Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

To create a Python interpreter for the described assembly language, we can follow these steps: 1. **Parse** the given program string into a more structured form (like a list of instructions). 2. **Execute** the instructions based on their opcodes and arguments, modifying registers, memory, and the instruction pointer as necessary. 3. **Manage** labels and jumps by mapping label names to instruction indices. 4. **Return** the state of the memory after the program execution ends. Here's a basic implementation:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
def evaluate(program):
    # Split the program into lines and parse each line into (instruction, args)
    lines = program.strip().split('\n')
    instructions = []
    labels = {}
    for line in lines:
        parts = line.split()
        if parts[0][-1] == ':':  # It's a label
            labels[parts[0][:-1]] = len(instructions)
        else:
            instructions.append((parts[0], parts[1:]))
    
    # Initialize state
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    ip = 0  # Instruction Pointer
    
    # Helper functions for arithmetic operations
    def arithmetic_op(op, rx, ry, rz=None):
        ry_val = registers[ry] if ry in registers else int(ry)
        rz_val = registers[rz] if rz and rz in registers else int(rz)
        if op == 'ADD':
            registers[rx] = ry_val + rz_val
        elif op == 'SUB':
            registers[rx] = ry_val - rz_val
        elif op == 'MUL':
            registers[rx] = ry_val * rz_val
        elif op == 'DIV':
            registers[rx] = ry_val // rz_val
        elif op == 'MOD':
            registers[rx] = ry_val % rz_val
    
    # Execute instructions
    while ip < len(instructions):
        op, args = instructions[ip]
        ip += 1  # Default increment IP, JMP will modify it as needed
        
        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'):
            arithmetic_op(op, *args)
        elif op == 'EQ':
            flag = registers[args[0]] == registers[args[1]]
        elif op == 'NEQ':
            flag = registers[args[0]] != registers[args[1]]
        elif op == 'LT':
            flag = registers[args[0]] < registers[args[1]]
        elif op == 'LTE':
            flag = registers[args[0]] <= registers[args[1]]
        elif op == 'GT':
            flag = registers[args[0]] > registers[args[1]]
        elif op == 'GTE':
            flag = registers[args[0]] >= registers[args[1]]
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
        elif op in ('JT', 'JF'):
            if (flag and op == 'JT') or (not flag and op == 'JF'):
                ip = labels[args[0]]
        elif op == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        elif op == 'STORE':
            memory[int(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
    
    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter
print(evaluate(program))
This code defines a simple interpreter for the given assembly language, parses the program, executes it, and finally returns the state of the memory. This should work for the example given and similar programs written in this assembly language.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
def evaluate(program):
    # Split the program into lines and parse each line into (instruction, args)
    lines = program.strip().split('\n')
    instructions = []
    labels = {}
    for line in lines:
        parts = line.split()
        if parts[0][-1] == ':':  # It's a label
            labels[parts[0][:-1]] = len(instructions)
        else:
            instructions.append((parts[0], parts[1:]))
    
    # Initialize state
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    ip = 0  # Instruction Pointer
    
    # Helper functions for arithmetic operations
    def arithmetic_op(op, rx, ry, rz=None):
        ry_val = registers[ry] if ry in registers else int(ry)
        rz_val = registers[rz] if rz and rz in registers else int(rz)
        if op == 'ADD':
            registers[rx] = ry_val + rz_val
        elif op == 'SUB':
            registers[rx] = ry_val - rz_val
        elif op == 'MUL':
            registers[rx] = ry_val * rz_val
        elif op == 'DIV':
            registers[rx] = ry_val // rz_val
        elif op == 'MOD':
            registers[rx] = ry_val % rz_val
    
    # Execute instructions
    while ip < len(instructions):
        op, args = instructions[ip]
        ip += 1  # Default increment IP, JMP will modify it as needed
        
        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'):
            arithmetic_op(op, *args)
        elif op == 'EQ':
            flag = registers[args[0]] == registers[args[1]]
        elif op == 'NEQ':
            flag = registers[args[0]] != registers[args[1]]
        elif op == 'LT':
            flag = registers[args[0]] < registers[args[1]]
        elif op == 'LTE':
            flag = registers[args[0]] <= registers[args[1]]
        elif op == 'GT':
            flag = registers[args[0]] > registers[args[1]]
        elif op == 'GTE':
            flag = registers[args[0]] >= registers[args[1]]
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
        elif op in ('JT', 'JF'):
            if (flag and op == 'JT') or (not flag and op == 'JF'):
                ip = labels[args[0]]
        elif op == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        elif op == 'STORE':
            memory[int(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
    
