Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here's a Python interpreter that can evaluate the provided assembly language program. The interpreter parses each instruction, executes it according to the described behavior, and maintains the state of registers, memory, the instruction pointer, and the flag.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | def evaluate(program): # Initialize the CPU state. registers = {f"R{i}": 0 for i in range(1, 9)} flag = False memory = [0] * 100 instructions = program.splitlines() labels = {} ip = 0 # First pass to find labels. for index, line in enumerate(instructions): if ':' in line: label, _ = line.split(':') labels[label] = index # Helper function for evaluating operands. def eval_arg(arg): if arg in registers: return registers[arg] else: return int(arg) # Main execution loop. while ip < len(instructions): parts = instructions[ip].split() if not parts or ':' in parts[0]: ip += 1 continue op = parts[0] if op == "SET": registers[parts[1]] = eval_arg(parts[2]) elif op == "ADD": registers[parts[1]] = eval_arg(parts[2]) + eval_arg(parts[3]) elif op == "SUB": registers[parts[1]] = eval_arg(parts[2]) - eval_arg(parts[3]) elif op == "MUL": registers[parts[1]] = eval_arg(parts[2]) * eval_arg(parts[3]) elif op == "DIV": registers[parts[1]] = eval_arg(parts[2]) // eval_arg(parts[3]) elif op == "MOD": registers[parts[1]] = eval_arg(parts[2]) % eval_arg(parts[3]) elif op == "EQ": flag = registers[parts[1]] == eval_arg(parts[2]) elif op == "NEQ": flag = registers[parts[1]] != eval_arg(parts[2]) elif op == "LT": flag = registers[parts[1]] < eval_arg(parts[2]) elif op == "LTE": flag = registers[parts[1]] <= eval_arg(parts[2]) elif op == "GT": flag = registers[parts[1]] > eval_arg(parts[2]) elif op == "GTE": flag = registers[parts[1]] >= eval_arg(parts[2]) elif op == "INC": registers[parts[1]] += 1 elif op == "DEC": registers[parts[1]] -= 1 elif op == "JMP": ip = labels[parts[1]] continue elif op == "JT": if flag: ip = labels[parts[1]] continue elif op == "JF": if not flag: ip = labels[parts[1]] continue elif op == "LOAD": registers[parts[1]] = memory[eval_arg(parts[2])] elif op == "STORE": memory[eval_arg(parts[2])] = registers[parts[1]] elif op == "HCF": break ip += 1 return memory # Sample program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter result = evaluate(program) print(result[:21]) # Print the first 20 squares (and a 0 due to memory initialization) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | def evaluate(program): # Initialize the CPU state. registers = {f"R{i}": 0 for i in range(1, 9)} flag = False memory = [0] * 100 instructions = program.splitlines() labels = {} ip = 0 # First pass to find labels. for index, line in enumerate(instructions): if ':' in line: label, _ = line.split(':') labels[label] = index # Helper function for evaluating operands. def eval_arg(arg): if arg in registers: return registers[arg] else: return int(arg) # Main execution loop. while ip < len(instructions): parts = instructions[ip].split() if not parts or ':' in parts[0]: ip += 1 continue op = parts[0] if op == "SET": registers[parts[1]] = eval_arg(parts[2]) elif op == "ADD": registers[parts[1]] = eval_arg(parts[2]) + eval_arg(parts[3]) elif op == "SUB": registers[parts[1]] = eval_arg(parts[2]) - eval_arg(parts[3]) elif op == "MUL": registers[parts[1]] = eval_arg(parts[2]) * eval_arg(parts[3]) elif op == "DIV": registers[parts[1]] = eval_arg(parts[2]) // eval_arg(parts[3]) elif op == "MOD": registers[parts[1]] = eval_arg(parts[2]) % eval_arg(parts[3]) elif op == "EQ": flag = registers[parts[1]] == eval_arg(parts[2]) elif op == "NEQ": flag = registers[parts[1]] != eval_arg(parts[2]) elif op == "LT": flag = registers[parts[1]] < eval_arg(parts[2]) elif op == "LTE": flag = registers[parts[1]] <= eval_arg(parts[2]) elif op == "GT": flag = registers[parts[1]] > eval_arg(parts[2]) elif op == "GTE": flag = registers[parts[1]] >= eval_arg(parts[2]) elif op == "INC": registers[parts[1]] += 1 elif op == "DEC": registers[parts[1]] -= 1 elif op == "JMP": ip = labels[parts[1]] continue elif op == "JT": if flag: ip = labels[parts[1]] continue elif op == "JF": if not flag: ip = labels[parts[1]] continue elif op == "LOAD": registers[parts[1]] = memory[eval_arg(parts[2])] elif op == "STORE": memory[eval_arg(parts[2])] = registers[parts[1]] elif op == "HCF": break ip += 1 return memory # Sample