Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here's a Python interpreter that can evaluate the provided assembly language program. The interpreter parses each instruction, executes it according to the described behavior, and maintains the state of registers, memory, the instruction pointer, and the flag.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
def evaluate(program):
    # Initialize the CPU state.
    registers = {f"R{i}": 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.splitlines()
    labels = {}
    ip = 0

    # First pass to find labels.
    for index, line in enumerate(instructions):
        if ':' in line:
            label, _ = line.split(':')
            labels[label] = index

    # Helper function for evaluating operands.
    def eval_arg(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)

    # Main execution loop.
    while ip < len(instructions):
        parts = instructions[ip].split()
        if not parts or ':' in parts[0]:
            ip += 1
            continue
        op = parts[0]

        if op == "SET":
            registers[parts[1]] = eval_arg(parts[2])
        elif op == "ADD":
            registers[parts[1]] = eval_arg(parts[2]) + eval_arg(parts[3])
        elif op == "SUB":
            registers[parts[1]] = eval_arg(parts[2]) - eval_arg(parts[3])
        elif op == "MUL":
            registers[parts[1]] = eval_arg(parts[2]) * eval_arg(parts[3])
        elif op == "DIV":
            registers[parts[1]] = eval_arg(parts[2]) // eval_arg(parts[3])
        elif op == "MOD":
            registers[parts[1]] = eval_arg(parts[2]) % eval_arg(parts[3])
        elif op == "EQ":
            flag = registers[parts[1]] == eval_arg(parts[2])
        elif op == "NEQ":
            flag = registers[parts[1]] != eval_arg(parts[2])
        elif op == "LT":
            flag = registers[parts[1]] < eval_arg(parts[2])
        elif op == "LTE":
            flag = registers[parts[1]] <= eval_arg(parts[2])
        elif op == "GT":
            flag = registers[parts[1]] > eval_arg(parts[2])
        elif op == "GTE":
            flag = registers[parts[1]] >= eval_arg(parts[2])
        elif op == "INC":
            registers[parts[1]] += 1
        elif op == "DEC":
            registers[parts[1]] -= 1
        elif op == "JMP":
            ip = labels[parts[1]]
            continue
        elif op == "JT":
            if flag:
                ip = labels[parts[1]]
                continue
        elif op == "JF":
            if not flag:
                ip = labels[parts[1]]
                continue
        elif op == "LOAD":
            registers[parts[1]] = memory[eval_arg(parts[2])]
        elif op == "STORE":
            memory[eval_arg(parts[2])] = registers[parts[1]]
        elif op == "HCF":
            break

        ip += 1

    return memory

# Sample program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter
result = evaluate(program)
print(result[:21])  # Print the first 20 squares (and a 0 due to memory initialization)
This interpreter processes each instruction based on the operation specified, updates the CPU state accordingly, and can execute the given program to compute the first 20 square numbers.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
def evaluate(program):
    # Initialize the CPU state.
    registers = {f"R{i}": 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.splitlines()
    labels = {}
    ip = 0

    # First pass to find labels.
    for index, line in enumerate(instructions):
        if ':' in line:
            label, _ = line.split(':')
            labels[label] = index

    # Helper function for evaluating operands.
    def eval_arg(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)

    # Main execution loop.
    while ip < len(instructions):
        parts = instructions[ip].split()
        if not parts or ':' in parts[0]:
            ip += 1
            continue
        op = parts[0]

        if op == "SET":
            registers[parts[1]] = eval_arg(parts[2])
        elif op == "ADD":
            registers[parts[1]] = eval_arg(parts[2]) + eval_arg(parts[3])
        elif op == "SUB":
            registers[parts[1]] = eval_arg(parts[2]) - eval_arg(parts[3])
        elif op == "MUL":
            registers[parts[1]] = eval_arg(parts[2]) * eval_arg(parts[3])
        elif op == "DIV":
            registers[parts[1]] = eval_arg(parts[2]) // eval_arg(parts[3])
        elif op == "MOD":
            registers[parts[1]] = eval_arg(parts[2]) % eval_arg(parts[3])
        elif op == "EQ":
            flag = registers[parts[1]] == eval_arg(parts[2])
        elif op == "NEQ":
            flag = registers[parts[1]] != eval_arg(parts[2])
        elif op == "LT":
            flag = registers[parts[1]] < eval_arg(parts[2])
        elif op == "LTE":
            flag = registers[parts[1]] <= eval_arg(parts[2])
        elif op == "GT":
            flag = registers[parts[1]] > eval_arg(parts[2])
        elif op == "GTE":
            flag = registers[parts[1]] >= eval_arg(parts[2])
        elif op == "INC":
            registers[parts[1]] += 1
        elif op == "DEC":
            registers[parts[1]] -= 1
        elif op == "JMP":
            ip = labels[parts[1]]
            continue
        elif op == "JT":
            if flag:
                ip = labels[parts[1]]
                continue
        elif op == "JF":
            if not flag:
                ip = labels[parts[1]]
                continue
        elif op == "LOAD":
            registers[parts[1]] = memory[eval_arg(parts[2])]
        elif op == "STORE":
            memory[eval_arg(parts[2])] = registers[parts[1]]
        elif op == "HCF":
            break

