Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
To create a Python interpreter for the described assembly language, we can follow these steps: 1. **Parse** the given program string into a more structured form (like a list of instructions). 2. **Execute** the instructions based on their opcodes and arguments, modifying registers, memory, and the instruction pointer as necessary. 3. **Manage** labels and jumps by mapping label names to instruction indices. 4. **Return** the state of the memory after the program execution ends. Here's a basic implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | def evaluate(program): # Split the program into lines and parse each line into (instruction, args) lines = program.strip().split('\n') instructions = [] labels = {} for line in lines: parts = line.split() if parts[0][-1] == ':': # It's a label labels[parts[0][:-1]] = len(instructions) else: instructions.append((parts[0], parts[1:])) # Initialize state registers = {f'R{i}': 0 for i in range(1, 9)} memory = [0] * 100 flag = False ip = 0 # Instruction Pointer # Helper functions for arithmetic operations def arithmetic_op(op, rx, ry, rz=None): ry_val = registers[ry] if ry in registers else int(ry) rz_val = registers[rz] if rz and rz in registers else int(rz) if op == 'ADD': registers[rx] = ry_val + rz_val elif op == 'SUB': registers[rx] = ry_val - rz_val elif op == 'MUL': registers[rx] = ry_val * rz_val elif op == 'DIV': registers[rx] = ry_val // rz_val elif op == 'MOD': registers[rx] = ry_val % rz_val # Execute instructions while ip < len(instructions): op, args = instructions[ip] ip += 1 # Default increment IP, JMP will modify it as needed if op == 'SET': registers[args[0]] = int(args[1]) elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'): arithmetic_op(op, *args) elif op == 'EQ': flag = registers[args[0]] == registers[args[1]] elif op == 'NEQ': flag = registers[args[0]] != registers[args[1]] elif op == 'LT': flag = registers[args[0]] < registers[args[1]] elif op == 'LTE': flag = registers[args[0]] <= registers[args[1]] elif op == 'GT': flag = registers[args[0]] > registers[args[1]] elif op == 'GTE': flag = registers[args[0]] >= registers[args[1]] elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': ip = labels[args[0]] elif op in ('JT', 'JF'): if (flag and op == 'JT') or (not flag and op == 'JF'): ip = labels[args[0]] elif op == 'LOAD': registers[args[0]] = memory[int(args[1])] elif op == 'STORE': memory[int(args[1])] = registers[args[0]] elif op == 'HCF': break return memory # Example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | def evaluate(program): # Split the program into lines and parse each line into (instruction, args) lines = program.strip().split('\n') instructions = [] labels = {} for line in lines: parts = line.split() if parts[0][-1] == ':': # It's a label labels[parts[0][:-1]] = len(instructions) else: instructions.append((parts[0], parts[1:])) # Initialize state registers = {f'R{i}': 0 for i in range(1, 9)} memory = [0] * 100 flag = False ip = 0 # Instruction Pointer # Helper functions for arithmetic operations def arithmetic_op(op, rx, ry, rz=None): ry_val = registers[ry] if ry in registers else int(ry) rz_val = registers[rz] if rz and rz in registers else int(rz) if op == 'ADD': registers[rx] = ry_val + rz_val elif op == 'SUB': registers[rx] = ry_val - rz_val elif op == 'MUL': registers[rx] = ry_val * rz_val elif op == 'DIV': registers[rx] = ry_val // rz_val elif op == 'MOD': registers[rx] = ry_val % rz_val # Execute instructions while ip < len(instructions): op, args = instructions[ip] ip += 1 # Default increment IP, JMP will modify it as needed if op == 'SET': registers[args[0]] = int(args[1]) elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'): arithmetic_op(op, *args) elif op == 'EQ': flag = registers[args[0]] == registers[args[1]] elif op == 'NEQ': flag = registers[args[0]] != registers[args[1]] elif op == 'LT': flag = registers[args[0]] < registers[args[1]] elif op == 'LTE': flag = registers[args[0]] <= registers[args[1]] elif op == 'GT': flag = registers[args[0]] > registers[args[1]] elif op == 'GTE': flag = registers[args[0]] >= registers[args[1]] elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': ip = labels[args[0]] elif op in ('JT', 'JF'): if (flag and op == 'JT') or (not flag and op == 'JF'): ip = labels[args[0]] elif op == 'LOAD': registers[args[0]] = memory[int(args[1])] elif op == 'STORE': memory[int(args[1])] = registers[args[0]] elif op == 'HCF': break return memory # Example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | def evaluate(program): # Split the program into lines and parse each line into (instruction, args) lines = program.strip().split('\n') instructions = [] labels = {} for