program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter result = evaluate(program) print(result[:21]) # Print the first 20 squares (and a 0 due to memory initialization) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | def evaluate(program): # Initialize the CPU state. registers = {f"R{i}": 0 for i in range(1, 9)} flag = False memory = [0] * 100 instructions = program.splitlines() labels = {} ip = 0 # First pass to find labels. for index, line in enumerate(instructions): if ':' in line: label, _ = line.split(':') labels[label] = index # Helper function for evaluating operands. def eval_arg(arg): if arg in registers: return registers[arg] else: return int(arg) # Main execution loop. while ip < len(instructions): parts = instructions[ip].split() if not parts or ':' in parts[0]: ip += 1 continue op = parts[0] if op == "SET": registers[parts[1]] = eval_arg(parts[2]) elif op == "ADD": registers[parts[1]] = eval_arg(parts[2]) + eval_arg(parts[3]) elif op == "SUB": registers[parts[1]] = eval_arg(parts[2]) - eval_arg(parts[3]) elif op == "MUL": registers[parts[1]] = eval_arg(parts[2]) * eval_arg(parts[3]) elif op == "DIV": registers[parts[1]] = eval_arg(parts[2]) // eval_arg(parts[3]) elif op == "MOD": registers[parts[1]] = eval_arg(parts[2]) % eval_arg(parts[3]) elif op == "EQ": flag = registers[parts[1]] == eval_arg(parts[2]) elif op == "NEQ": flag = registers[parts[1]] != eval_arg(parts[2]) elif op == "LT": flag = registers[parts[1]] < eval_arg(parts[2]) elif op == "LTE": flag = registers[parts[1]] <= eval_arg(parts[2]) elif op == "GT": flag = registers[parts[1]] > eval_arg(parts[2]) elif op == "GTE": flag = registers[parts[1]] >= eval_arg(parts[2]) elif op == "INC": registers[parts[1]] += 1 elif op == "DEC": registers[parts[1]] -= 1 elif op == "JMP": ip = labels[parts[1]] continue elif op == "JT": if flag: ip = labels[parts[1]] continue elif op == "JF": if not flag: ip = labels[parts[1]] continue elif op == "LOAD": registers[parts[1]] = memory[eval_arg(parts[2])] elif op == "STORE": memory[eval_arg(parts[2])] = registers[parts[1]] elif op == "HCF": break ip += 1 return memory # Sample program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter result = evaluate(program) print(result[:21]) # Print the first 20 squares (and a 0 due to memory initialization) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 0]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
To create a Python interpreter that evaluates the program as described, we can follow these steps: 1. Parse the input program into a list of instructions. 2. Implement a virtual machine that executes these instructions according to the rules you've described. 3. Execute the program and return the memory state. Let's implement the interpreter:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | def evaluate(program): # Split the program into lines and parse each line lines = program.split('\n') # Initialize the virtual machine state registers = {'R'+str(i):0 for i in range(1, 9)} # Registers R1 to R8 initialized to 0 flag = False memory = [0] * 100 # 100 memory addresses initialized to 0 instruction_pointer = 0 labels = {} # For storing labels and their line numbers # First pass to collect labels for line_number, line in enumerate(lines): parts = line.split() if parts: if parts[0][-1] == ':': # It's a label labels[parts[0][:-1]] = line_number # Helper function to evaluate arguments (register or constant) def evaluate_arg(arg): if arg.startswith('R'): return registers[arg] else: return int(arg) # Main execution loop while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() if not line or line.endswith(':'): # Skip empty lines or labels instruction_pointer += 1 continue parts = line.split() op = parts[0] args = parts[1:] # Execute instruction if op == 'SET': registers[args[0]] = evaluate_arg(args[1]) elif op == 'ADD': registers[args[0]] = evaluate_arg(args[1]) + evaluate_arg(args[2]) elif op == 'SUB': registers[args[0]] = evaluate_arg(args[1]) - evaluate_arg(args[2]) elif op == 'MUL': registers[args[0]] = evaluate_arg(args[1]) * evaluate_arg(args[2]) elif op == 'DIV': registers[args[0]] = evaluate_arg(args[1]) // evaluate_arg(args[2]) elif op == 'MOD': registers[args[0]] = evaluate_arg(args[1]) % evaluate_arg(args[2]) elif op == 'EQ': flag = registers[args[0]] == evaluate_arg(args[1]) elif op == 'NEQ': flag = registers[args[0]] != evaluate_arg(args[1]) elif