Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Sure! Below is a Python interpreter function `evaluate` for the described assembly language:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def evaluate(program):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0

    # Parse the program into lines and their labels
    lines = program.strip().split('\n')
    instructions = []
    labels = {}
    
    for i, line in enumerate(lines):
        line = line.split('//')[0].strip()  # Remove comments
        if not line:
            continue
        if ':' in line:
            label, instruction = line.split(':')
            labels[label.strip()] = len(instructions)
            if instruction.strip():
                instructions.append(instruction.strip())
        else:
            instructions.append(line.strip())

    def get_value(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)
    
    def set_flag(instruction, Rx, Ry):
        nonlocal flag
        if instruction == "EQ":
            flag = registers[Rx] == get_value(Ry)
        elif instruction == "NEQ":
            flag = registers[Rx] != get_value(Ry)
        elif instruction == "LT":
            flag = registers[Rx] < get_value(Ry)
        elif instruction == "LTE":
            flag = registers[Rx] <= get_value(Ry)
        elif instruction == "GT":
            flag = registers[Rx] > get_value(Ry)
        elif instruction == "GTE":
            flag = registers[Rx] >= get_value(Ry)

    while instruction_pointer < len(instructions):
        instruction = instructions[instruction_pointer]
        parts = instruction.split()
        op = parts[0]
        args = parts[1:]

        if op == "SET":
            registers[args[0]] = get_value(args[1])
        elif op == "ADD":
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == "SUB":
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == "MUL":
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == "DIV":
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == "MOD":
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]:
            set_flag(op, args[0], args[1])
        elif op == "INC":
            registers[args[0]] += 1
        elif op == "DEC":
            registers[args[0]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[args[0]] - 1
        elif op == "JT":
            if flag:
                instruction_pointer = labels[args[0]] - 1
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[args[0]] - 1
        elif op == "LOAD":
            registers[args[0]] = memory[get_value(args[1])]
        elif op == "STORE":
            memory[get_value(args[1])] = registers[args[0]]
        elif op == "HCF":
            break

        instruction_pointer += 1

    return memory

# Example usage:
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))
This interpreter will execute the given assembly program and return the resulting memory state. The example program computes the first 20 square numbers and stores them in memory addresses 0 to 19. The `evaluate` function will return the memory state after the program has run.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def evaluate(program):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0

    # Parse the program into lines and their labels
    lines = program.strip().split('\n')
    instructions = []
    labels = {}
    
    for i, line in enumerate(lines):
        line = line.split('//')[0].strip()  # Remove comments
        if not line:
            continue
        if ':' in line:
            label, instruction = line.split(':')
            labels[label.strip()] = len(instructions)
            if instruction.strip():
                instructions.append(instruction.strip())
        else:
            instructions.append(line.strip())

    def get_value(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)
    
    def set_flag(instruction, Rx, Ry):
        nonlocal flag
        if instruction == "EQ":
            flag = registers[Rx] == get_value(Ry)
        elif instruction == "NEQ":
            flag = registers[Rx] != get_value(Ry)
        elif instruction == "LT":
            flag = registers[Rx] < get_value(Ry)
        elif instruction == "LTE":
            flag = registers[Rx] <= get_value(Ry)
        elif instruction == "GT":
            flag = registers[Rx] > get_value(Ry)
        elif instruction == "GTE":
            flag = registers[Rx] >= get_value(Ry)

    while instruction_pointer < len(instructions):
        instruction = instructions[instruction_pointer]
        parts = instruction.split()
        op = parts[0]
        args = parts[1:]

        if op == "SET":
            registers[args[0]] = get_value(args[1])
        elif op == "ADD":
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == "SUB":
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == "MUL":
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == "DIV":
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == "MOD":
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]:
            set_flag(op, args[0], args[1])
        elif op == "INC":
            registers[args[0]] += 1
        elif op == "DEC":
            registers[args[0]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[args[0]] - 1
        elif op == "JT":
            if flag:
                instruction_pointer = labels[args[0]] - 1
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[args[0]] - 1
        elif op == "LOAD":
            registers[args[0]] = memory[get_value(args[1])]
        elif op == "STORE":
            memory[get_value(args[1])] = registers[args[0]]
        elif op == "HCF":
            break

        instruction_pointer += 1

    return memory

# Example usage:
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def evaluate(program):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0