line in lines: parts = line.split() if parts[0][-1] == ':': # It's a label labels[parts[0][:-1]] = len(instructions) else: instructions.append((parts[0], parts[1:])) # Initialize state registers = {f'R{i}': 0 for i in range(1, 9)} memory = [0] * 100 flag = False ip = 0 # Instruction Pointer # Helper functions for arithmetic operations def arithmetic_op(op, rx, ry, rz=None): ry_val = registers[ry] if ry in registers else int(ry) rz_val = registers[rz] if rz and rz in registers else int(rz) if op == 'ADD': registers[rx] = ry_val + rz_val elif op == 'SUB': registers[rx] = ry_val - rz_val elif op == 'MUL': registers[rx] = ry_val * rz_val elif op == 'DIV': registers[rx] = ry_val // rz_val elif op == 'MOD': registers[rx] = ry_val % rz_val # Execute instructions while ip < len(instructions): op, args = instructions[ip] ip += 1 # Default increment IP, JMP will modify it as needed if op == 'SET': registers[args[0]] = int(args[1]) elif op in ('ADD', 'SUB', 'MUL', 'DIV', 'MOD'): arithmetic_op(op, *args) elif op == 'EQ': flag = registers[args[0]] == registers[args[1]] elif op == 'NEQ': flag = registers[args[0]] != registers[args[1]] elif op == 'LT': flag = registers[args[0]] < registers[args[1]] elif op == 'LTE': flag = registers[args[0]] <= registers[args[1]] elif op == 'GT': flag = registers[args[0]] > registers[args[1]] elif op == 'GTE': flag = registers[args[0]] >= registers[args[1]] elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': ip = labels[args[0]] elif op in ('JT', 'JF'): if (flag and op == 'JT') or (not flag and op == 'JF'): ip = labels[args[0]] elif op == 'LOAD': registers[args[0]] = memory[int(args[1])] elif op == 'STORE': memory[int(args[1])] = registers[args[0]] elif op == 'HCF': break return memory # Example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 92, in <module>
print(evaluate(program))
^^^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 9, in evaluate
if parts[0][-1] == ':': # It's a label
~~~~~^^^
IndexError: list index out of range
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
You can interpret the assembly language with a Python function. Here's how you could go about implementing the `evaluate` function based on the description of the assembly language provided:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | def evaluate(program): # Split the program into lines lines = program.split('\n') # Initialize registers, flag, memory, and instruction pointer registers = {f'R{i}': 0 for i in range(1, 9)} flag = False memory = [0] * 100 ip = 0 # Instruction Pointer # Labels dictionary for jumping labels = {} # First pass to find labels for i, line in enumerate(lines): if ':' in line: label, _ = line.split(':') labels[label] = i # Map label to line number # Helper function to get value from argument (register or constant) def get_value(arg): if arg.startswith('R'): return registers[arg] return int(arg) # Helper function to set flag based on comparison def compare(op, x, y): global flag if op == 'EQ': flag = (x == y) elif op == 'NEQ': flag = (x != y) elif op == 'LT': flag = (x < y) elif op == 'LTE': flag = (x <= y) elif op == 'GT': flag = (x > y) elif op == 'GTE': flag = (x >= y) # Execute the program while ip < len(lines): line = lines[ip].strip() if line == '' or ':' in line: ip += 1 continue parts = line.split() op = parts[0] args = parts[1:] if op == 'SET': registers[args[0]] = get_value(args[1]) elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == 'SUB': registers[args[0]] = get_value(args[1]) - get_value(args[2]) elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == 'DIV': registers[args[0]] = get_value(args[1]) // get_value(args[2]) elif op == 'MOD': registers[args[0]] = get_value(args[1]) % get_value(args[2]) elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'): compare(op, get_value(args[0]), get_value(args[1])) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': ip = labels[args[0]] continue elif op == 'JT': if flag: ip = labels[args[0]] continue elif op == 'JF': if not flag: ip = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'STORE': memory[get_value(args[1])] = registers[args[0]] elif op == 'HCF': break ip += 1 return memory # Example usage program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop end: HCF """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | def evaluate(program): # Split the program into lines lines = program.split('\n') # Initialize registers, flag, memory, and instruction pointer registers = {f'R{i}': 0 for i in range(1, 9)} flag = False memory = [0] * 100 ip = 0 # Instruction Pointer # Labels dictionary for jumping labels = {} # First pass to find labels for i, line in enumerate(lines): if ':' in line: label, _ = line.split(':') labels[label] = i # Map