    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter
print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def evaluate(program):
    # Split the program into lines and parse each line into (instruction, args)
    lines = program.strip().split('\n')
    instructions = []
    labels = {}
    for line in lines:
        parts = line.split()
        if parts[0][-1] == ':':  # It's a label
            labels[parts[0][:-1]] = len(instructions)
        else:
            instructions.append((parts[0], parts[1:]))
    
    # Initialize state
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    ip = 0  # Instruction Pointer
    
    # Helper functions for arithmetic operations
    def arithmetic_op(op, rx, ry, rz=None):
        ry_val = registers[ry] if ry in registers else int(ry)
        rz_val = registers[rz] if rz and rz in registers else int(rz)
        if op == 'ADD':
            registers[rx] = ry_val + rz_val
        elif op == 'SUB':
            registers[rx] = ry_val - rz_val
        elif op == 'MUL':
            registers[rx] = ry_val * rz_val
        elif op == 'DIV':
            registers[rx] = ry_val // rz_val
        elif op == 'MOD':
            registers[rx] = ry_val % rz_val
    
    # Execute instructions
    while ip < len(instructions):
        op, args = instructions[ip]
        ip += 1  # Default increment IP, JMP will modify it as needed
        
        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'):
            arithmetic_op(op, *args)
        elif op == 'EQ':
            flag = registers[args[0]] == registers[args[1]]
        elif op == 'NEQ':
            flag = registers[args[0]] != registers[args[1]]
        elif op == 'LT':
            flag = registers[args[0]] < registers[args[1]]
        elif op == 'LTE':
            flag = registers[args[0]] <= registers[args[1]]
        elif op == 'GT':
            flag = registers[args[0]] > registers[args[1]]
        elif op == 'GTE':
            flag = registers[args[0]] >= registers[args[1]]
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
        elif op in ('JT', 'JF'):
            if (flag and op == 'JT') or (not flag and op == 'JF'):
                ip = labels[args[0]]
        elif op == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        elif op == 'STORE':
            memory[int(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
    
    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter
print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 92, in <module> print(evaluate(program)) ^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 9, in evaluate if parts[0][-1] == ':': # It's a label ~~~~~^^^ IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

You can interpret the assembly language with a Python function. Here's how you could go about implementing the `evaluate` function based on the description of the assembly language provided:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
def evaluate(program):
    # Split the program into lines
    lines = program.split('\n')
    
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0  # Instruction Pointer
    
    # Labels dictionary for jumping
    labels = {}
    
    # First pass to find labels
    for i, line in enumerate(lines):
        if ':' in line:
            label, _ = line.split(':')
            labels[label] = i  # Map label to line number
    
    # Helper function to get value from argument (register or constant)
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)
    
    # Helper function to set flag based on comparison
    def compare(op, x, y):
        global flag
        if op == 'EQ':
            flag = (x == y)
        elif op == 'NEQ':
            flag = (x != y)
        elif op == 'LT':
            flag = (x < y)
        elif op == 'LTE':
            flag = (x <= y)
        elif op == 'GT':
            flag = (x > y)
        elif op == 'GTE':
            flag = (x >= y)
    
    # Execute the program
    while ip < len(lines):
        line = lines[ip].strip()
        if line == '' or ':' in line:
            ip += 1
            continue
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'):
            compare(op, get_value(args[0]), get_value(args[1]))
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        ip += 1
    
    return memory

# Example usage
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))
This function defines an interpreter for the custom assembly language, processes the given program, and returns the state of the memory after execution. Note that this implementation assumes the program is well-formed and does not contain syntax errors or unsupported operations.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
def evaluate(program):
    # Split the program into lines
    lines = program.split('\n')
    
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0  # Instruction Pointer
    
    # Labels dictionary for jumping
    labels = {}
    
    # First pass to find labels
    for i, line in enumerate(lines):
        if ':' in line:
            label, _ = line.split(':')
            labels[label] = i  # Map label to line number
    
    # Helper function to get value from argument (register or constant)
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)
    
    # Helper function to set flag based on comparison
    def compare(op, x, y):
        global flag
        if op == 'EQ':
            flag = (x == y)
        elif op == 'NEQ':
            flag = (x != y)
        elif op == 'LT':
            flag = (x < y)
        elif op == 'LTE':
            flag = (x <= y)
        elif op == 'GT':
            flag = (x > y)
        elif op == 'GTE':
            flag = (x >= y)
    