        ip += 1

    return memory

# Sample program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter
result = evaluate(program)
print(result[:21])  # Print the first 20 squares (and a 0 due to memory initialization)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def evaluate(program):
    # Initialize the CPU state.
    registers = {f"R{i}": 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.splitlines()
    labels = {}
    ip = 0

    # First pass to find labels.
    for index, line in enumerate(instructions):
        if ':' in line:
            label, _ = line.split(':')
            labels[label] = index

    # Helper function for evaluating operands.
    def eval_arg(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)

    # Main execution loop.
    while ip < len(instructions):
        parts = instructions[ip].split()
        if not parts or ':' in parts[0]:
            ip += 1
            continue
        op = parts[0]

        if op == "SET":
            registers[parts[1]] = eval_arg(parts[2])
        elif op == "ADD":
            registers[parts[1]] = eval_arg(parts[2]) + eval_arg(parts[3])
        elif op == "SUB":
            registers[parts[1]] = eval_arg(parts[2]) - eval_arg(parts[3])
        elif op == "MUL":
            registers[parts[1]] = eval_arg(parts[2]) * eval_arg(parts[3])
        elif op == "DIV":
            registers[parts[1]] = eval_arg(parts[2]) // eval_arg(parts[3])
        elif op == "MOD":
            registers[parts[1]] = eval_arg(parts[2]) % eval_arg(parts[3])
        elif op == "EQ":
            flag = registers[parts[1]] == eval_arg(parts[2])
        elif op == "NEQ":
            flag = registers[parts[1]] != eval_arg(parts[2])
        elif op == "LT":
            flag = registers[parts[1]] < eval_arg(parts[2])
        elif op == "LTE":
            flag = registers[parts[1]] <= eval_arg(parts[2])
        elif op == "GT":
            flag = registers[parts[1]] > eval_arg(parts[2])
        elif op == "GTE":
            flag = registers[parts[1]] >= eval_arg(parts[2])
        elif op == "INC":
            registers[parts[1]] += 1
        elif op == "DEC":
            registers[parts[1]] -= 1
        elif op == "JMP":
            ip = labels[parts[1]]
            continue
        elif op == "JT":
            if flag:
                ip = labels[parts[1]]
                continue
        elif op == "JF":
            if not flag:
                ip = labels[parts[1]]
                continue
        elif op == "LOAD":
            registers[parts[1]] = memory[eval_arg(parts[2])]
        elif op == "STORE":
            memory[eval_arg(parts[2])] = registers[parts[1]]
        elif op == "HCF":
            break

        ip += 1

    return memory

# Sample program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter
result = evaluate(program)
print(result[:21])  # Print the first 20 squares (and a 0 due to memory initialization)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 0] All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

To create a Python interpreter that evaluates the program as described, we can follow these steps: 1. Parse the input program into a list of instructions. 2. Implement a virtual machine that executes these instructions according to the rules you've described. 3. Execute the program and return the memory state. Let's implement the interpreter:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def evaluate(program):
    # Split the program into lines and parse each line
    lines = program.split('\n')
    
    # Initialize the virtual machine state
    registers = {'R'+str(i):0 for i in range(1, 9)}  # Registers R1 to R8 initialized to 0
    flag = False
    memory = [0] * 100  # 100 memory addresses initialized to 0
    instruction_pointer = 0
    labels = {}  # For storing labels and their line numbers
    
    # First pass to collect labels
    for line_number, line in enumerate(lines):
        parts = line.split()
        if parts:
            if parts[0][-1] == ':':  # It's a label
                labels[parts[0][:-1]] = line_number
    
    # Helper function to evaluate arguments (register or constant)
    def evaluate_arg(arg):
        if arg.startswith('R'):
            return registers[arg]
        else:
            return int(arg)
    