label to line number # Helper function to get value from argument (register or constant) def get_value(arg): if arg.startswith('R'): return registers[arg] return int(arg) # Helper function to set flag based on comparison def compare(op, x, y): global flag if op == 'EQ': flag = (x == y) elif op == 'NEQ': flag = (x != y) elif op == 'LT': flag = (x < y) elif op == 'LTE': flag = (x <= y) elif op == 'GT': flag = (x > y) elif op == 'GTE': flag = (x >= y) # Execute the program while ip < len(lines): line = lines[ip].strip() if line == '' or ':' in line: ip += 1 continue parts = line.split() op = parts[0] args = parts[1:] if op == 'SET': registers[args[0]] = get_value(args[1]) elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == 'SUB': registers[args[0]] = get_value(args[1]) - get_value(args[2]) elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == 'DIV': registers[args[0]] = get_value(args[1]) // get_value(args[2]) elif op == 'MOD': registers[args[0]] = get_value(args[1]) % get_value(args[2]) elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'): compare(op, get_value(args[0]), get_value(args[1])) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': ip = labels[args[0]] continue elif op == 'JT': if flag: ip = labels[args[0]] continue elif op == 'JF': if not flag: ip = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'STORE': memory[get_value(args[1])] = registers[args[0]] elif op == 'HCF': break ip += 1 return memory # Example usage program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop end: HCF """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | def evaluate(program): # Split the program into lines lines = program.split('\n') # Initialize registers, flag, memory, and instruction pointer registers = {f'R{i}': 0 for i in range(1, 9)} flag = False memory = [0] * 100 ip = 0 # Instruction Pointer # Labels dictionary for jumping labels = {} # First pass to find labels for i, line in enumerate(lines): if ':' in line: label, _ = line.split(':') labels[label] = i # Map label to line number # Helper function to get value from argument (register or constant) def get_value(arg): if arg.startswith('R'): return registers[arg] return int(arg) # Helper function to set flag based on comparison def compare(op, x, y): global flag if op == 'EQ': flag = (x == y) elif op == 'NEQ': flag = (x != y) elif op == 'LT': flag = (x < y) elif op == 'LTE': flag = (x <= y) elif op == 'GT': flag = (x > y) elif op == 'GTE': flag = (x >= y) # Execute the program while ip < len(lines): line = lines[ip].strip() if line == '' or ':' in line: ip += 1 continue parts = line.split() op = parts[0] args = parts[1:] if op == 'SET': registers[args[0]] = get_value(args[1]) elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == 'SUB': registers[args[0]] = get_value(args[1]) - get_value(args[2]) elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == 'DIV': registers[args[0]] = get_value(args[1]) // get_value(args[2]) elif op == 'MOD': registers[args[0]] = get_value(args[1]) % get_value(args[2]) elif op in ('EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'): compare(op, get_value(args[0]), get_value(args[1])) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': ip = labels[args[0]] continue elif op == 'JT': if flag: ip = labels[args[0]] continue elif op == 'JF': if not flag: ip = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'STORE': memory[get_value(args[1])] = registers[args[0]] elif op == 'HCF': break ip += 1 return memory # Example usage program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop end: HCF """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 110, in <module>
print(evaluate(program))
^^^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 85, in evaluate
memory[get_value(args[1])] = registers[args[0]]
~~~~~~^^^^^^^^^^^^^^^^^^^^
IndexError: list assignment index out of range
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
To construct the interpreter, we'll parse the provided assembly language program as a string, execute the instructions as described, and then return the final state of the memory. Here's a basic implementation of such an interpreter in Python:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | def evaluate(program): # Split the program into lines lines = program.split('\n') # Initialize the program environment registers = {f'R{i}': 0 for i in range(1, 9)} flag = False memory = [0] * 100 instruction_pointer = 0 labels = {} # First pass to find labels for i, line in enumerate(lines): parts = line.strip().split() if parts and parts[0][-1] == ':': labels[parts[0][:-1]] = i # Helper function to get value from argument (either constant or register) def get_value(arg): if arg in registers: return registers[arg] else: return int(arg) # Execution loop while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() if not line or line[-1] == ':': # Skip empty lines and labels instruction_pointer += 1 continue parts = line.split() op = parts[0] args = parts[1:] # Perform operation based on opcode if op == 'SET': registers[args[0]] = get_value(args[1]) elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == 'SUB': registers[args[0]] = get_value(args[1]) - get_value(args[2]) elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == 'DIV': registers[args[0]] = get_value(args[1]) // get_value(args[2]) elif op == 'MOD': registers[args[0]] = get_value(args[1]) % get_value(args[2]) elif op == 'EQ': flag = registers[args[0]] == get_value(args[1]) elif op == 'NEQ': flag = registers[args[0]] != get_value(args[1]) elif op == 'LT': flag = registers[args[0]] < get_value(args[1]) elif op == 'LTE': flag = registers[args[0]] <= get_value(args[1]) elif op == 'GT': flag = registers[args[0]] > get_value(args[1]) elif op == 'GTE': flag = registers[args[0]] >= get_value(args[1]) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': instruction_pointer = labels[args[0]] continue elif op == 'JT': if flag: instruction_pointer = labels[args[0]] continue elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'STORE': memory[get_value(args[1])] = registers[args[0]] elif op == 'HCF': break instruction_pointer += 1 return memory # Example program to compute the first 20 square numbers program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter with the provided example program print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | def evaluate(program): # Split the program into lines lines = program.split('\n') # Initialize the program environment registers = {f'R{i}': 0 for i in range(1, 9)} flag = False memory = [0] * 100 instruction_pointer = 0 labels = {} # First pass to find labels for i, line in enumerate(lines): parts = line.strip().split() if parts and parts[0][-1] == ':': labels[parts[0][:-1]] = i # Helper function to get value from argument (either constant or register) def get_value(arg): if arg in registers: return registers[arg] else: return int(arg) # Execution loop while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() if not line or line[-1] == ':': # Skip empty lines and labels instruction_pointer += 1 continue parts = line.split() op = parts[0] args = parts[1:] # Perform operation based on opcode if op == 'SET': registers[args[0]] = get_value(args[1]) elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == 'SUB': registers[args[0]] = get_value(args[1]) - get_value(args[2]) elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == 'DIV': registers[args[0]] = get_value(args[1]) // get_value(args[2]) elif op == 'MOD': registers[args[0]] = get_value(args[1]) % get_value(args[2]) elif op == 'EQ': flag = registers[args[0]] == get_value(args[1]) elif op == 'NEQ': flag = registers[args[0]] != get_value(args[1]) elif op == 'LT': flag = registers[args[0]] < get_value(args[1]) elif op == 'LTE': flag = registers[args[0]] <= get_value(args[1]) elif op == 'GT': flag = registers[args[0]] > get_value(args[1]) elif op == 'GTE': flag = registers[args[0]] >= get_value(args[1]) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': instruction_pointer = labels[args[0]] continue elif op == 'JT': if flag: instruction_pointer = labels[args[0]] continue elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'STORE': memory[get_value(args[1])] = registers[args[0]] elif op == 'HCF': break instruction_pointer += 1 return memory # Example program to compute the first 20 square numbers program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter with the provided example program print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | def evaluate(program): # Split the program into lines lines = program.split('\n') # Initialize the program environment registers = {f'R{i}': 0 for i in range(1, 9)} flag = False memory = [0] * 100 instruction_pointer = 0 labels = {} # First pass to find labels for i, line in enumerate(lines): parts = line.strip().split() if parts and parts[0][-1] == ':': labels[parts[0][:-1]] = i # Helper function to get value from argument (either constant or register) def get_value(arg): if arg in registers: return registers[arg] else: return int(arg) # Execution loop while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() if not line or line[-1] == ':': # Skip empty lines and labels instruction_pointer += 1 continue parts = line.split() op = parts[0] args = parts[1:] # Perform operation based on opcode if op == 'SET': registers[args[0]] = get_value(args[1]) elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == 'SUB': registers[args[0]] = get_value(args[1]) - get_value(args[2]) elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == 'DIV': registers[args[0]] = get_value(args[1]) // get_value(args[2]) elif op == 'MOD': registers[args[0]] = get_value(args[1]) % get_value(args[2]) elif op == 'EQ': flag = registers[args[0]] == get_value(args[1]) elif op == 'NEQ': flag = registers[args[0]] != get_value(args[1]) elif op == 'LT': flag = registers[args[0]] < get_value(args[1]) elif op == 'LTE': flag = registers[args[0]] <= get_value(args[1]) elif op == 'GT': flag = registers[args[0]] > get_value(args[1]) elif op == 'GTE': flag = registers[args[0]] >= get_value(args[1]) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'JMP': instruction_pointer = labels[args[0]] continue elif op == 'JT': if flag: instruction_pointer = labels[args[0]] continue elif op == 'JF': if not flag: instruction_pointer = labels[args[0]] continue elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'STORE': memory[get_value(args[1])] = registers[args[0]] elif op == 'HCF': break instruction_pointer += 1 return memory # Example program to compute the first 20 square numbers program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ # Test the interpreter with the provided example program print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
All tests passed
Testing if the previous output contains the string All tests passed
: True
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
To write an interpreter for the described assembly language, we can start by defining the necessary components: registers, memory, flag, and instruction pointer. We'll parse the instructions, execute them, and modify the state of the interpreter accordingly. Here's a simple implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | def evaluate(program): # Initialize state registers = {f'R{i}': 0 for i in range(1, 9)} flag = False memory = [0] * 100 instructions = program.split('\n') labels = {} ip = 0 # Instruction Pointer # Pre-process labels for index, instruction in enumerate(instructions): if instruction.endswith(':'): labels[instruction[:-1]] = index # Helper functions def get_value(arg): if arg.startswith('R'): return registers[arg] return int(arg) # Main execution loop while ip < len(instructions): parts = instructions[ip].split() if not parts or parts[0] in labels: # Skip empty lines/labels ip += 1 continue op = parts[0] args = parts[1:] if op == 'SET': registers[args[0]] = get_value(args[1]) elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'STORE': memory[get_value(args[1])] = get_value(args[0]) elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'EQ': flag = get_value(args[0]) == get_value(args[1]) elif op == 'JF': if not flag: ip = labels[args[0]] continue elif op == 'JT': if flag: ip = labels[args[0]] continue elif op == 'JMP': ip = labels[args[0]] continue elif op == 'HCF': break # Halt and Catch Fire, stopping execution ip += 1 # Move to the next instruction return memory[:20] # Assuming the interest is in the first 20 memory slots # Example usage with the provided program program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop end: HCF """ print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | def evaluate(program): # Initialize state registers = {f'R{i}': 0 for i in range(1, 9)} flag = False memory = [0] * 100 instructions = program.split('\n') labels = {} ip = 0 # Instruction Pointer # Pre-process labels for index, instruction in enumerate(instructions): if instruction.endswith(':'): labels[instruction[:-1]] = index # Helper functions def get_value(arg): if arg.startswith('R'): return registers[arg] return int(arg) # Main execution loop while ip < len(instructions): parts = instructions[ip].split() if not parts or parts[0] in labels: # Skip empty lines/labels ip += 1 continue op = parts[0] args = parts[1:] if op == 'SET': registers[args[0]] = get_value(args[1]) elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'STORE': memory[get_value(args[1])] = get_value(args[0]) elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'EQ': flag = get_value(args[0]) == get_value(args[1]) elif op == 'JF': if not flag: ip = labels[args[0]] continue elif op == 'JT': if flag: ip = labels[args[0]] continue elif op == 'JMP': ip = labels[args[0]] continue elif op == 'HCF': break # Halt and Catch Fire, stopping execution ip += 1 # Move to the next instruction return memory[:20] # Assuming the interest is in the first 20 memory slots # Example usage with the provided program program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop end: HCF """ print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | def evaluate(program): # Initialize state registers = {f'R{i}': 0 for i in range(1, 9)} flag = False memory = [0] * 100 instructions = program.split('\n') labels = {} ip = 0 # Instruction Pointer # Pre-process labels for index, instruction in enumerate(instructions): if instruction.endswith(':'): labels[instruction[:-1]] = index # Helper functions def get_value(arg): if arg.startswith('R'): return registers[arg] return int(arg) # Main execution loop while ip < len(instructions): parts = instructions[ip].split() if not parts or parts[0] in labels: # Skip empty lines/labels ip += 1 continue op = parts[0] args = parts[1:] if op == 'SET': registers[args[0]] = get_value(args[1]) elif op == 'ADD': registers[args[0]] = get_value(args[1]) + get_value(args[2]) elif op == 'MUL': registers[args[0]] = get_value(args[1]) * get_value(args[2]) elif op == 'INC': registers[args[0]] += 1 elif op == 'DEC': registers[args[0]] -= 1 elif op == 'STORE': memory[get_value(args[1])] = get_value(args[0]) elif op == 'LOAD': registers[args[0]] = memory[get_value(args[1])] elif op == 'EQ': flag = get_value(args[0]) == get_value(args[1]) elif op == 'JF': if not flag: ip = labels[args[0]] continue elif op == 'JT': if flag: ip = labels[args[0]] continue elif op == 'JMP': ip = labels[args[0]] continue elif op == 'HCF': break # Halt and Catch Fire, stopping execution ip += 1 # Move to the next instruction return memory[:20] # Assuming the interest is in the first 20 memory slots # Example usage with the provided program program = """ SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop end: HCF """ print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Timeout: function took too long to complete
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
To interpret the given assembly language in Python, we'll follow these steps: 1. **Parse the Program**: Break down the input program into a list of instructions. 2. **Execution Engine**: Implement the logic to execute each instruction as per the specification. 3. **Memory and Registers**: Initialize memory, registers, and the flag. 4. **Program Counter**: Keep track of instruction execution using the program counter. 5. **Instruction Handlers**: Implement handlers for each instruction type (SET, ADD, etc.). Here's a basic Python interpreter for the specified assembly language:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | def evaluate(program): # Break the program into instructions and parse them instructions = program.strip().split('\n') parsed_instructions = [] labels = {} # Memory, registers, and flag initialization memory = [0] * 100 registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0} flag = False ip = 0 # Instruction pointer # Parse instructions and labels for line in instructions: parts = line.strip().split() if parts[0][-1] == ':': # It's a label labels[parts[0][:-1]] = len(parsed_instructions) else: parsed_instructions.append(parts) # Execution engine while ip < len(parsed_instructions): instruction, *args = parsed_instructions[ip] if instruction == 'SET': registers[args[0]] = int(args[1]) elif instruction == 'ADD': registers[args[0]] = registers[args[1]] + registers[args[2]] elif instruction == 'SUB': registers[args[0]] = registers[args[1]] - registers[args[2]] elif instruction == 'MUL': registers[args[0]] = registers[args[1]] * registers[args[2]] elif instruction == 'DIV': registers[args[0]] = registers[args[1]] // registers[args[2]] elif instruction == 'MOD': registers[args[0]] = registers[args[1]] % registers[args[2]] elif instruction == 'EQ': flag = registers[args[0]] == registers[args[1]] elif instruction == 'NEQ': flag = registers[args[0]] != registers[args[1]] elif instruction == 'LT': flag = registers[args[0]] < registers[args[1]] elif instruction == 'LTE': flag = registers[args[0]] <= registers[args[1]] elif instruction == 'GT': flag = registers[args[0]] > registers[args[1]] elif instruction == 'GTE': flag = registers[args[0]] >= registers[args[1]] elif instruction == 'INC': registers[args[0]] += 1 elif instruction == 'DEC': registers[args[0]] -= 1 elif instruction == 'JMP': ip = labels[args[0]] continue elif instruction == 'JT': if flag: ip = labels[args[0]] continue elif instruction == 'JF': if not flag: ip = labels[args[0]] continue elif instruction == 'LOAD': registers[args[0]] = memory[int(args[1])] elif instruction == 'STORE': memory[int(args[1])] = registers[args[0]] elif instruction == 'HCF': break ip += 1 return memory[:20] # Assuming we need to return the first 20 memory locations # Example usage program = '''SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop end: HCF''' print(evaluate(program)) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | def evaluate(program): # Break the program into instructions and parse them instructions = program.strip().split('\n') parsed_instructions = [] labels = {} # Memory, registers, and