    # Execute the program
    while ip < len(lines):
        line = lines[ip].strip()
        if line == '' or ':' in line:
            ip += 1
            continue
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'):
            compare(op, get_value(args[0]), get_value(args[1]))
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        ip += 1
    
    return memory

# Example usage
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def evaluate(program):
    # Split the program into lines
    lines = program.split('\n')
    
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0  # Instruction Pointer
    
    # Labels dictionary for jumping
    labels = {}
    
    # First pass to find labels
    for i, line in enumerate(lines):
        if ':' in line:
            label, _ = line.split(':')
            labels[label] = i  # Map label to line number
    
    # Helper function to get value from argument (register or constant)
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)
    
    # Helper function to set flag based on comparison
    def compare(op, x, y):
        global flag
        if op == 'EQ':
            flag = (x == y)
        elif op == 'NEQ':
            flag = (x != y)
        elif op == 'LT':
            flag = (x < y)
        elif op == 'LTE':
            flag = (x <= y)
        elif op == 'GT':
            flag = (x > y)
        elif op == 'GTE':
            flag = (x >= y)
    
    # Execute the program
    while ip < len(lines):
        line = lines[ip].strip()
        if line == '' or ':' in line:
            ip += 1
            continue
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'):
            compare(op, get_value(args[0]), get_value(args[1]))
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        ip += 1
    
    return memory

# Example usage
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 110, in <module> print(evaluate(program)) ^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 85, in evaluate memory[get_value(args[1])] = registers[args[0]] ~~~~~~^^^^^^^^^^^^^^^^^^^^ IndexError: list assignment index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

To construct the interpreter, we'll parse the provided assembly language program as a string, execute the instructions as described, and then return the final state of the memory. Here's a basic implementation of such an interpreter in Python:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
def evaluate(program):
    # Split the program into lines
    lines = program.split('\n')
    
    # Initialize the program environment
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instruction_pointer = 0
    labels = {}
    
    # First pass to find labels
    for i, line in enumerate(lines):
        parts = line.strip().split()
        if parts and parts[0][-1] == ':':
            labels[parts[0][:-1]] = i
    
    # Helper function to get value from argument (either constant or register)
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)
    
    # Execution loop
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip()
        if not line or line[-1] == ':':  # Skip empty lines and labels
            instruction_pointer += 1
            continue
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        # Perform operation based on opcode
        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op == 'EQ':
            flag = registers[args[0]] == get_value(args[1])
        elif op == 'NEQ':
            flag = registers[args[0]] != get_value(args[1])
        elif op == 'LT':
            flag = registers[args[0]] < get_value(args[1])
        elif op == 'LTE':
            flag = registers[args[0]] <= get_value(args[1])
        elif op == 'GT':
            flag = registers[args[0]] > get_value(args[1])
        elif op == 'GTE':
            flag = registers[args[0]] >= get_value(args[1])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example program to compute the first 20 square numbers
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter with the provided example program
print(evaluate(program))
This script defines the `evaluate` function, which parses and executes the provided assembly language program, returning the final state of the memory. It supports the described operations and control flow, including handling labels for jumps. Note that this implementation assumes well-formed input and does not include extensive error checking, which would be necessary for a more robust interpreter.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
def evaluate(program):
    # Split the program into lines
    lines = program.split('\n')
    
    # Initialize the program environment
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instruction_pointer = 0
    labels = {}
    
    # First pass to find labels
    for i, line in enumerate(lines):
        parts = line.strip().split()
        if parts and parts[0][-1] == ':':
            labels[parts[0][:-1]] = i
    
    # Helper function to get value from argument (either constant or register)
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)
    
    # Execution loop
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip()
        if not line or line[-1] == ':':  # Skip empty lines and labels
            instruction_pointer += 1
            continue
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        # Perform operation based on opcode
        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op == 'EQ':
            flag = registers[args[0]] == get_value(args[1])
        elif op == 'NEQ':
            flag = registers[args[0]] != get_value(args[1])
        elif op == 'LT':
            flag = registers[args[0]] < get_value(args[1])
        elif op == 'LTE':
            flag = registers[args[0]] <= get_value(args[1])
        elif op == 'GT':
            flag = registers[args[0]] > get_value(args[1])
        elif op == 'GTE':
            flag = registers[args[0]] >= get_value(args[1])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example program to compute the first 20 square numbers
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter with the provided example program
print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def evaluate(program):
    # Split the program into lines
    lines = program.split('\n')
    
