Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here is a Python interpreter for the given assembly language:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def evaluate(program):
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flags = {'flag': False}
    memory = [0] * 100
    instruction_pointer = 0

    def get_value(arg):
        if arg[0] == 'R':
            return registers[arg]
        else:
            return int(arg)

    def set_value(dest, value):
        if dest[0] == 'R':
            registers[dest] = value
        else:
            memory[int(dest)] = value

    program = program.split('\n')
    while instruction_pointer < len(program):
        line = program[instruction_pointer].strip()
        if line == '' or line.startswith('//'):
            instruction_pointer += 1
            continue

        tokens = line.split()
        opcode = tokens[0]
        args = tokens[1:]

        if opcode == 'SET':
            registers[args[0]] = get_value(args[1])
        elif opcode in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            op = {'ADD': int.__add__, 'SUB': int.__sub__, 'MUL': int.__mul__, 'DIV': int.__floordiv__, 'MOD': int.__mod__}[opcode]
            registers[args[0]] = op(get_value(args[1]), get_value(args[2]))
        elif opcode in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            comparison = {'EQ': int.__eq__, 'NEQ': int.__ne__, 'LT': int.__lt__, 'LTE': int.__le__, 'GT': int.__gt__, 'GTE': int.__ge__}[opcode]
            flags['flag'] = comparison(get_value(args[0]), get_value(args[1]))
        elif opcode == 'INC':
            registers[args[0]] += 1
        elif opcode == 'DEC':
            registers[args[0]] -= 1
        elif opcode == 'JMP':
            instruction_pointer = program.index(f'{args[0]}:') + 1
            continue
        elif opcode == 'JT':
            if flags['flag']:
                instruction_pointer = program.index(f'{args[0]}:') + 1
                continue
        elif opcode == 'JF':
            if not flags['flag']:
                instruction_pointer = program.index(f'{args[0]}:') + 1
                continue
        elif opcode == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif opcode == 'STORE':
            memory[get_value(args[1])] = get_value(args[0])
        elif opcode == 'HCF':
            break

        instruction_pointer += 1

    return [memory[i] for i in range(registers['R1'])]


# Example program to compute the first 20 square numbers
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)
You can run the above code with the given program to compute the first 20 square numbers. The `evaluate` function will return the resulting memory state as a list of the computed square numbers.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def evaluate(program):
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flags = {'flag': False}
    memory = [0] * 100
    instruction_pointer = 0

    def get_value(arg):
        if arg[0] == 'R':
            return registers[arg]
        else:
            return int(arg)

    def set_value(dest, value):
        if dest[0] == 'R':
            registers[dest] = value
        else:
            memory[int(dest)] = value

    program = program.split('\n')
    while instruction_pointer < len(program):
        line = program[instruction_pointer].strip()
        if line == '' or line.startswith('//'):
            instruction_pointer += 1
            continue

        tokens = line.split()
        opcode = tokens[0]
        args = tokens[1:]

        if opcode == 'SET':
            registers[args[0]] = get_value(args[1])
        elif opcode in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            op = {'ADD': int.__add__, 'SUB': int.__sub__, 'MUL': int.__mul__, 'DIV': int.__floordiv__, 'MOD': int.__mod__}[opcode]
            registers[args[0]] = op(get_value(args[1]), get_value(args[2]))
        elif opcode in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            comparison = {'EQ': int.__eq__, 'NEQ': int.__ne__, 'LT': int.__lt__, 'LTE': int.__le__, 'GT': int.__gt__, 'GTE': int.__ge__}[opcode]
            flags['flag'] = comparison(get_value(args[0]), get_value(args[1]))
        elif opcode == 'INC':
            registers[args[0]] += 1
        elif opcode == 'DEC':
            registers[args[0]] -= 1
        elif opcode == 'JMP':
            instruction_pointer = program.index(f'{args[0]}:') + 1
            continue
        elif opcode == 'JT':
            if flags['flag']:
                instruction_pointer = program.index(f'{args[0]}:') + 1
                continue
        elif opcode == 'JF':
            if not flags['flag']:
                instruction_pointer = program.index(f'{args[0]}:') + 1
                continue
        elif opcode == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif opcode == 'STORE':
            memory[get_value(args[1])] = get_value(args[0])
        elif opcode == 'HCF':
            break

        instruction_pointer += 1

    return [memory[i] for i in range(registers['R1'])]