    # Parse the program into lines and their labels
    lines = program.strip().split('\n')
    instructions = []
    labels = {}
    
    for i, line in enumerate(lines):
        line = line.split('//')[0].strip()  # Remove comments
        if not line:
            continue
        if ':' in line:
            label, instruction = line.split(':')
            labels[label.strip()] = len(instructions)
            if instruction.strip():
                instructions.append(instruction.strip())
        else:
            instructions.append(line.strip())

    def get_value(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)
    
    def set_flag(instruction, Rx, Ry):
        nonlocal flag
        if instruction == "EQ":
            flag = registers[Rx] == get_value(Ry)
        elif instruction == "NEQ":
            flag = registers[Rx] != get_value(Ry)
        elif instruction == "LT":
            flag = registers[Rx] < get_value(Ry)
        elif instruction == "LTE":
            flag = registers[Rx] <= get_value(Ry)
        elif instruction == "GT":
            flag = registers[Rx] > get_value(Ry)
        elif instruction == "GTE":
            flag = registers[Rx] >= get_value(Ry)

    while instruction_pointer < len(instructions):
        instruction = instructions[instruction_pointer]
        parts = instruction.split()
        op = parts[0]
        args = parts[1:]

        if op == "SET":
            registers[args[0]] = get_value(args[1])
        elif op == "ADD":
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == "SUB":
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == "MUL":
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == "DIV":
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == "MOD":
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]:
            set_flag(op, args[0], args[1])
        elif op == "INC":
            registers[args[0]] += 1
        elif op == "DEC":
            registers[args[0]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[args[0]] - 1
        elif op == "JT":
            if flag:
                instruction_pointer = labels[args[0]] - 1
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[args[0]] - 1
        elif op == "LOAD":
            registers[args[0]] = memory[get_value(args[1])]
        elif op == "STORE":
            memory[get_value(args[1])] = registers[args[0]]
        elif op == "HCF":
            break

        instruction_pointer += 1

    return memory

# Example usage:
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Certainly! Below is an implementation of the `evaluate` function that interprets the provided assembly language and returns the resulting memory state after running the program.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def evaluate(program: str):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.strip().split('\n')
    instruction_pointer = 0

    # Extract labels and their corresponding instruction indices
    labels = {}
    processed_instructions = []
    for idx, line in enumerate(instructions):
        line = line.strip()
        if line.endswith(':'):
            labels[line[:-1]] = len(processed_instructions)
        else:
            processed_instructions.append(line)
    
    # Main loop to execute instructions
    while instruction_pointer < len(processed_instructions):
        instruction = processed_instructions[instruction_pointer]
        parts = instruction.split()
        op = parts[0]
        
        if op == 'SET':
            registers[parts[1]] = int(parts[2])
        
        elif op == 'ADD':
            registers[parts[1]] = registers[parts[2]] + registers[parts[3]]
        
        elif op == 'SUB':
            registers[parts[1]] = registers[parts[2]] - registers[parts[3]]
        
        elif op == 'MUL':
            registers[parts[1]] = registers[parts[2]] * registers[parts[3]]
        
        elif op == 'DIV':
            registers[parts[1]] = registers[parts[2]] // registers[parts[3]]
        
        elif op == 'MOD':
            registers[parts[1]] = registers[parts[2]] % registers[parts[3]]
        
        elif op == 'EQ':
            flag = registers[parts[1]] == registers[parts[2]]
        
        elif op == 'NEQ':
            flag = registers[parts[1]] != registers[parts[2]]
        