    # Initialize the program environment
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instruction_pointer = 0
    labels = {}
    
    # First pass to find labels
    for i, line in enumerate(lines):
        parts = line.strip().split()
        if parts and parts[0][-1] == ':':
            labels[parts[0][:-1]] = i
    
    # Helper function to get value from argument (either constant or register)
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)
    
    # Execution loop
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip()
        if not line or line[-1] == ':':  # Skip empty lines and labels
            instruction_pointer += 1
            continue
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        # Perform operation based on opcode
        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'SUB':
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'DIV':
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == 'MOD':
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op == 'EQ':
            flag = registers[args[0]] == get_value(args[1])
        elif op == 'NEQ':
            flag = registers[args[0]] != get_value(args[1])
        elif op == 'LT':
            flag = registers[args[0]] < get_value(args[1])
        elif op == 'LTE':
            flag = registers[args[0]] <= get_value(args[1])
        elif op == 'GT':
            flag = registers[args[0]] > get_value(args[1])
        elif op == 'GTE':
            flag = registers[args[0]] >= get_value(args[1])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example program to compute the first 20 square numbers
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
EQ R1 20      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter with the provided example program
print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

To write an interpreter for the described assembly language, we can start by defining the necessary components: registers, memory, flag, and instruction pointer. We'll parse the instructions, execute them, and modify the state of the interpreter accordingly. Here's a simple implementation:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def evaluate(program):
    # Initialize state
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.split('\n')
    labels = {}
    ip = 0  # Instruction Pointer

    # Pre-process labels
    for index, instruction in enumerate(instructions):
        if instruction.endswith(':'):
            labels[instruction[:-1]] = index
    
    # Helper functions
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)
    
    # Main execution loop
    while ip < len(instructions):
        parts = instructions[ip].split()
        if not parts or parts[0] in labels:  # Skip empty lines/labels
            ip += 1
            continue
        
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'STORE':
            memory[get_value(args[1])] = get_value(args[0])
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'EQ':
            flag = get_value(args[0]) == get_value(args[1])
        elif op == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        elif op == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'HCF':
            break  # Halt and Catch Fire, stopping execution
        
        ip += 1  # Move to the next instruction
    
    return memory[:20]  # Assuming the interest is in the first 20 memory slots

# Example usage with the provided program
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))
This Python function `evaluate` takes a program (as a string) written in the provided assembly language, executes it, and returns the state of the memory after execution, specifically the first 20 slots, which is suitable for the provided example. The interpreter handles instructions by modifying the state based on their operation, such as arithmetic operations, conditional jumps, and memory access. It also includes a preprocessing step to handle labels for jumps. Note that error handling (e.g., for invalid instructions or memory access out of bounds) is minimal in this simple interpreter, and could be expanded based on requirements.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def evaluate(program):
    # Initialize state
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.split('\n')
    labels = {}
    ip = 0  # Instruction Pointer

    # Pre-process labels
    for index, instruction in enumerate(instructions):
        if instruction.endswith(':'):
            labels[instruction[:-1]] = index
    
    # Helper functions
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)
    
    # Main execution loop
    while ip < len(instructions):
        parts = instructions[ip].split()
        if not parts or parts[0] in labels:  # Skip empty lines/labels
            ip += 1
            continue
        
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'STORE':
            memory[get_value(args[1])] = get_value(args[0])
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'EQ':
            flag = get_value(args[0]) == get_value(args[1])
        elif op == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        elif op == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'HCF':
            break  # Halt and Catch Fire, stopping execution
        
        ip += 1  # Move to the next instruction
    
    return memory[:20]  # Assuming the interest is in the first 20 memory slots

# Example usage with the provided program
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
def evaluate(program):
    # Initialize state
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.split('\n')
    labels = {}
    ip = 0  # Instruction Pointer

    # Pre-process labels
    for index, instruction in enumerate(instructions):
        if instruction.endswith(':'):
            labels[instruction[:-1]] = index
    
    # Helper functions
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)
    
    # Main execution loop
    while ip < len(instructions):
        parts = instructions[ip].split()
        if not parts or parts[0] in labels:  # Skip empty lines/labels
            ip += 1
            continue
        