op == 'LT': flag = registers[args[0]] < evaluate_arg(args[1]) elif op == 'LTE': flag = registers[args[0]] <= evaluate_arg(args[1]) elif op == 'GT': flag = registers[args[0]] > evaluate_arg(args[1]) elif op == 'GTE': flag = registers[args[0]] >= evaluate_arg(args[1]) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': instruction_pointer = labels[args[0]] continue elif op == 'JT': if flag: instruction_pointer = labels[args[0]] continue elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[evaluate_arg(args[1])] elif op == 'STORE': memory[evaluate_arg(args[1])] = registers[args[0]] elif op == 'HCF': break instruction_pointer += 1 return memory # Example usage program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | def evaluate(program): # Split the program into lines and parse each line lines = program.split('\n') # Initialize the virtual machine state registers = {'R'+str(i):0 for i in range(1, 9)} # Registers R1 to R8 initialized to 0 flag = False memory = [0] * 100 # 100 memory addresses initialized to 0 instruction_pointer = 0 labels = {} # For storing labels and their line numbers # First pass to collect labels for line_number, line in enumerate(lines): parts = line.split() if parts: if parts[0][-1] == ':': # It's a label labels[parts[0][:-1]] = line_number # Helper function to evaluate arguments (register or constant) def evaluate_arg(arg): if arg.startswith('R'): return registers[arg] else: return int(arg) # Main execution loop while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() if not line or line.endswith(':'): # Skip empty lines or labels instruction_pointer += 1 continue parts = line.split() op = parts[0] args = parts[1:] # Execute instruction if op == 'SET': registers[args[0]] = evaluate_arg(args[1]) elif op == 'ADD': registers[args[0]] = evaluate_arg(args[1]) + evaluate_arg(args[2]) elif op == 'SUB': registers[args[0]] = evaluate_arg(args[1]) - evaluate_arg(args[2]) elif op == 'MUL': registers[args[0]] = evaluate_arg(args[1]) * evaluate_arg(args[2]) elif op == 'DIV': registers[args[0]] = evaluate_arg(args[1]) // evaluate_arg(args[2]) elif op == 'MOD': registers[args[0]] = evaluate_arg(args[1]) % evaluate_arg(args[2]) elif op == 'EQ': flag = registers[args[0]] == evaluate_arg(args[1]) elif op == 'NEQ': flag = registers[args[0]] != evaluate_arg(args[1]) elif op == 'LT': flag = registers[args[0]] < evaluate_arg(args[1]) elif op == 'LTE': flag = registers[args[0]] <= evaluate_arg(args[1]) elif op == 'GT': flag = registers[args[0]] > evaluate_arg(args[1]) elif op == 'GTE': flag = registers[args[0]] >= evaluate_arg(args[1]) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': instruction_pointer = labels[args[0]] continue elif op == 'JT': if flag: instruction_pointer = labels[args[0]] continue elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[evaluate_arg(args[1])] elif op == 'STORE': memory[evaluate_arg(args[1])] = registers[args[0]] elif op == 'HCF': break instruction_pointer += 1 return memory # Example usage program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | def evaluate(program): # Split the program into lines and parse each line lines = program.split('\n') # Initialize the virtual machine state registers = {'R'+str(i):0 for i in range(1, 9)} # Registers R1 to R8 initialized to 0 flag = False memory = [0] * 100 # 100 memory addresses initialized to 0 instruction_pointer = 0 labels = {} # For storing labels and their line numbers # First pass to collect labels for line_number, line in enumerate(lines): parts = line.split() if parts: if parts[0][-1] == ':': # It's a label labels[parts[0][:-1]] = line_number # Helper function to evaluate arguments (register or constant) def evaluate_arg(arg): if arg.startswith('R'): return registers[arg] else: return int(arg) # Main execution loop while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() if not line or line.endswith(':'): # Skip empty lines or labels instruction_pointer += 1 continue parts = line.split() op = parts[0] args = parts[1:] # Execute instruction if op == 'SET': registers[args[0]] = evaluate_arg(args[1]) elif op == 'ADD': registers[args[0]] = evaluate_arg(args[1]) + evaluate_arg(args[2]) elif op == 'SUB': registers[args[0]] = evaluate_arg(args[1]) - evaluate_arg(args[2]) elif op == 'MUL': registers[args[0]] = evaluate_arg(args[1]) * evaluate_arg(args[2]) elif op == 