# Example program to compute the first 20 square numbers
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def evaluate(program):
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flags = {'flag': False}
    memory = [0] * 100
    instruction_pointer = 0

    def get_value(arg):
        if arg[0] == 'R':
            return registers[arg]
        else:
            return int(arg)

    def set_value(dest, value):
        if dest[0] == 'R':
            registers[dest] = value
        else:
            memory[int(dest)] = value

    program = program.split('\n')
    while instruction_pointer < len(program):
        line = program[instruction_pointer].strip()
        if line == '' or line.startswith('//'):
            instruction_pointer += 1
            continue

        tokens = line.split()
        opcode = tokens[0]
        args = tokens[1:]

        if opcode == 'SET':
            registers[args[0]] = get_value(args[1])
        elif opcode in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            op = {'ADD': int.__add__, 'SUB': int.__sub__, 'MUL': int.__mul__, 'DIV': int.__floordiv__, 'MOD': int.__mod__}[opcode]
            registers[args[0]] = op(get_value(args[1]), get_value(args[2]))
        elif opcode in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            comparison = {'EQ': int.__eq__, 'NEQ': int.__ne__, 'LT': int.__lt__, 'LTE': int.__le__, 'GT': int.__gt__, 'GTE': int.__ge__}[opcode]
            flags['flag'] = comparison(get_value(args[0]), get_value(args[1]))
        elif opcode == 'INC':
            registers[args[0]] += 1
        elif opcode == 'DEC':
            registers[args[0]] -= 1
        elif opcode == 'JMP':
            instruction_pointer = program.index(f'{args[0]}:') + 1
            continue
        elif opcode == 'JT':
            if flags['flag']:
                instruction_pointer = program.index(f'{args[0]}:') + 1
                continue
        elif opcode == 'JF':
            if not flags['flag']:
                instruction_pointer = program.index(f'{args[0]}:') + 1
                continue
        elif opcode == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif opcode == 'STORE':
            memory[get_value(args[1])] = get_value(args[0])
        elif opcode == 'HCF':
            break

        instruction_pointer += 1

    return [memory[i] for i in range(registers['R1'])]


# Example program to compute the first 20 square numbers
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400] Traceback (most recent call last): File "/usr/src/app/main.py", line 106, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 44, in evaluate instruction_pointer = program.index(f'{args[0]}:') + 1 ValueError: 'start_loop:' is not in list

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here is a Python interpreter for the given assembly language:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
def evaluate(program):
    program_lines = program.split('\n')
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0

    while instruction_pointer < len(program_lines):
        line = program_lines[instruction_pointer].strip()
        if not line:
            instruction_pointer += 1
            continue

        parts = line.split()
        opcode = parts[0]

        if opcode == 'SET':
            register = parts[1]
            value = int(parts[2])
            registers[register] = value

        elif opcode in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            register1 = parts[1]
            register2 = parts[2]
            register3 = parts[3]
            if opcode == 'ADD':
                registers[register1] = registers[register2] + registers[register3]
            elif opcode == 'SUB':
                registers[register1] = registers[register2] - registers[register3]
            elif opcode == 'MUL':
                registers[register1] = registers[register2] * registers[register3]
            elif opcode == 'DIV':
                registers[register1] = registers[register2] // registers[register3]
            elif opcode == 'MOD':
                registers[register1] = registers[register2] % registers[register3]

        elif opcode in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            register1 = parts[1]
            register2 = parts[2]
            if opcode == 'EQ':
                flag = registers[register1] == registers[register2]
            elif opcode == 'NEQ':
                flag = registers[register1] != registers[register2]
            elif opcode == 'LT':
                flag = registers[register1] < registers[register2]
            elif opcode == 'LTE':
                flag = registers[register1] <= registers[register2]
            elif opcode == 'GT':
                flag = registers[register1] > registers[register2]
            elif opcode == 'GTE':
                flag = registers[register1] >= registers[register2]

        elif opcode == 'INC':
            register = parts[1]
            registers[register] += 1