        elif op == 'LT':
            flag = registers[parts[1]] < registers[parts[2]]
        
        elif op == 'LTE':
            flag = registers[parts[1]] <= registers[parts[2]]
        
        elif op == 'GT':
            flag = registers[parts[1]] > registers[parts[2]]
        
        elif op == 'GTE':
            flag = registers[parts[1]] >= registers[parts[2]]
        
        elif op == 'INC':
            registers[parts[1]] += 1
        
        elif op == 'DEC':
            registers[parts[1]] -= 1
        
        elif op == 'JMP':
            instruction_pointer = labels[parts[1]]
            continue
        
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[parts[1]]
                continue
        
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[parts[1]]
                continue
        
        elif op == 'LOAD':
            registers[parts[1]] = memory[int(parts[2])]
        
        elif op == 'STORE':
            memory[int(parts[2])] = registers[parts[1]]
        
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example usage
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))
This `evaluate` function processes the assembly program and returns the memory state as required. The program in the example correctly computes the first 20 square numbers and stores them in memory.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def evaluate(program: str):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.strip().split('\n')
    instruction_pointer = 0

    # Extract labels and their corresponding instruction indices
    labels = {}
    processed_instructions = []
    for idx, line in enumerate(instructions):
        line = line.strip()
        if line.endswith(':'):
            labels[line[:-1]] = len(processed_instructions)
        else:
            processed_instructions.append(line)
    
    # Main loop to execute instructions
    while instruction_pointer < len(processed_instructions):
        instruction = processed_instructions[instruction_pointer]
        parts = instruction.split()
        op = parts[0]
        
        if op == 'SET':
            registers[parts[1]] = int(parts[2])
        
        elif op == 'ADD':
            registers[parts[1]] = registers[parts[2]] + registers[parts[3]]
        
        elif op == 'SUB':
            registers[parts[1]] = registers[parts[2]] - registers[parts[3]]
        
        elif op == 'MUL':
            registers[parts[1]] = registers[parts[2]] * registers[parts[3]]
        
        elif op == 'DIV':
            registers[parts[1]] = registers[parts[2]] // registers[parts[3]]
        
        elif op == 'MOD':
            registers[parts[1]] = registers[parts[2]] % registers[parts[3]]
        
        elif op == 'EQ':
            flag = registers[parts[1]] == registers[parts[2]]
        
        elif op == 'NEQ':
            flag = registers[parts[1]] != registers[parts[2]]
        
        elif op == 'LT':
            flag = registers[parts[1]] < registers[parts[2]]
        
        elif op == 'LTE':
            flag = registers[parts[1]] <= registers[parts[2]]
        
        elif op == 'GT':
            flag = registers[parts[1]] > registers[parts[2]]
        
        elif op == 'GTE':
            flag = registers[parts[1]] >= registers[parts[2]]
        
        elif op == 'INC':
            registers[parts[1]] += 1
        
        elif op == 'DEC':
            registers[parts[1]] -= 1
        
        elif op == 'JMP':
            instruction_pointer = labels[parts[1]]
            continue
        
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[parts[1]]
                continue
        
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[parts[1]]
                continue
        
        elif op == 'LOAD':
            registers[parts[1]] = memory[int(parts[2])]
        
        elif op == 'STORE':
            memory[int(parts[2])] = registers[parts[1]]
        
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example usage
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def evaluate(program: str):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.strip().split('\n')
    instruction_pointer = 0

    # Extract labels and their corresponding instruction indices
    labels = {}
    processed_instructions = []
    for idx, line in enumerate(instructions):
        line = line.strip()
        if line.endswith(':'):
            labels[line[:-1]] = len(processed_instructions)
        else:
            processed_instructions.append(line)
    