    # Main execution loop
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip()
        if not line or line.endswith(':'):  # Skip empty lines or labels
            instruction_pointer += 1
            continue
        
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        # Execute instruction
        if op == 'SET':
            registers[args[0]] = evaluate_arg(args[1])
        elif op == 'ADD':
            registers[args[0]] = evaluate_arg(args[1]) + evaluate_arg(args[2])
        elif op == 'SUB':
            registers[args[0]] = evaluate_arg(args[1]) - evaluate_arg(args[2])
        elif op == 'MUL':
            registers[args[0]] = evaluate_arg(args[1]) * evaluate_arg(args[2])
        elif op == 'DIV':
            registers[args[0]] = evaluate_arg(args[1]) // evaluate_arg(args[2])
        elif op == 'MOD':
            registers[args[0]] = evaluate_arg(args[1]) % evaluate_arg(args[2])
        elif op == 'EQ':
            flag = registers[args[0]] == evaluate_arg(args[1])
        elif op == 'NEQ':
            flag = registers[args[0]] != evaluate_arg(args[1])
        elif op == 'LT':
            flag = registers[args[0]] < evaluate_arg(args[1])
        elif op == 'LTE':
            flag = registers[args[0]] <= evaluate_arg(args[1])
        elif op == 'GT':
            flag = registers[args[0]] > evaluate_arg(args[1])
        elif op == 'GTE':
            flag = registers[args[0]] >= evaluate_arg(args[1])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[evaluate_arg(args[1])]
        elif op == 'STORE':
            memory[evaluate_arg(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example usage
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))
This interpreter takes the `program` as a string, executes it line by line according to the provided instructions, and returns the memory state after execution. The example usage at the end runs your given program to compute the first 20 square numbers and prints the resulting memory state.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def evaluate(program):
    # Split the program into lines and parse each line
    lines = program.split('\n')
    
    # Initialize the virtual machine state
    registers = {'R'+str(i):0 for i in range(1, 9)}  # Registers R1 to R8 initialized to 0
    flag = False
    memory = [0] * 100  # 100 memory addresses initialized to 0
    instruction_pointer = 0
    labels = {}  # For storing labels and their line numbers
    
    # First pass to collect labels
    for line_number, line in enumerate(lines):
        parts = line.split()
        if parts:
            if parts[0][-1] == ':':  # It's a label
                labels[parts[0][:-1]] = line_number
    
    # Helper function to evaluate arguments (register or constant)
    def evaluate_arg(arg):
        if arg.startswith('R'):
            return registers[arg]
        else:
            return int(arg)
    
    # Main execution loop
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip()
        if not line or line.endswith(':'):  # Skip empty lines or labels
            instruction_pointer += 1
            continue
        
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        # Execute instruction
        if op == 'SET':
            registers[args[0]] = evaluate_arg(args[1])
        elif op == 'ADD':
            registers[args[0]] = evaluate_arg(args[1]) + evaluate_arg(args[2])
        elif op == 'SUB':
            registers[args[0]] = evaluate_arg(args[1]) - evaluate_arg(args[2])
        elif op == 'MUL':
            registers[args[0]] = evaluate_arg(args[1]) * evaluate_arg(args[2])
        elif op == 'DIV':
            registers[args[0]] = evaluate_arg(args[1]) // evaluate_arg(args[2])
        elif op == 'MOD':
            registers[args[0]] = evaluate_arg(args[1]) % evaluate_arg(args[2])
        elif op == 'EQ':
            flag = registers[args[0]] == evaluate_arg(args[1])
        elif op == 'NEQ':
            flag = registers[args[0]] != evaluate_arg(args[1])
        elif op == 'LT':
            flag = registers[args[0]] < evaluate_arg(args[1])
        elif op == 'LTE':
            flag = registers[args[0]] <= evaluate_arg(args[1])
        elif op == 'GT':
            flag = registers[args[0]] > evaluate_arg(args[1])
        elif op == 'GTE':
            flag = registers[args[0]] >= evaluate_arg(args[1])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[evaluate_arg(args[1])]
        elif op == 'STORE':
            memory[evaluate_arg(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example usage
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def evaluate(program):
    # Split the program into lines and parse each line
    lines = program.split('\n')
    
    # Initialize the virtual machine state
    registers = {'R'+str(i):0 for i in range(1, 9)}  # Registers R1 to R8 initialized to 0
    flag = False
    memory = [0] * 100  # 100 memory addresses initialized to 0
    instruction_pointer = 0
    labels = {}  # For storing labels and their line numbers
    