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op == 'ADD':
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == 'MUL':
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'STORE':
            memory[get_value(args[1])] = get_value(args[0])
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'EQ':
            flag = get_value(args[0]) == get_value(args[1])
        elif op == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        elif op == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'HCF':
            break  # Halt and Catch Fire, stopping execution
        
        ip += 1  # Move to the next instruction
    
    return memory[:20]  # Assuming the interest is in the first 20 memory slots

# Example usage with the provided program
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Timeout: function took too long to complete

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

To interpret the given assembly language in Python, we'll follow these steps: 1. **Parse the Program**: Break down the input program into a list of instructions. 2. **Execution Engine**: Implement the logic to execute each instruction as per the specification. 3. **Memory and Registers**: Initialize memory, registers, and the flag. 4. **Program Counter**: Keep track of instruction execution using the program counter. 5. **Instruction Handlers**: Implement handlers for each instruction type (SET, ADD, etc.). Here's a basic Python interpreter for the specified assembly language:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
def evaluate(program):
    # Break the program into instructions and parse them
    instructions = program.strip().split('\n')
    parsed_instructions = []
    labels = {}
    
    # Memory, registers, and flag initialization
    memory = [0] * 100
    registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0,
                 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0}
    flag = False
    ip = 0  # Instruction pointer
    
    # Parse instructions and labels
    for line in instructions:
        parts = line.strip().split()
        if parts[0][-1] == ':':  # It's a label
            labels[parts[0][:-1]] = len(parsed_instructions)
        else:
            parsed_instructions.append(parts)
    
    # Execution engine
    while ip < len(parsed_instructions):
        instruction, *args = parsed_instructions[ip]
        
        if instruction == 'SET':
            registers[args[0]] = int(args[1])
        
        elif instruction == 'ADD':
            registers[args[0]] = registers[args[1]] + registers[args[2]]
        
        elif instruction == 'SUB':
            registers[args[0]] = registers[args[1]] - registers[args[2]]
        
        elif instruction == 'MUL':
            registers[args[0]] = registers[args[1]] * registers[args[2]]
        
        elif instruction == 'DIV':
            registers[args[0]] = registers[args[1]] // registers[args[2]]
        
        elif instruction == 'MOD':
            registers[args[0]] = registers[args[1]] % registers[args[2]]
        
        elif instruction == 'EQ':
            flag = registers[args[0]] == registers[args[1]]
        
        elif instruction == 'NEQ':
            flag = registers[args[0]] != registers[args[1]]
        
        elif instruction == 'LT':
            flag = registers[args[0]] < registers[args[1]]
        
        elif instruction == 'LTE':
            flag = registers[args[0]] <= registers[args[1]]
        
        elif instruction == 'GT':
            flag = registers[args[0]] > registers[args[1]]
        
        elif instruction == 'GTE':
            flag = registers[args[0]] >= registers[args[1]]
        
        elif instruction == 'INC':
            registers[args[0]] += 1
        
        elif instruction == 'DEC':
            registers[args[0]] -= 1
        
        elif instruction == 'JMP':
            ip = labels[args[0]]
            continue
        
        elif instruction == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        
        elif instruction == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        
        elif instruction == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        
        elif instruction == 'STORE':
            memory[int(args[1])] = registers[args[0]]
        
        elif instruction == 'HCF':
            break
        
        ip += 1
    
    return memory[:20]  # Assuming we need to return the first 20 memory locations

# Example usage
program = '''SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF'''

print(evaluate(program))
This is a simplified interpreter for the described assembly language. It handles basic control flow, arithmetic, and memory operations as specified. Note that error handling (e.g., for invalid instructions or out-of-bounds memory access) is not included but could be added for a more robust solution.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
def evaluate(program):
    # Break the program into instructions and parse them
    instructions = program.strip().split('\n')
    parsed_instructions = []
    labels = {}
    
    # Memory, registers, and flag initialization
    memory = [0] * 100
    registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0,
                 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0}
    flag = False
    ip = 0  # Instruction pointer
    
    # Parse instructions and labels
    for line in instructions:
        parts = line.strip().split()
        if parts[0][-1] == ':':  # It's a label
            labels[parts[0][:-1]] = len(parsed_instructions)
        else:
            parsed_instructions.append(parts)
    