flag initialization memory = [0] * 100 registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0} flag = False ip = 0 # Instruction pointer # Parse instructions and labels for line in instructions: parts = line.strip().split() if parts[0][-1] == ':': # It's a label labels[parts[0][:-1]] = len(parsed_instructions) else: parsed_instructions.append(parts) # Execution engine while ip < len(parsed_instructions): instruction, *args = parsed_instructions[ip] if instruction == 'SET': registers[args[0]] = int(args[1]) elif instruction == 'ADD': registers[args[0]] = registers[args[1]] + registers[args[2]] elif instruction == 'SUB': registers[args[0]] = registers[args[1]] - registers[args[2]] elif instruction == 'MUL': registers[args[0]] = registers[args[1]] * registers[args[2]] elif instruction == 'DIV': registers[args[0]] = registers[args[1]] // registers[args[2]] elif instruction == 'MOD': registers[args[0]] = registers[args[1]] % registers[args[2]] elif instruction == 'EQ': flag = registers[args[0]] == registers[args[1]] elif instruction == 'NEQ': flag = registers[args[0]] != registers[args[1]] elif instruction == 'LT': flag = registers[args[0]] < registers[args[1]] elif instruction == 'LTE': flag = registers[args[0]] <= registers[args[1]] elif instruction == 'GT': flag = registers[args[0]] > registers[args[1]] elif instruction == 'GTE': flag = registers[args[0]] >= registers[args[1]] elif instruction == 'INC': registers[args[0]] += 1 elif instruction == 'DEC': registers[args[0]] -= 1 elif instruction == 'JMP': ip = labels[args[0]] continue elif instruction == 'JT': if flag: ip = labels[args[0]] continue elif instruction == 'JF': if not flag: ip = labels[args[0]] continue elif instruction == 'LOAD': registers[args[0]] = memory[int(args[1])] elif instruction == 'STORE': memory[int(args[1])] = registers[args[0]] elif instruction == 'HCF': break ip += 1 return memory[:20] # Assuming we need to return the first 20 memory locations # Example usage program = '''SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop end: HCF''' print(evaluate(program)) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | def evaluate(program): # Break the program into instructions and parse them instructions = program.strip().split('\n') parsed_instructions = [] labels = {} # Memory, registers, and flag initialization memory = [0] * 100 registers = {'R1': 0, 'R2': 0, 'R3': 0, 'R4': 0, 'R5': 0, 'R6': 0, 'R7': 0, 'R8': 0} flag = False ip = 0 # Instruction pointer # Parse instructions and labels for line in instructions: parts = line.strip().split() if parts[0][-1] == ':': # It's a label labels[parts[0][:-1]] = len(parsed_instructions) else: parsed_instructions.append(parts) # Execution engine while ip < len(parsed_instructions): instruction, *args = parsed_instructions[ip] if instruction == 'SET': registers[args[0]] = int(args[1]) elif instruction == 'ADD': registers[args[0]] = registers[args[1]] + registers[args[2]] elif instruction == 'SUB': registers[args[0]] = registers[args[1]] - registers[args[2]] elif instruction == 'MUL': registers[args[0]] = registers[args[1]] * registers[args[2]] elif instruction == 'DIV': registers[args[0]] = registers[args[1]] // registers[args[2]] elif instruction == 'MOD': registers[args[0]] = registers[args[1]] % registers[args[2]] elif instruction == 'EQ': flag = registers[args[0]] == registers[args[1]] elif instruction == 'NEQ': flag = registers[args[0]] != registers[args[1]] elif instruction == 'LT': flag = registers[args[0]] < registers[args[1]] elif instruction == 'LTE': flag = registers[args[0]] <= registers[args[1]] elif instruction == 'GT': flag = registers[args[0]] > registers[args[1]] elif instruction == 'GTE': flag = registers[args[0]] >= registers[args[1]] elif instruction == 'INC': registers[args[0]] += 1 elif instruction == 'DEC': registers[args[0]] -= 1 elif instruction == 'JMP': ip = labels[args[0]] continue elif instruction == 'JT': if flag: ip = labels[args[0]] continue elif instruction == 'JF': if not flag: ip = labels[args[0]] continue elif instruction == 'LOAD': registers[args[0]] = memory[int(args[1])] elif instruction == 'STORE': memory[int(args[1])] = registers[args[0]] elif instruction == 'HCF': break ip += 1 return memory[:20] # Assuming we need to return the first 20 memory locations # Example usage program = '''SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop end: HCF''' print(evaluate(program)) answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 111, in <module>
print(evaluate(program))
^^^^^^^^^^^^^^^^^
File "/usr/src/app/main.py", line 18, in evaluate
if parts[0][-1] == ':': # It's a label
~~~~~^^^
IndexError: list index out of range
Testing if the previous output contains the string All tests passed
: False