'DIV': registers[args[0]] = evaluate_arg(args[1]) // evaluate_arg(args[2]) elif op == 'MOD': registers[args[0]] = evaluate_arg(args[1]) % evaluate_arg(args[2]) elif op == 'EQ': flag = registers[args[0]] == evaluate_arg(args[1]) elif op == 'NEQ': flag = registers[args[0]] != evaluate_arg(args[1]) elif op == 'LT': flag = registers[args[0]] < evaluate_arg(args[1]) elif op == 'LTE': flag = registers[args[0]] <= evaluate_arg(args[1]) elif op == 'GT': flag = registers[args[0]] > evaluate_arg(args[1]) elif op == 'GTE': flag = registers[args[0]] >= evaluate_arg(args[1]) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': instruction_pointer = labels[args[0]] continue elif op == 'JT': if flag: instruction_pointer = labels[args[0]] continue elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[evaluate_arg(args[1])] elif op == 'STORE': memory[evaluate_arg(args[1])] = registers[args[0]] elif op == 'HCF': break instruction_pointer += 1 return memory # Example usage program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
To create a Python interpreter for the described assembly language, we need to parse and execute each instruction defined in the program string. Here's a basic implementation that supports the described instructions and the example program for computing the first 20 square numbers:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | def evaluate(program): # Initialize components of the virtual machine registers = {f"R{i}": 0 for i in range(1, 9)} flag = False memory = [0] * 100 instruction_pointer = 0 program_instructions = program.splitlines() labels = {} # First pass to find labels for i, instruction in enumerate(program_instructions): if instruction.endswith(":"): labels[instruction[:-1]] = i # Helper functions def get_value(arg): if arg in registers: return registers[arg] else: return int(arg) while instruction_pointer < len(program_instructions): instruction = program_instructions[instruction_pointer].split() op = instruction[0] args = instruction[1:] if op == "SET": registers[args[0]] = get_value(args[1]) elif op == "ADD": registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == "SUB": registers[args[0]] = get_value(args[1]) - get_value(args[2]) elif op == "MUL": registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == "DIV": registers[args[0]] = get_value(args[1]) // get_value(args[2]) elif op == "MOD": registers[args[0]] = get_value(args[1]) % get_value(args[2]) elif op == "EQ": flag = get_value(args[0]) == get_value(args[1]) elif op == "NEQ": flag = get_value(args[0]) != get_value(args[1]) elif op == "LT": flag = get_value(args[0]) < get_value(args[1]) elif op == "LTE": flag = get_value(args[0]) <= get_value(args[1]) elif op == "GT": flag = get_value(args[0]) > get_value(args[1]) elif op == "GTE": flag = get_value(args[0]) >= get_value(args[1]) elif op == "INC": registers[args[0]] += 1 elif op == "DEC": registers[args[0]] -= 1 elif op == "JMP": instruction_pointer = labels[args[0]] continue elif op == "JT": if flag: instruction_pointer = labels[args[0]] continue elif op == "JF": if not flag: instruction_pointer = labels[args[0]] continue elif op == "LOAD": registers[args[0]] = memory[get_value(args[1])] elif op == "STORE": memory[get_value(args[1])] = registers[args[0]] elif op == "HCF": break instruction_pointer += 1 return memory # Example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | def evaluate(program): # Initialize components of the virtual machine registers = {f"R{i}": 0 for i in range(1, 9)} flag = False memory = [0] * 100 instruction_pointer = 0 program_instructions = program.splitlines() labels = {} # First pass to find labels for i, instruction in enumerate(program_instructions): if instruction.endswith(":"): labels[instruction[:-1]] = i # Helper functions def get_value(arg): if arg in registers: return registers[arg] else: return int(arg) while instruction_pointer < len(program_instructions): instruction = program_instructions[instruction_pointer].split() op = instruction[0] args = instruction[1:] if op == "SET": registers[args[0]] = get_value(args[1]) elif op == "ADD": registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == "SUB": registers[args[0]] = get_value(args[1]) - get_value(args[2]) elif op == "MUL": registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == "DIV": registers[args[0]] = get_value(args[1]) // get_value(args[2]) elif op == "MOD": registers[args[0]] = get_value(args[1]) % get_value(args[2]) elif op == "EQ": flag = get_value(args[0]) == get_value(args[1]) elif op == "NEQ": flag = get_value(args[0]) != get_value(args[1]) elif op == "LT": flag = get_value(args[0]) < get_value(args[1]) elif op == "LTE": flag = get_value(args[0]) <= get_value(args[1]) elif op == "GT": flag = get_value(args[0]) > get_value(args[1]) elif op == "GTE": flag = get_value(args[0]) >= get_value(args[1]) elif op == "INC": registers[args[0]] += 1 elif op == "DEC": registers[args[0]] -= 1 elif op == "JMP": instruction_pointer = labels[args[0]] continue elif op == "JT": if flag: instruction_pointer = labels[args[0]] continue elif op == "JF": if not flag: instruction_pointer = labels[args[0]] continue elif op == "LOAD": registers[args[0]] = memory[get_value(args[1])] elif op == "STORE": memory[get_value(args[1])] = registers[args[0]] elif op == "HCF": break instruction_pointer += 1 return memory # Example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | def evaluate(program): # Initialize components of the virtual machine registers = {f"R{i}": 0 for i in range(1, 9)} flag = False memory = [0] * 100 instruction_pointer = 0 program_instructions = program.splitlines() labels = {} # First pass to find labels for i, instruction in enumerate(program_instructions): if instruction.endswith(":"): labels[instruction[:-1]] = i # Helper functions def get_value(arg): if arg in registers: return registers[arg] else: return int(arg) while instruction_pointer < len(program_instructions): instruction = program_instructions[instruction_pointer].split() op = instruction[0] args = instruction[1:] if op == "SET": registers[args[0]] = get_value(args[1]) elif op == "ADD": registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == "SUB": registers[args[0]] = get_value(args[1]) - get_value(args[2]) elif op == "MUL": registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == "DIV": registers[args[0]] = get_value(args[1]) // get_value(args[2]) elif op == "MOD": registers[args[0]] = get_value(args[1]) % get_value(args[2]) elif op == "EQ": flag = get_value(args[0]) == get_value(args[1]) elif op == "NEQ": flag = get_value(args[0]) != get_value(args[1]) elif op == "LT": flag = get_value(args[0]) < get_value(args[1]) elif op == "LTE": flag = get_value(args[0]) <= get_value(args[1]) elif op == "GT": flag = get_value(args[0]) > get_value(args[1]) elif op == "GTE": flag = get_value(args[0]) >= get_value(args[1]) elif op == "INC": registers[args[0]] += 1 elif op == "DEC": registers[args[0]] -= 1 elif op == "JMP": instruction_pointer = labels[args[0]] continue elif op == "JT": if flag: instruction_pointer = labels[args[0]] continue elif op == "JF": if not flag: instruction_pointer = labels[args[0]] continue elif op == "LOAD": registers[args[0]] = memory[get_value(args[1])] elif op == "STORE": memory[get_value(args[1])] = registers[args[0]] elif op == "HCF": break instruction_pointer += 1 return memory # Example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 97, in <module>
print(evaluate(program))
File "/usr/src/app/main.py", line 25, in evaluate
op = instruction[0]
IndexError: list index out of range
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Certainly! Below is a simple Python interpreter for the assembly language described in your question. This interpreter takes a program as a string, executes it, and returns the resulting memory state.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | def evaluate(program): # Initialize the state registers = {'R' + str(i): 0 for i in range(1, 9)} flag = False memory = [0] * 100 instructions = program.split('\n') labels = {} instruction_pointer = 0 # Pre-process to find labels for i, instruction in enumerate(instructions): if ':' in instruction: label, rest = instruction.split(':') labels[label] = i instructions[i] = rest.strip() # Helper functions for operations def get_value(x): if x in registers: return registers[x] try: return int(x) except ValueError: raise ValueError(f"Invalid argument: {x}") while instruction_pointer < len(instructions): parts = instructions[instruction_pointer].split() if not parts: # Skip empty lines instruction_pointer += 1 continue op = parts[0] args = parts[1:] # Execute the operation if op == 'SET': registers[args[0]] = get_value(args[1]) elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'): x, y, z = args if op == 