    # Main loop to execute instructions
    while instruction_pointer < len(processed_instructions):
        instruction = processed_instructions[instruction_pointer]
        parts = instruction.split()
        op = parts[0]
        
        if op == 'SET':
            registers[parts[1]] = int(parts[2])
        
        elif op == 'ADD':
            registers[parts[1]] = registers[parts[2]] + registers[parts[3]]
        
        elif op == 'SUB':
            registers[parts[1]] = registers[parts[2]] - registers[parts[3]]
        
        elif op == 'MUL':
            registers[parts[1]] = registers[parts[2]] * registers[parts[3]]
        
        elif op == 'DIV':
            registers[parts[1]] = registers[parts[2]] // registers[parts[3]]
        
        elif op == 'MOD':
            registers[parts[1]] = registers[parts[2]] % registers[parts[3]]
        
        elif op == 'EQ':
            flag = registers[parts[1]] == registers[parts[2]]
        
        elif op == 'NEQ':
            flag = registers[parts[1]] != registers[parts[2]]
        
        elif op == 'LT':
            flag = registers[parts[1]] < registers[parts[2]]
        
        elif op == 'LTE':
            flag = registers[parts[1]] <= registers[parts[2]]
        
        elif op == 'GT':
            flag = registers[parts[1]] > registers[parts[2]]
        
        elif op == 'GTE':
            flag = registers[parts[1]] >= registers[parts[2]]
        
        elif op == 'INC':
            registers[parts[1]] += 1
        
        elif op == 'DEC':
            registers[parts[1]] -= 1
        
        elif op == 'JMP':
            instruction_pointer = labels[parts[1]]
            continue
        
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[parts[1]]
                continue
        
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[parts[1]]
                continue
        
        elif op == 'LOAD':
            registers[parts[1]] = memory[int(parts[2])]
        
        elif op == 'STORE':
            memory[int(parts[2])] = registers[parts[1]]
        
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example usage
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 112, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 24, in evaluate op = parts[0] IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

To implement an interpreter for the described assembly language, we'll need to break down the problem into manageable components. We'll create a function `evaluate(program)` that will process the assembly code and return the resulting memory state. Here is how we'll structure the interpreter: 1. **Parsing the Program**: Convert the input string into a list of instructions and labels. 2. **Executing Instructions**: Implement logic for each supported instruction. 3. **Maintaining State**: Keep track of registers, memory, the flag, and the instruction pointer. 4. **Control Flow**: Handle jumps and conditional branches. Here is the Python code for the interpreter:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def evaluate(program):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f"R{i}": 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0
    
    # Parse the program into instructions and labels
    lines = program.split('\n')
    instructions = []
    labels = {}
    
    for lineno, line in enumerate(lines):
        line = line.split('//')[0].strip()  # Remove comments and trim whitespace
        if not line:
            continue
        if line.endswith(':'):
            labels[line[:-1]] = len(instructions)
        else:
            instructions.append(line.split())
    
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        return int(arg)
    
    # Execute the program
    while instruction_pointer < len(instructions):
        inst = instructions[instruction_pointer]
        op = inst[0]
        
        if op == "SET":
            registers[inst[1]] = int(inst[2])
        elif op == "ADD":
            registers[inst[1]] = get_value(inst[2]) + get_value(inst[3])
        elif op == "SUB":
            registers[inst[1]] = get_value(inst[2]) - get_value(inst[3])
        elif op == "MUL":
            registers[inst[1]] = get_value(inst[2]) * get_value(inst[3])
        elif op == "DIV":
            registers[inst[1]] = get_value(inst[2]) // get_value(inst[3])
        elif op == "MOD":
            registers[inst[1]] = get_value(inst[2]) % get_value(inst[3])
        elif op == "EQ":
            flag = get_value(inst[1]) == get_value(inst[2])
        elif op == "NEQ":
            flag = get_value(inst[1]) != get_value(inst[2])
        elif op == "LT":
            flag = get_value(inst[1]) < get_value(inst[2])
        elif op == "LTE":
            flag = get_value(inst[1]) <= get_value(inst[2])
        elif op == "GT":
            flag = get_value(inst[1]) > get_value(inst[2])
        elif op == "GTE":
            flag = get_value(inst[1]) >= get_value(inst[2])
        elif op == "INC":
            registers[inst[1]] += 1
        elif op == "DEC":
            registers[inst[1]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[inst[1]] - 1
        elif op == "JT":
            if flag:
                instruction_pointer = labels[inst[1]] - 1
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[inst[1]] - 1
        elif op == "LOAD":
            registers[inst[1]] = memory[int(inst[2])]
        elif op == "STORE":
            memory[int(inst[2])] = get_value(inst[1])
        elif op == "HCF":
            break
        