    # First pass to collect labels
    for line_number, line in enumerate(lines):
        parts = line.split()
        if parts:
            if parts[0][-1] == ':':  # It's a label
                labels[parts[0][:-1]] = line_number
    
    # Helper function to evaluate arguments (register or constant)
    def evaluate_arg(arg):
        if arg.startswith('R'):
            return registers[arg]
        else:
            return int(arg)
    
    # Main execution loop
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip()
        if not line or line.endswith(':'):  # Skip empty lines or labels
            instruction_pointer += 1
            continue
        
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        # Execute instruction
        if op == 'SET':
            registers[args[0]] = evaluate_arg(args[1])
        elif op == 'ADD':
            registers[args[0]] = evaluate_arg(args[1]) + evaluate_arg(args[2])
        elif op == 'SUB':
            registers[args[0]] = evaluate_arg(args[1]) - evaluate_arg(args[2])
        elif op == 'MUL':
            registers[args[0]] = evaluate_arg(args[1]) * evaluate_arg(args[2])
        elif op == 'DIV':
            registers[args[0]] = evaluate_arg(args[1]) // evaluate_arg(args[2])
        elif op == 'MOD':
            registers[args[0]] = evaluate_arg(args[1]) % evaluate_arg(args[2])
        elif op == 'EQ':
            flag = registers[args[0]] == evaluate_arg(args[1])
        elif op == 'NEQ':
            flag = registers[args[0]] != evaluate_arg(args[1])
        elif op == 'LT':
            flag = registers[args[0]] < evaluate_arg(args[1])
        elif op == 'LTE':
            flag = registers[args[0]] <= evaluate_arg(args[1])
        elif op == 'GT':
            flag = registers[args[0]] > evaluate_arg(args[1])
        elif op == 'GTE':
            flag = registers[args[0]] >= evaluate_arg(args[1])
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[evaluate_arg(args[1])]
        elif op == 'STORE':
            memory[evaluate_arg(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        
        instruction_pointer += 1
    
    return memory

# Example usage
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

To create a Python interpreter for the described assembly language, we need to parse and execute each instruction defined in the program string. Here's a basic implementation that supports the described instructions and the example program for computing the first 20 square numbers:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def evaluate(program):
    # Initialize components of the virtual machine
    registers = {f"R{i}": 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instruction_pointer = 0
    program_instructions = program.splitlines()
    labels = {}

    # First pass to find labels
    for i, instruction in enumerate(program_instructions):
        if instruction.endswith(":"):
            labels[instruction[:-1]] = i

    # Helper functions
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)

    while instruction_pointer < len(program_instructions):
        instruction = program_instructions[instruction_pointer].split()
        op = instruction[0]
        args = instruction[1:]

        if op == "SET":
            registers[args[0]] = get_value(args[1])
        elif op == "ADD":
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == "SUB":
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == "MUL":
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == "DIV":
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == "MOD":
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op == "EQ":
            flag = get_value(args[0]) == get_value(args[1])
        elif op == "NEQ":
            flag = get_value(args[0]) != get_value(args[1])
        elif op == "LT":
            flag = get_value(args[0]) < get_value(args[1])
        elif op == "LTE":
            flag = get_value(args[0]) <= get_value(args[1])
        elif op == "GT":
            flag = get_value(args[0]) > get_value(args[1])
        elif op == "GTE":
            flag = get_value(args[0]) >= get_value(args[1])
        elif op == "INC":
            registers[args[0]] += 1
        elif op == "DEC":
            registers[args[0]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[args[0]]
            continue
        elif op == "JT":
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "LOAD":
            registers[args[0]] = memory[get_value(args[1])]
        elif op == "STORE":
            memory[get_value(args[1])] = registers[args[0]]
        elif op == "HCF":
            break

        instruction_pointer += 1

    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter
print(evaluate(program))
This interpreter initializes the virtual machine's state, including registers, the flag, memory, and an instruction pointer. It then executes each instruction in the given program, adjusting the state accordingly until it encounters the "HCF" instruction or runs out of instructions to execute. The result of executing the example program should be the first 20 square numbers stored in the memory array.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def evaluate(program):
    # Initialize components of the virtual machine
    registers = {f"R{i}": 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instruction_pointer = 0
    program_instructions = program.splitlines()
    labels = {}