'ADD': registers[x] = get_value(y) + get_value(z) elif op == 'SUB': registers[x] = get_value(y) - get_value(z) elif op == 'MUL': registers[x] = get_value(y) * get_value(z) elif op == 'DIV': registers[x] = get_value(y) // get_value(z) elif op == 'MOD': registers[x] = get_value(y) % get_value(z) elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'): x, y = args if op == 'EQ': flag = get_value(x) == get_value(y) elif op == 'NEQ': flag = get_value(x) != get_value(y) elif op == 'LT': flag = get_value(x) < get_value(y) elif op == 'LTE': flag = get_value(x) <= get_value(y) elif op == 'GT': flag = get_value(x) > get_value(y) elif op == 'GTE': flag = get_value(x) >= get_value(y) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': instruction_pointer = labels[args[0]] continue elif op == 'JT': if flag: instruction_pointer = labels[args[0]] continue elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'STORE': memory[get_value(args[1])] = registers[args[0]] elif op == 'HCF': break else: raise ValueError(f"Unknown operation: {op}") instruction_pointer += 1 return memory # Example program program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop end: HCF """ # Execute the program memory_state = evaluate(program) # Filter out the zeros for display purposes print([x for x in memory_state if x != 0]) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | def evaluate(program): # Initialize the state registers = {'R' + str(i): 0 for i in range(1, 9)} flag = False memory = [0] * 100 instructions = program.split('\n') labels = {} instruction_pointer = 0 # Pre-process to find labels for i, instruction in enumerate(instructions): if ':' in instruction: label, rest = instruction.split(':') labels[label] = i instructions[i] = rest.strip() # Helper functions for operations def get_value(x): if x in registers: return registers[x] try: return int(x) except ValueError: raise ValueError(f"Invalid argument: {x}") while instruction_pointer < len(instructions): parts = instructions[instruction_pointer].split() if not parts: # Skip empty lines instruction_pointer += 1 continue op = parts[0] args = parts[1:] # Execute the operation if op == 'SET': registers[args[0]] = get_value(args[1]) elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'): x, y, z = args if op == 'ADD': registers[x] = get_value(y) + get_value(z) elif op == 'SUB': registers[x] = get_value(y) - get_value(z) elif op == 'MUL': registers[x] = get_value(y) * get_value(z) elif op == 'DIV': registers[x] = get_value(y) // get_value(z) elif op == 'MOD': registers[x] = get_value(y) % get_value(z) elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'): x, y = args if op == 'EQ': flag = get_value(x) == get_value(y) elif op == 'NEQ': flag = get_value(x) != get_value(y) elif op == 'LT': flag = get_value(x) < get_value(y) elif op == 'LTE': flag = get_value(x) <= get_value(y) elif op == 'GT': flag = get_value(x) > get_value(y) elif op == 'GTE': flag = get_value(x) >= get_value(y) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': instruction_pointer = labels[args[0]] continue elif op == 'JT': if flag: instruction_pointer = labels[args[0]] continue elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'STORE': memory[get_value(args[1])] = registers[args[0]] elif op == 'HCF': break else: raise ValueError(f"Unknown operation: {op}") instruction_pointer += 1 return memory # Example program program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop end: HCF """ # Execute the program memory_state = evaluate(program) # Filter out the zeros for display purposes print([x for x in memory_state if x != 0]) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | def evaluate(program): # Initialize the state registers = {'R' + str(i): 0 for i in range(1, 9)} flag = False memory = [0] * 100 instructions = program.split('\n') labels = {} instruction_pointer = 0 # Pre-process to find labels for i, instruction in enumerate(instructions): if ':' in instruction: label, rest = instruction.split(':') labels[label] = i instructions[i] = rest.strip() # Helper functions for operations def get_value(x): if x in registers: return registers[x] try: return int(x) except ValueError: raise ValueError(f"Invalid argument: {x}") while instruction_pointer < len(instructions): parts = instructions[instruction_pointer].split() if not parts: # Skip empty lines instruction_pointer += 1 continue op = parts[0] args = parts[1:] # Execute the operation if op == 'SET': registers[args[0]] = get_value(args[1]) elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'): x, y, z = args if op == 'ADD': registers[x] = get_value(y) + get_value(z) elif op == 'SUB': registers[x] = get_value(y) - get_value(z) elif op == 'MUL': registers[x] = get_value(y) * get_value(z) elif op == 'DIV': registers[x] = get_value(y) // get_value(z) elif op == 'MOD': registers[x] = get_value(y) % get_value(z) elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'): x, y = args if op == 'EQ': flag = get_value(x) == get_value(y) elif op == 'NEQ': flag = get_value(x) != get_value(y) elif op == 'LT': flag = get_value(x) < get_value(y) elif op == 'LTE': flag = get_value(x) <= get_value(y) elif op == 'GT': flag = get_value(x) > get_value(y) elif op == 'GTE': flag = get_value(x) >= get_value(y) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': instruction_pointer = labels[args[0]] continue elif op == 'JT': if flag: instruction_pointer = labels[args[0]] continue elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'STORE': memory[get_value(args[1])] = registers[args[0]] elif op == 'HCF': break else: raise ValueError(f"Unknown operation: {op}") instruction_pointer += 1 return memory # Example program program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop end: HCF """ # Execute the program memory_state = evaluate(program) # Filter out the zeros for display purposes print([x for x in memory_state if x != 0]) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]
Traceback (most recent call last):
File "/usr/src/app/main.py", line 133, in <module>
answer = evaluate("""
File "/usr/src/app/main.py", line 86, in evaluate
raise ValueError(f"Unknown operation: {op}")
ValueError: Unknown operation: //
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
To create a Python interpreter for the described assembly language, we will parse and execute each instruction as defined. The interpreter, named `evaluate`, will take a program as a string, execute it, and return the final state of the memory. Here is an implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | def evaluate(program): # Split the program into lines and initialize memory, registers, and flags lines = program.split('\n') memory = [0] * 100 registers = {f"R{i}": 0 for i in range(1, 9)} flag = False instruction_pointer = 0 labels = {} # First pass to collect labels for i, line in enumerate(lines): parts = line.strip().split() if len(parts) == 0: continue if parts[0].endswith(':'): labels[parts[0][:-1]] = i # Execute instructions while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() if not line or line.endswith(":"): instruction_pointer += 1 continue parts = line.split() op = parts[0] args = parts[1:] if op == "SET": registers[args[0]] = int(args[1]) elif op in ["ADD", "SUB", "MUL", "DIV", "MOD"]: a, b, c = args if op == "ADD": registers[a] = registers[b] + registers[c] elif op == "SUB": registers[a] = registers[b] - registers[c] elif op == "MUL": registers[a] = registers[b] * registers[c] elif op == "DIV": registers[a] = registers[b] // registers[c] elif op == "MOD": registers[a] = registers[b] % registers[c] elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]: a, b = args if op == "EQ": flag = registers[a] == registers[b] elif op == "NEQ": flag = registers[a] != registers[b] elif op == "LT": flag = registers[a] < registers[b] elif op == "LTE": flag = registers[a] <= registers[b] elif op == "GT": flag = registers[a] > registers[b] elif op == "GTE": flag = registers[a] >= registers[b] elif op == "INC": registers[args[0]] += 1 elif op == "DEC": registers[args[0]] -= 1 elif op == "JMP": instruction_pointer = labels[args[0]] continue elif op == "JT": if flag: instruction_pointer = labels[args[0]] continue elif op == "JF": if not flag: instruction_pointer = labels[args[0]] continue elif op == "LOAD": registers[args[0]] = memory[int(args[1])] elif op == "STORE": memory[int(args[1])] = registers[args[0]] elif op == "HCF": break instruction_pointer += 1 return memory[:20] # Assuming we are interested in the first 20 memory locations # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | def evaluate(program): # Split the program into lines and initialize memory, registers, and flags lines = program.split('\n') memory = [0] * 100 registers = {f"R{i}": 0 for i in range(1, 9)} flag = False