        instruction_pointer += 1

    return memory

# Example usage:
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))  # Should print the first 20 square numbers in memory
This code parses the input assembly program, executes each instruction while maintaining the state of the registers, memory, and control flow, and finally returns the state of the memory after the program execution completes. The example usage provided should output the first 20 square numbers stored in memory.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def evaluate(program):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f"R{i}": 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0
    
    # Parse the program into instructions and labels
    lines = program.split('\n')
    instructions = []
    labels = {}
    
    for lineno, line in enumerate(lines):
        line = line.split('//')[0].strip()  # Remove comments and trim whitespace
        if not line:
            continue
        if line.endswith(':'):
            labels[line[:-1]] = len(instructions)
        else:
            instructions.append(line.split())
    
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        return int(arg)
    
    # Execute the program
    while instruction_pointer < len(instructions):
        inst = instructions[instruction_pointer]
        op = inst[0]
        
        if op == "SET":
            registers[inst[1]] = int(inst[2])
        elif op == "ADD":
            registers[inst[1]] = get_value(inst[2]) + get_value(inst[3])
        elif op == "SUB":
            registers[inst[1]] = get_value(inst[2]) - get_value(inst[3])
        elif op == "MUL":
            registers[inst[1]] = get_value(inst[2]) * get_value(inst[3])
        elif op == "DIV":
            registers[inst[1]] = get_value(inst[2]) // get_value(inst[3])
        elif op == "MOD":
            registers[inst[1]] = get_value(inst[2]) % get_value(inst[3])
        elif op == "EQ":
            flag = get_value(inst[1]) == get_value(inst[2])
        elif op == "NEQ":
            flag = get_value(inst[1]) != get_value(inst[2])
        elif op == "LT":
            flag = get_value(inst[1]) < get_value(inst[2])
        elif op == "LTE":
            flag = get_value(inst[1]) <= get_value(inst[2])
        elif op == "GT":
            flag = get_value(inst[1]) > get_value(inst[2])
        elif op == "GTE":
            flag = get_value(inst[1]) >= get_value(inst[2])
        elif op == "INC":
            registers[inst[1]] += 1
        elif op == "DEC":
            registers[inst[1]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[inst[1]] - 1
        elif op == "JT":
            if flag:
                instruction_pointer = labels[inst[1]] - 1
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[inst[1]] - 1
        elif op == "LOAD":
            registers[inst[1]] = memory[int(inst[2])]
        elif op == "STORE":
            memory[int(inst[2])] = get_value(inst[1])
        elif op == "HCF":
            break
        
        instruction_pointer += 1

    return memory

# Example usage:
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))  # Should print the first 20 square numbers in memory

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
def evaluate(program):
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f"R{i}": 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0
    
    # Parse the program into instructions and labels
    lines = program.split('\n')
    instructions = []
    labels = {}
    
    for lineno, line in enumerate(lines):
        line = line.split('//')[0].strip()  # Remove comments and trim whitespace
        if not line:
            continue
        if line.endswith(':'):
            labels[line[:-1]] = len(instructions)
        else:
            instructions.append(line.split())
    
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        return int(arg)
    