    # First pass to find labels
    for i, instruction in enumerate(program_instructions):
        if instruction.endswith(":"):
            labels[instruction[:-1]] = i

    # Helper functions
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)

    while instruction_pointer < len(program_instructions):
        instruction = program_instructions[instruction_pointer].split()
        op = instruction[0]
        args = instruction[1:]

        if op == "SET":
            registers[args[0]] = get_value(args[1])
        elif op == "ADD":
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == "SUB":
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == "MUL":
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == "DIV":
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == "MOD":
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op == "EQ":
            flag = get_value(args[0]) == get_value(args[1])
        elif op == "NEQ":
            flag = get_value(args[0]) != get_value(args[1])
        elif op == "LT":
            flag = get_value(args[0]) < get_value(args[1])
        elif op == "LTE":
            flag = get_value(args[0]) <= get_value(args[1])
        elif op == "GT":
            flag = get_value(args[0]) > get_value(args[1])
        elif op == "GTE":
            flag = get_value(args[0]) >= get_value(args[1])
        elif op == "INC":
            registers[args[0]] += 1
        elif op == "DEC":
            registers[args[0]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[args[0]]
            continue
        elif op == "JT":
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "LOAD":
            registers[args[0]] = memory[get_value(args[1])]
        elif op == "STORE":
            memory[get_value(args[1])] = registers[args[0]]
        elif op == "HCF":
            break

        instruction_pointer += 1

    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter
print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def evaluate(program):
    # Initialize components of the virtual machine
    registers = {f"R{i}": 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instruction_pointer = 0
    program_instructions = program.splitlines()
    labels = {}

    # First pass to find labels
    for i, instruction in enumerate(program_instructions):
        if instruction.endswith(":"):
            labels[instruction[:-1]] = i

    # Helper functions
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        else:
            return int(arg)

    while instruction_pointer < len(program_instructions):
        instruction = program_instructions[instruction_pointer].split()
        op = instruction[0]
        args = instruction[1:]

        if op == "SET":
            registers[args[0]] = get_value(args[1])
        elif op == "ADD":
            registers[args[0]] = get_value(args[1]) + get_value(args[2])
        elif op == "SUB":
            registers[args[0]] = get_value(args[1]) - get_value(args[2])
        elif op == "MUL":
            registers[args[0]] = get_value(args[1]) * get_value(args[2])
        elif op == "DIV":
            registers[args[0]] = get_value(args[1]) // get_value(args[2])
        elif op == "MOD":
            registers[args[0]] = get_value(args[1]) % get_value(args[2])
        elif op == "EQ":
            flag = get_value(args[0]) == get_value(args[1])
        elif op == "NEQ":
            flag = get_value(args[0]) != get_value(args[1])
        elif op == "LT":
            flag = get_value(args[0]) < get_value(args[1])
        elif op == "LTE":
            flag = get_value(args[0]) <= get_value(args[1])
        elif op == "GT":
            flag = get_value(args[0]) > get_value(args[1])
        elif op == "GTE":
            flag = get_value(args[0]) >= get_value(args[1])
        elif op == "INC":
            registers[args[0]] += 1
        elif op == "DEC":
            registers[args[0]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[args[0]]
            continue
        elif op == "JT":
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "LOAD":
            registers[args[0]] = memory[get_value(args[1])]
        elif op == "STORE":
            memory[get_value(args[1])] = registers[args[0]]
        elif op == "HCF":
            break

        instruction_pointer += 1

    return memory

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

# Test the interpreter
print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 97, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 25, in evaluate op = instruction[0] IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Certainly! Below is a simple Python interpreter for the assembly language described in your question. This interpreter takes a program as a string, executes it, and returns the resulting memory state.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def evaluate(program):
    # Initialize the state
    registers = {'R' + str(i): 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.split('\n')
    labels = {}
    instruction_pointer = 0
    
    # Pre-process to find labels
    for i, instruction in enumerate(instructions):
        if ':' in instruction:
            label, rest = instruction.split(':')
            labels[label] = i
            instructions[i] = rest.strip()
    
    # Helper functions for operations
    def get_value(x):
        if x in registers:
            return registers[x]
        try:
            return int(x)
        except ValueError:
            raise ValueError(f"Invalid argument: {x}")
    
    while instruction_pointer < len(instructions):
        parts = instructions[instruction_pointer].split()
        if not parts:  # Skip empty lines
            instruction_pointer += 1
            continue
        op = parts[0]
        args = parts[1:]
        