    # Execution engine
    while ip < len(parsed_instructions):
        instruction, *args = parsed_instructions[ip]
        
        if instruction == 'SET':
            registers[args[0]] = int(args[1])
        
        elif instruction == 'ADD':
            registers[args[0]] = registers[args[1]] + registers[args[2]]
        
        elif instruction == 'SUB':
            registers[args[0]] = registers[args[1]] - registers[args[2]]
        
        elif instruction == 'MUL':
            registers[args[0]] = registers[args[1]] * registers[args[2]]
        
        elif instruction == 'DIV':
            registers[args[0]] = registers[args[1]] // registers[args[2]]
        
        elif instruction == 'MOD':
            registers[args[0]] = registers[args[1]] % registers[args[2]]
        
        elif instruction == 'EQ':
            flag = registers[args[0]] == registers[args[1]]
        
        elif instruction == 'NEQ':
            flag = registers[args[0]] != registers[args[1]]
        
        elif instruction == 'LT':
            flag = registers[args[0]] < registers[args[1]]
        
        elif instruction == 'LTE':
            flag = registers[args[0]] <= registers[args[1]]
        
        elif instruction == 'GT':
            flag = registers[args[0]] > registers[args[1]]
        
        elif instruction == 'GTE':
            flag = registers[args[0]] >= registers[args[1]]
        
        elif instruction == 'INC':
            registers[args[0]] += 1
        
        elif instruction == 'DEC':
            registers[args[0]] -= 1
        
        elif instruction == 'JMP':
            ip = labels[args[0]]
            continue
        
        elif instruction == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        
        elif instruction == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        
        elif instruction == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        
        elif instruction == 'STORE':
            memory[int(args[1])] = registers[args[0]]
        
        elif instruction == 'HCF':
            break
        
        ip += 1
    
    return memory[:20]  # Assuming we need to return the first 20 memory locations

# Example usage
program = '''SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF'''

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def evaluate(program):
    # Break the program into instructions and parse them
    instructions = program.strip().split('\n')
    parsed_instructions = []
    labels = {}
    
    # Memory, registers, and flag initialization
    memory = [0] * 100
    registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0,
                 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0}
    flag = False
    ip = 0  # Instruction pointer
    
    # Parse instructions and labels
    for line in instructions:
        parts = line.strip().split()
        if parts[0][-1] == ':':  # It's a label
            labels[parts[0][:-1]] = len(parsed_instructions)
        else:
            parsed_instructions.append(parts)
    
    # Execution engine
    while ip < len(parsed_instructions):
        instruction, *args = parsed_instructions[ip]
        
        if instruction == 'SET':
            registers[args[0]] = int(args[1])
        
        elif instruction == 'ADD':
            registers[args[0]] = registers[args[1]] + registers[args[2]]
        
        elif instruction == 'SUB':
            registers[args[0]] = registers[args[1]] - registers[args[2]]
        
        elif instruction == 'MUL':
            registers[args[0]] = registers[args[1]] * registers[args[2]]
        
        elif instruction == 'DIV':
            registers[args[0]] = registers[args[1]] // registers[args[2]]
        
        elif instruction == 'MOD':
            registers[args[0]] = registers[args[1]] % registers[args[2]]
        
        elif instruction == 'EQ':
            flag = registers[args[0]] == registers[args[1]]
        
        elif instruction == 'NEQ':
            flag = registers[args[0]] != registers[args[1]]
        
        elif instruction == 'LT':
            flag = registers[args[0]] < registers[args[1]]
        
        elif instruction == 'LTE':
            flag = registers[args[0]] <= registers[args[1]]
        
        elif instruction == 'GT':
            flag = registers[args[0]] > registers[args[1]]
        
        elif instruction == 'GTE':
            flag = registers[args[0]] >= registers[args[1]]
        
        elif instruction == 'INC':
            registers[args[0]] += 1
        
        elif instruction == 'DEC':
            registers[args[0]] -= 1
        
        elif instruction == 'JMP':
            ip = labels[args[0]]
            continue
        
        elif instruction == 'JT':
            if flag:
                ip = labels[args[0]]
                continue
        
        elif instruction == 'JF':
            if not flag:
                ip = labels[args[0]]
                continue
        
        elif instruction == 'LOAD':
            registers[args[0]] = memory[int(args[1])]
        
        elif instruction == 'STORE':
            memory[int(args[1])] = registers[args[0]]
        
        elif instruction == 'HCF':
            break
        
        ip += 1
    
    return memory[:20]  # Assuming we need to return the first 20 memory locations

# Example usage
program = '''SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
EQ R1 20
JF loop

end:
HCF'''

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 111, in <module> print(evaluate(program)) ^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 18, in evaluate if parts[0][-1] == ':': # It's a label ~~~~~^^^ IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False