    # Execute the program
    while instruction_pointer < len(instructions):
        inst = instructions[instruction_pointer]
        op = inst[0]
        
        if op == "SET":
            registers[inst[1]] = int(inst[2])
        elif op == "ADD":
            registers[inst[1]] = get_value(inst[2]) + get_value(inst[3])
        elif op == "SUB":
            registers[inst[1]] = get_value(inst[2]) - get_value(inst[3])
        elif op == "MUL":
            registers[inst[1]] = get_value(inst[2]) * get_value(inst[3])
        elif op == "DIV":
            registers[inst[1]] = get_value(inst[2]) // get_value(inst[3])
        elif op == "MOD":
            registers[inst[1]] = get_value(inst[2]) % get_value(inst[3])
        elif op == "EQ":
            flag = get_value(inst[1]) == get_value(inst[2])
        elif op == "NEQ":
            flag = get_value(inst[1]) != get_value(inst[2])
        elif op == "LT":
            flag = get_value(inst[1]) < get_value(inst[2])
        elif op == "LTE":
            flag = get_value(inst[1]) <= get_value(inst[2])
        elif op == "GT":
            flag = get_value(inst[1]) > get_value(inst[2])
        elif op == "GTE":
            flag = get_value(inst[1]) >= get_value(inst[2])
        elif op == "INC":
            registers[inst[1]] += 1
        elif op == "DEC":
            registers[inst[1]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[inst[1]] - 1
        elif op == "JT":
            if flag:
                instruction_pointer = labels[inst[1]] - 1
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[inst[1]] - 1
        elif op == "LOAD":
            registers[inst[1]] = memory[int(inst[2])]
        elif op == "STORE":
            memory[int(inst[2])] = get_value(inst[1])
        elif op == "HCF":
            break
        
        instruction_pointer += 1

    return memory

# Example usage:
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))  # Should print the first 20 square numbers in memory





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 97, in <module> print(evaluate(program)) # Should print the first 20 square numbers in memory File "/usr/src/app/main.py", line 72, in evaluate memory[int(inst[2])] = get_value(inst[1]) ValueError: invalid literal for int() with base 10: 'R1'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here is a Python interpreter for the described assembly language. This interpreter will execute the provided program and return the resulting memory state after running the program.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def evaluate(program):
    # Split the program into lines and strip comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Parse labels and instructions
    labels = {}
    instructions = []
    
    for i, line in enumerate(lines):
        if ':' in line:
            label, instruction = line.split(':')
            labels[label.strip()] = len(instructions)
            if instruction.strip():
                instructions.append(instruction.strip())
        else:
            instructions.append(line.strip())

    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0  # Instruction Pointer

    # A helper function to get the value of an argument (either a register or a constant)
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        return int(arg)

    while ip < len(instructions):
        parts = instructions[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op == 'EQ':
            flag = get_value(args[0]) == get_value(args[1])
        elif op == 'NEQ':
            flag = get_value(args[0]) != get_value(args[1])
        elif op == 'LT':
            flag = get_value(args[0]) < get_value(args[1])
        elif op == 'LTE':
            flag = get_value(args[0]) <= get_value(args[1])
        elif op == 'GT':
            flag = get_value(args[0]) > get_value(args[1])
        elif op == 'GTE':
            flag = get_value(args[0]) >= get_value(args[1])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        elif op == 'STORE':
            memory[int(args[1])] = get_value(args[0])
        elif op == 'HCF':
            break

        ip += 1

    return memory

# Example usage:
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))
Running the `evaluate` function with the provided example program will compute the first 20 square numbers and store them in the memory. The resulting memory state will be printed, showing the first 20 square numbers stored in the first 20 memory addresses while the rest remain 0.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def evaluate(program):
    # Split the program into lines and strip comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Parse labels and instructions
    labels = {}
    instructions = []
    
    for i, line in enumerate(lines):
        if ':' in line:
            label, instruction = line.split(':')
            labels[label.strip()] = len(instructions)
            if instruction.strip():
                instructions.append(instruction.strip())
        else:
            instructions.append(line.strip())