instruction_pointer = 0 labels = {} # First pass to collect labels for i, line in enumerate(lines): parts = line.strip().split() if len(parts) == 0: continue if parts[0].endswith(':'): labels[parts[0][:-1]] = i # Execute instructions while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() if not line or line.endswith(":"): instruction_pointer += 1 continue parts = line.split() op = parts[0] args = parts[1:] if op == "SET": registers[args[0]] = int(args[1]) elif op in ["ADD", "SUB", "MUL", "DIV", "MOD"]: a, b, c = args if op == "ADD": registers[a] = registers[b] + registers[c] elif op == "SUB": registers[a] = registers[b] - registers[c] elif op == "MUL": registers[a] = registers[b] * registers[c] elif op == "DIV": registers[a] = registers[b] // registers[c] elif op == "MOD": registers[a] = registers[b] % registers[c] elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]: a, b = args if op == "EQ": flag = registers[a] == registers[b] elif op == "NEQ": flag = registers[a] != registers[b] elif op == "LT": flag = registers[a] < registers[b] elif op == "LTE": flag = registers[a] <= registers[b] elif op == "GT": flag = registers[a] > registers[b] elif op == "GTE": flag = registers[a] >= registers[b] elif op == "INC": registers[args[0]] += 1 elif op == "DEC": registers[args[0]] -= 1 elif op == "JMP": instruction_pointer = labels[args[0]] continue elif op == "JT": if flag: instruction_pointer = labels[args[0]] continue elif op == "JF": if not flag: instruction_pointer = labels[args[0]] continue elif op == "LOAD": registers[args[0]] = memory[int(args[1])] elif op == "STORE": memory[int(args[1])] = registers[args[0]] elif op == "HCF": break instruction_pointer += 1 return memory[:20] # Assuming we are interested in the first 20 memory locations # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | def evaluate(program): # Split the program into lines and initialize memory, registers, and flags lines = program.split('\n') memory = [0] * 100 registers = {f"R{i}": 0 for i in range(1, 9)} flag = False instruction_pointer = 0 labels = {} # First pass to collect labels for i, line in enumerate(lines): parts = line.strip().split() if len(parts) == 0: continue if parts[0].endswith(':'): labels[parts[0][:-1]] = i # Execute instructions while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() if not line or line.endswith(":"): instruction_pointer += 1 continue parts = line.split() op = parts[0] args = parts[1:] if op == "SET": registers[args[0]] = int(args[1]) elif op in ["ADD", "SUB", "MUL", "DIV", "MOD"]: a, b, c = args if op == "ADD": registers[a] = registers[b] + registers[c] elif op == "SUB": registers[a] = registers[b] - registers[c] elif op == "MUL": registers[a] = registers[b] * registers[c] elif op == "DIV": registers[a] = registers[b] // registers[c] elif op == "MOD": registers[a] = registers[b] % registers[c] elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]: a, b = args if op == "EQ": flag = registers[a] == registers[b] elif op == "NEQ": flag = registers[a] != registers[b] elif op == "LT": flag = registers[a] < registers[b] elif op == "LTE": flag = registers[a] <= registers[b] elif op == "GT": flag = registers[a] > registers[b] elif op == "GTE": flag = registers[a] >= registers[b] elif op == "INC": registers[args[0]] += 1 elif op == "DEC": registers[args[0]] -= 1 elif op == "JMP": instruction_pointer = labels[args[0]] continue elif op == "JT": if flag: instruction_pointer = labels[args[0]] continue elif op == "JF": if not flag: instruction_pointer = labels[args[0]] continue elif op == "LOAD": registers[args[0]] = memory[int(args[1])] elif op == "STORE": memory[int(args[1])] = registers[args[0]] elif op == "HCF": break instruction_pointer += 1 return memory[:20] # Assuming we are interested in the first 20 memory locations # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 SET R3 20 EQ R1 R3 JF loop """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: SET R7 1 EQ R2 R7 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found SET R7 100 EQ R8 R7 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 SET R7 0 EQ R7 R6 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 101, in <module>
print(evaluate(program))
File "/usr/src/app/main.py", line 32, in evaluate
a, b, c = args
ValueError: too many values to unpack (expected 3)
Testing if the previous output contains the string All tests passed
: False