        # Execute the operation
        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'):
            x, y, z = args
            if op == 'ADD':
                registers[x] = get_value(y) + get_value(z)
            elif op == 'SUB':
                registers[x] = get_value(y) - get_value(z)
            elif op == 'MUL':
                registers[x] = get_value(y) * get_value(z)
            elif op == 'DIV':
                registers[x] = get_value(y) // get_value(z)
            elif op == 'MOD':
                registers[x] = get_value(y) % get_value(z)
        elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'):
            x, y = args
            if op == 'EQ':
                flag = get_value(x) == get_value(y)
            elif op == 'NEQ':
                flag = get_value(x) != get_value(y)
            elif op == 'LT':
                flag = get_value(x) < get_value(y)
            elif op == 'LTE':
                flag = get_value(x) <= get_value(y)
            elif op == 'GT':
                flag = get_value(x) > get_value(y)
            elif op == 'GTE':
                flag = get_value(x) >= get_value(y)
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        else:
            raise ValueError(f"Unknown operation: {op}")
        instruction_pointer += 1
    
    return memory

# Example program
program = """
SET R1 0      
SET R2 1      

loop:
MUL R3 R2 R2  
STORE R3 R1   
INC R1        
INC R2        
SET R3 20
EQ R1 R3      
JF loop       

end:
HCF           
"""

# Execute the program
memory_state = evaluate(program)
# Filter out the zeros for display purposes
print([x for x in memory_state if x != 0])
This interpreter supports the described operations and will execute the provided program, printing the first 20 square numbers as stored in memory. You can replace the `program` string with any other program written in this assembly language to see different results.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def evaluate(program):
    # Initialize the state
    registers = {'R' + str(i): 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.split('\n')
    labels = {}
    instruction_pointer = 0
    
    # Pre-process to find labels
    for i, instruction in enumerate(instructions):
        if ':' in instruction:
            label, rest = instruction.split(':')
            labels[label] = i
            instructions[i] = rest.strip()
    
    # Helper functions for operations
    def get_value(x):
        if x in registers:
            return registers[x]
        try:
            return int(x)
        except ValueError:
            raise ValueError(f"Invalid argument: {x}")
    
    while instruction_pointer < len(instructions):
        parts = instructions[instruction_pointer].split()
        if not parts:  # Skip empty lines
            instruction_pointer += 1
            continue
        op = parts[0]
        args = parts[1:]
        
        # Execute the operation
        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'):
            x, y, z = args
            if op == 'ADD':
                registers[x] = get_value(y) + get_value(z)
            elif op == 'SUB':
                registers[x] = get_value(y) - get_value(z)
            elif op == 'MUL':
                registers[x] = get_value(y) * get_value(z)
            elif op == 'DIV':
                registers[x] = get_value(y) // get_value(z)
            elif op == 'MOD':
                registers[x] = get_value(y) % get_value(z)
        elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'):
            x, y = args
            if op == 'EQ':
                flag = get_value(x) == get_value(y)
            elif op == 'NEQ':
                flag = get_value(x) != get_value(y)
            elif op == 'LT':
                flag = get_value(x) < get_value(y)
            elif op == 'LTE':
                flag = get_value(x) <= get_value(y)
            elif op == 'GT':
                flag = get_value(x) > get_value(y)
            elif op == 'GTE':
                flag = get_value(x) >= get_value(y)
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        else:
            raise ValueError(f"Unknown operation: {op}")
        instruction_pointer += 1
    
    return memory

# Example program
program = """
SET R1 0      
SET R2 1      

loop:
MUL R3 R2 R2  
STORE R3 R1   
INC R1        
INC R2        
SET R3 20
EQ R1 R3      
JF loop       

end:
HCF           
"""

# Execute the program
memory_state = evaluate(program)
# Filter out the zeros for display purposes
print([x for x in memory_state if x != 0])

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def evaluate(program):
    # Initialize the state
    registers = {'R' + str(i): 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    instructions = program.split('\n')
    labels = {}
    instruction_pointer = 0
    
    # Pre-process to find labels
    for i, instruction in enumerate(instructions):
        if ':' in instruction:
            label, rest = instruction.split(':')
            labels[label] = i
            instructions[i] = rest.strip()
    
    # Helper functions for operations
    def get_value(x):
        if x in registers:
            return registers[x]
        try:
            return int(x)
        except ValueError:
            raise ValueError(f"Invalid argument: {x}")
    
    while instruction_pointer < len(instructions):
        parts = instructions[instruction_pointer].split()
        if not parts:  # Skip empty lines
            instruction_pointer += 1
            continue
        op = parts[0]
        args = parts[1:]
        