    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0  # Instruction Pointer

    # A helper function to get the value of an argument (either a register or a constant)
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        return int(arg)

    while ip < len(instructions):
        parts = instructions[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op == 'EQ':
            flag = get_value(args[0]) == get_value(args[1])
        elif op == 'NEQ':
            flag = get_value(args[0]) != get_value(args[1])
        elif op == 'LT':
            flag = get_value(args[0]) < get_value(args[1])
        elif op == 'LTE':
            flag = get_value(args[0]) <= get_value(args[1])
        elif op == 'GT':
            flag = get_value(args[0]) > get_value(args[1])
        elif op == 'GTE':
            flag = get_value(args[0]) >= get_value(args[1])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        elif op == 'STORE':
            memory[int(args[1])] = get_value(args[0])
        elif op == 'HCF':
            break

        ip += 1

    return memory

# Example usage:
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
def evaluate(program):
    # Split the program into lines and strip comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Parse labels and instructions
    labels = {}
    instructions = []
    
    for i, line in enumerate(lines):
        if ':' in line:
            label, instruction = line.split(':')
            labels[label.strip()] = len(instructions)
            if instruction.strip():
                instructions.append(instruction.strip())
        else:
            instructions.append(line.strip())

    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0  # Instruction Pointer

    # A helper function to get the value of an argument (either a register or a constant)
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        return int(arg)

    while ip < len(instructions):
        parts = instructions[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op == 'EQ':
            flag = get_value(args[0]) == get_value(args[1])
        elif op == 'NEQ':
            flag = get_value(args[0]) != get_value(args[1])
        elif op == 'LT':
            flag = get_value(args[0]) < get_value(args[1])
        elif op == 'LTE':
            flag = get_value(args[0]) <= get_value(args[1])
        elif op == 'GT':
            flag = get_value(args[0]) > get_value(args[1])
        elif op == 'GTE':
            flag = get_value(args[0]) >= get_value(args[1])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        elif op == 'STORE':
            memory[int(args[1])] = get_value(args[0])
        elif op == 'HCF':
            break

        ip += 1

    return memory

# Example usage:
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 103, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 78, in evaluate memory[int(args[1])] = get_value(args[0]) ValueError: invalid literal for int() with base 10: 'R1'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Sure, here is a Python function that can interpret and execute the given assembly language program, returning the resulting memory state:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instruction_pointer = 0
    labels = {}
    
    # Parse instructions and labels
    instructions = []
    for line in program.splitlines():
        line = line.split('//')[0].strip()  # Remove comments
        if not line:
            continue
        if ':' in line:
            label, instr = line.split(':')
            labels[label.strip()] = len(instructions)
            if instr.strip():
                instructions.append(instr.strip())
        else:
            instructions.append(line.strip())
    
    # Execution loop
    while instruction_pointer < len(instructions):
        instr = instructions[instruction_pointer].split()
        op = instr[0]
        args = instr[1:]
        
        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op == 'ADD':
            registers[args[0]] = registers[args[1]] + registers[args[2]]
        elif op == 'SUB':
            registers[args[0]] = registers[args[1]] - registers[args[2]]
        elif op == 'MUL':
            registers[args[0]] = registers[args[1]] * registers[args[2]]
        elif op == 'DIV':
            registers[args[0]] = registers[args[1]] // registers[args[2]]
        elif op == 'MOD':
            registers[args[0]] = registers[args[1]] % registers[args[2]]
        elif op == 'EQ':
            flag = registers[args[0]] == registers[args[1]]
        elif op == 'NEQ':
            flag = registers[args[0]] != registers[args[1]]
        elif op == 'LT':
            flag = registers[args[0]] < registers[args[1]]
        elif op == 'LTE':
            flag = registers[args[0]] <= registers[args[1]]
        elif op == 'GT':
            flag = registers[args[0]] > registers[args[1]]
        elif op == 'GTE':
            flag = registers[args[0]] >= registers[args[1]]
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        elif op == 'STORE':
            memory[int(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Run the example program and print the resulting memory state
print(evaluate(program))
This function `evaluate` will parse the input program, execute it, and return the memory state after execution. The example program provided will output the first 20 square numbers in memory.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instruction_pointer = 0
    labels = {}
    
