(code):
    interpreter = AssemblyInterpreter()
    interpreter.parse(code)
    interpreter.execute()
    return interpreter.memory

# Example usage
program = """
SET R1 0
SET R2 1

loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop

end:
    HCF
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
class AssemblyInterpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 9)}
        self.flag = False
        self.memory = [0] * 100
        self.instruction_pointer = 0
        self.program = []
        self.labels = {}

    def parse(self, code):
        lines = code.strip().split('\n')
        for line in lines:
            line = line.strip()
            if not line or line.startswith('//'):
                continue
            if ':' in line:
                label, _ = line.split(':')
                self.labels[label] = len(self.program)
            else:
                self.program.append(line)

    def execute(self):
        while self.instruction_pointer < len(self.program):
            instruction = self.program[self.instruction_pointer]
            self.execute_instruction(instruction)

    def execute_instruction(self, instruction):
        parts = instruction.split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            self.set_register(args[0], args[1])
        elif op == 'ADD':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x + y)
        elif op == 'SUB':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x - y)
        elif op == 'MUL':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x * y)
        elif op == 'DIV':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x // y)
        elif op == 'MOD':
            self.arithmetic_op(args[0], args[1], args[2], lambda x, y: x % y)
        elif op == 'EQ':
            self.comparison_op(args[0], args[1], lambda x, y: x == y)
        elif op == 'NEQ':
            self.comparison_op(args[0], args[1], lambda x, y: x != y)
        elif op == 'LT':
            self.comparison_op(args[0], args[1], lambda x, y: x < y)
        elif op == 'LTE':
            self.comparison_op(args[0], args[1], lambda x, y: x <= y)
        elif op == 'GT':
            self.comparison_op(args[0], args[1], lambda x, y: x > y)
        elif op == 'GTE':
            self.comparison_op(args[0], args[1], lambda x, y: x >= y)
        elif op == 'INC':
            self.inc_dec_register(args[0], 1)
        elif op == 'DEC':
            self.inc_dec_register(args[0], -1)
        elif op == 'JMP':
            self.jump(args[0])
        elif op == 'JT':
            if self.flag:
                self.jump(args[0])
        elif op == 'JF':
            if not self.flag:
                self.jump(args[0])
        elif op == 'LOAD':
            self.load_store_register(args[0], args[1], True)
        elif op == 'STORE':
            self.load_store_register(args[0], args[1], False)
        elif op == 'HCF':
            self.instruction_pointer = len(self.program)
        else:
            raise ValueError(f"Unknown instruction: {op}")

        self.instruction_pointer += 1

    def set_register(self, reg, value):
        if value.startswith('R'):
            self.registers[reg] = self.registers[value]
        else:
            self.registers[reg] = int(value)

    def arithmetic_op(self, dest, src1, src2, op):
        val1 = self.get_value(src1)
        val2 = self.get_value(src2)
        self.registers[dest] = op(val1, val2)

    def comparison_op(self, reg1, reg2, op):
        val1 = self.get_value(reg1)
        val2 = self.get_value(reg2)
        self.flag = op(val1, val2)

    def inc_dec_register(self, reg, amount):
        self.registers[reg] += amount

    def jump(self, label):
        self.instruction_pointer = self.labels[label]

    def load_store_register(self, reg, addr, is_load):
        if is_load:
            self.registers[reg] = self.memory[int(addr)]
        else:
            self.memory[int(addr)] = self.registers[reg]

    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[arg]
        else:
            return int(arg)

def evaluate(code):
    interpreter = AssemblyInterpreter()
    interpreter.parse(code)
    interpreter.execute()
    return interpreter.memory

# Example usage
program = """
SET R1 0
SET R2 1

loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop

end:
    HCF
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 138, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 117, in evaluate interpreter.execute() File "/usr/src/app/main.py", line 26, in execute self.execute_instruction(instruction) File "/usr/src/app/main.py", line 72, in execute_instruction self.load_store_register(args[0], args[1], False) File "/usr/src/app/main.py", line 106, in load_store_register self.memory[int(addr)] = self.registers[reg] ValueError: invalid literal for int() with base 10: 'R1'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False