        # Execute the operation
        if op == 'SET':
            registers[args[0]] = get_value(args[1])
        elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'):
            x, y, z = args
            if op == 'ADD':
                registers[x] = get_value(y) + get_value(z)
            elif op == 'SUB':
                registers[x] = get_value(y) - get_value(z)
            elif op == 'MUL':
                registers[x] = get_value(y) * get_value(z)
            elif op == 'DIV':
                registers[x] = get_value(y) // get_value(z)
            elif op == 'MOD':
                registers[x] = get_value(y) % get_value(z)
        elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'):
            x, y = args
            if op == 'EQ':
                flag = get_value(x) == get_value(y)
            elif op == 'NEQ':
                flag = get_value(x) != get_value(y)
            elif op == 'LT':
                flag = get_value(x) < get_value(y)
            elif op == 'LTE':
                flag = get_value(x) <= get_value(y)
            elif op == 'GT':
                flag = get_value(x) > get_value(y)
            elif op == 'GTE':
                flag = get_value(x) >= get_value(y)
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            instruction_pointer = labels[args[0]]
            continue
        elif op == 'JT':
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'JF':
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break
        else:
            raise ValueError(f"Unknown operation: {op}")
        instruction_pointer += 1
    
    return memory

# Example program
program = """
SET R1 0      
SET R2 1      

loop:
MUL R3 R2 R2  
STORE R3 R1   
INC R1        
INC R2        
SET R3 20
EQ R1 R3      
JF loop       

end:
HCF           
"""

# Execute the program
memory_state = evaluate(program)
# Filter out the zeros for display purposes
print([x for x in memory_state if x != 0])





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400] Traceback (most recent call last): File "/usr/src/app/main.py", line 133, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 86, in evaluate raise ValueError(f"Unknown operation: {op}") ValueError: Unknown operation: //

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

To create a Python interpreter for the described assembly language, we will parse and execute each instruction as defined. The interpreter, named `evaluate`, will take a program as a string, execute it, and return the final state of the memory. Here is an implementation:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
def evaluate(program):
    # Split the program into lines and initialize memory, registers, and flags
    lines = program.split('\n')
    memory = [0] * 100
    registers = {f"R{i}": 0 for i in range(1, 9)}
    flag = False
    instruction_pointer = 0
    labels = {}
    
    # First pass to collect labels
    for i, line in enumerate(lines):
        parts = line.strip().split()
        if len(parts) == 0:
            continue
        if parts[0].endswith(':'):
            labels[parts[0][:-1]] = i
            
    # Execute instructions
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip()
        if not line or line.endswith(":"):
            instruction_pointer += 1
            continue
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        if op == "SET":
            registers[args[0]] = int(args[1])
        elif op in ["ADD", "SUB", "MUL", "DIV", "MOD"]:
            a, b, c = args
            if op == "ADD":
                registers[a] = registers[b] + registers[c]
            elif op == "SUB":
                registers[a] = registers[b] - registers[c]
            elif op == "MUL":
                registers[a] = registers[b] * registers[c]
            elif op == "DIV":
                registers[a] = registers[b] // registers[c]
            elif op == "MOD":
                registers[a] = registers[b] % registers[c]
        elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]:
            a, b = args
            if op == "EQ":
                flag = registers[a] == registers[b]
            elif op == "NEQ":
                flag = registers[a] != registers[b]
            elif op == "LT":
                flag = registers[a] < registers[b]
            elif op == "LTE":
                flag = registers[a] <= registers[b]
            elif op == "GT":
                flag = registers[a] > registers[b]
            elif op == "GTE":
                flag = registers[a] >= registers[b]
        elif op == "INC":
            registers[args[0]] += 1
        elif op == "DEC":
            registers[args[0]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[args[0]]
            continue
        elif op == "JT":
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "LOAD":
            registers[args[0]] = memory[int(args[1])]
        elif op == "STORE":
            memory[int(args[1])] = registers[args[0]]
        elif op == "HCF":
            break
        
        instruction_pointer += 1
    
    return memory[:20]  # Assuming we are interested in the first 20 memory locations

# Example usage:
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))
This interpreter function parses the input program string, executes each instruction according to the rules defined, and returns the first 20 values stored in memory, which correspond to the first 20 square numbers as per the example program.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
def evaluate(program):
    # Split the program into lines and initialize memory, registers, and flags
    lines = program.split('\n')
    memory = [0] * 100
    registers = {f"R{i}": 0 for i in range(1, 9)}
    flag = False
    instruction_pointer = 0
    labels = {}
    