    # Parse instructions and labels
    instructions = []
    for line in program.splitlines():
        line = line.split('//')[0].strip()  # Remove comments
        if not line:
            continue
        if ':' in line:
            label, instr = line.split(':')
            labels[label.strip()] = len(instructions)
            if instr.strip():
                instructions.append(instr.strip())
        else:
            instructions.append(line.strip())
    
    # Execution loop
    while instruction_pointer < len(instructions):
        instr = instructions[instruction_pointer].split()
        op = instr[0]
        args = instr[1:]
        
        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op == 'ADD':
            registers[args[0]] = registers[args[1]] + registers[args[2]]
        elif op == 'SUB':
            registers[args[0]] = registers[args[1]] - registers[args[2]]
        elif op == 'MUL':
            registers[args[0]] = registers[args[1]] * registers[args[2]]
        elif op == 'DIV':
            registers[args[0]] = registers[args[1]] // registers[args[2]]
        elif op == 'MOD':
            registers[args[0]] = registers[args[1]] % registers[args[2]]
        elif op == 'EQ':
            flag = registers[args[0]] == registers[args[1]]
        elif op == 'NEQ':
            flag = registers[args[0]] != registers[args[1]]
        elif op == 'LT':
            flag = registers[args[0]] < registers[args[1]]
        elif op == 'LTE':
            flag = registers[args[0]] <= registers[args[1]]
        elif op == 'GT':
            flag = registers[args[0]] > registers[args[1]]
        elif op == 'GTE':
            flag = registers[args[0]] >= registers[args[1]]
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        elif op == 'STORE':
            memory[int(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Run the example program and print the resulting memory state
print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instruction_pointer = 0
    labels = {}
    
    # Parse instructions and labels
    instructions = []
    for line in program.splitlines():
        line = line.split('//')[0].strip()  # Remove comments
        if not line:
            continue
        if ':' in line:
            label, instr = line.split(':')
            labels[label.strip()] = len(instructions)
            if instr.strip():
                instructions.append(instr.strip())
        else:
            instructions.append(line.strip())
    
    # Execution loop
    while instruction_pointer < len(instructions):
        instr = instructions[instruction_pointer].split()
        op = instr[0]
        args = instr[1:]
        
        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op == 'ADD':
            registers[args[0]] = registers[args[1]] + registers[args[2]]
        elif op == 'SUB':
            registers[args[0]] = registers[args[1]] - registers[args[2]]
        elif op == 'MUL':
            registers[args[0]] = registers[args[1]] * registers[args[2]]
        elif op == 'DIV':
            registers[args[0]] = registers[args[1]] // registers[args[2]]
        elif op == 'MOD':
            registers[args[0]] = registers[args[1]] % registers[args[2]]
        elif op == 'EQ':
            flag = registers[args[0]] == registers[args[1]]
        elif op == 'NEQ':
            flag = registers[args[0]] != registers[args[1]]
        elif op == 'LT':
            flag = registers[args[0]] < registers[args[1]]
        elif op == 'LTE':
            flag = registers[args[0]] <= registers[args[1]]
        elif op == 'GT':
            flag = registers[args[0]] > registers[args[1]]
        elif op == 'GTE':
            flag = registers[args[0]] >= registers[args[1]]
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        elif op == 'STORE':
            memory[int(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Run the example program and print the resulting memory state
print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 98, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 72, in evaluate memory[int(args[1])] = registers[args[0]] ValueError: invalid literal for int() with base 10: 'R1'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False