    # First pass to collect labels
    for i, line in enumerate(lines):
        parts = line.strip().split()
        if len(parts) == 0:
            continue
        if parts[0].endswith(':'):
            labels[parts[0][:-1]] = i
            
    # Execute instructions
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip()
        if not line or line.endswith(":"):
            instruction_pointer += 1
            continue
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        if op == "SET":
            registers[args[0]] = int(args[1])
        elif op in ["ADD", "SUB", "MUL", "DIV", "MOD"]:
            a, b, c = args
            if op == "ADD":
                registers[a] = registers[b] + registers[c]
            elif op == "SUB":
                registers[a] = registers[b] - registers[c]
            elif op == "MUL":
                registers[a] = registers[b] * registers[c]
            elif op == "DIV":
                registers[a] = registers[b] // registers[c]
            elif op == "MOD":
                registers[a] = registers[b] % registers[c]
        elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]:
            a, b = args
            if op == "EQ":
                flag = registers[a] == registers[b]
            elif op == "NEQ":
                flag = registers[a] != registers[b]
            elif op == "LT":
                flag = registers[a] < registers[b]
            elif op == "LTE":
                flag = registers[a] <= registers[b]
            elif op == "GT":
                flag = registers[a] > registers[b]
            elif op == "GTE":
                flag = registers[a] >= registers[b]
        elif op == "INC":
            registers[args[0]] += 1
        elif op == "DEC":
            registers[args[0]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[args[0]]
            continue
        elif op == "JT":
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "LOAD":
            registers[args[0]] = memory[int(args[1])]
        elif op == "STORE":
            memory[int(args[1])] = registers[args[0]]
        elif op == "HCF":
            break
        
        instruction_pointer += 1
    
    return memory[:20]  # Assuming we are interested in the first 20 memory locations

# Example usage:
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def evaluate(program):
    # Split the program into lines and initialize memory, registers, and flags
    lines = program.split('\n')
    memory = [0] * 100
    registers = {f"R{i}": 0 for i in range(1, 9)}
    flag = False
    instruction_pointer = 0
    labels = {}
    
    # First pass to collect labels
    for i, line in enumerate(lines):
        parts = line.strip().split()
        if len(parts) == 0:
            continue
        if parts[0].endswith(':'):
            labels[parts[0][:-1]] = i
            
    # Execute instructions
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip()
        if not line or line.endswith(":"):
            instruction_pointer += 1
            continue
        parts = line.split()
        op = parts[0]
        args = parts[1:]
        
        if op == "SET":
            registers[args[0]] = int(args[1])
        elif op in ["ADD", "SUB", "MUL", "DIV", "MOD"]:
            a, b, c = args
            if op == "ADD":
                registers[a] = registers[b] + registers[c]
            elif op == "SUB":
                registers[a] = registers[b] - registers[c]
            elif op == "MUL":
                registers[a] = registers[b] * registers[c]
            elif op == "DIV":
                registers[a] = registers[b] // registers[c]
            elif op == "MOD":
                registers[a] = registers[b] % registers[c]
        elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]:
            a, b = args
            if op == "EQ":
                flag = registers[a] == registers[b]
            elif op == "NEQ":
                flag = registers[a] != registers[b]
            elif op == "LT":
                flag = registers[a] < registers[b]
            elif op == "LTE":
                flag = registers[a] <= registers[b]
            elif op == "GT":
                flag = registers[a] > registers[b]
            elif op == "GTE":
                flag = registers[a] >= registers[b]
        elif op == "INC":
            registers[args[0]] += 1
        elif op == "DEC":
            registers[args[0]] -= 1
        elif op == "JMP":
            instruction_pointer = labels[args[0]]
            continue
        elif op == "JT":
            if flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "JF":
            if not flag:
                instruction_pointer = labels[args[0]]
                continue
        elif op == "LOAD":
            registers[args[0]] = memory[int(args[1])]
        elif op == "STORE":
            memory[int(args[1])] = registers[args[0]]
        elif op == "HCF":
            break
        
        instruction_pointer += 1
    
    return memory[:20]  # Assuming we are interested in the first 20 memory locations

# Example usage:
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 101, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 32, in evaluate a, b, c = args ValueError: too many values to unpack (expected 3)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False