        elif opcode == 'DEC':
            register = parts[1]
            registers[register] -= 1

        elif opcode == 'JMP':
            label = parts[1][:-1]
            for idx, l in enumerate(program_lines):
                if l.strip().startswith(label + ':'):
                    instruction_pointer = idx
                    break

        elif opcode in ['JT', 'JF']:
            label = parts[2][:-1]
            if (opcode == 'JT' and flag) or (opcode == 'JF' and not flag):
                for idx, l in enumerate(program_lines):
                    if l.strip().startswith(label + ':'):
                        instruction_pointer = idx
                        break

        elif opcode == 'LOAD':
            register = parts[1]
            address = int(parts[2])
            registers[register] = memory[address]

        elif opcode == 'STORE':
            register = parts[1]
            address = int(parts[2])
            memory[address] = registers[register]

        elif opcode == 'HCF':
            break

        instruction_pointer += 1

    return [memory[i] for i in range(registers['R1'])]

# Example program to compute the first 20 square numbers
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)
You can run this interpreter with the given program to compute the first 20 square numbers. The resulting memory state will contain the square numbers `[1, 4, 9, 16, 25, ...]`.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
def evaluate(program):
    program_lines = program.split('\n')
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0

    while instruction_pointer < len(program_lines):
        line = program_lines[instruction_pointer].strip()
        if not line:
            instruction_pointer += 1
            continue

        parts = line.split()
        opcode = parts[0]

        if opcode == 'SET':
            register = parts[1]
            value = int(parts[2])
            registers[register] = value

        elif opcode in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            register1 = parts[1]
            register2 = parts[2]
            register3 = parts[3]
            if opcode == 'ADD':
                registers[register1] = registers[register2] + registers[register3]
            elif opcode == 'SUB':
                registers[register1] = registers[register2] - registers[register3]
            elif opcode == 'MUL':
                registers[register1] = registers[register2] * registers[register3]
            elif opcode == 'DIV':
                registers[register1] = registers[register2] // registers[register3]
            elif opcode == 'MOD':
                registers[register1] = registers[register2] % registers[register3]

        elif opcode in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            register1 = parts[1]
            register2 = parts[2]
            if opcode == 'EQ':
                flag = registers[register1] == registers[register2]
            elif opcode == 'NEQ':
                flag = registers[register1] != registers[register2]
            elif opcode == 'LT':
                flag = registers[register1] < registers[register2]
            elif opcode == 'LTE':
                flag = registers[register1] <= registers[register2]
            elif opcode == 'GT':
                flag = registers[register1] > registers[register2]
            elif opcode == 'GTE':
                flag = registers[register1] >= registers[register2]

        elif opcode == 'INC':
            register = parts[1]
            registers[register] += 1

        elif opcode == 'DEC':
            register = parts[1]
            registers[register] -= 1

        elif opcode == 'JMP':
            label = parts[1][:-1]
            for idx, l in enumerate(program_lines):
                if l.strip().startswith(label + ':'):
                    instruction_pointer = idx
                    break

        elif opcode in ['JT', 'JF']:
            label = parts[2][:-1]
            if (opcode == 'JT' and flag) or (opcode == 'JF' and not flag):
                for idx, l in enumerate(program_lines):
                    if l.strip().startswith(label + ':'):
                        instruction_pointer = idx
                        break

        elif opcode == 'LOAD':
            register = parts[1]
            address = int(parts[2])
            registers[register] = memory[address]

        elif opcode == 'STORE':
            register = parts[1]
            address = int(parts[2])
            memory[address] = registers[register]

        elif opcode == 'HCF':
            break

        instruction_pointer += 1

    return [memory[i] for i in range(registers['R1'])]

# Example program to compute the first 20 square numbers
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def evaluate(program):
    program_lines = program.split('\n')
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    instruction_pointer = 0

    while instruction_pointer < len(program_lines):
        line = program_lines[instruction_pointer].strip()
        if not line:
            instruction_pointer += 1
            continue

        parts = line.split()
        opcode = parts[0]

        if opcode == 'SET':
            register = parts[1]
            value = int(parts[2])
            registers[register] = value

        elif opcode in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            register1 = parts[1]
            register2 = parts[2]
            register3 = parts[3]
            if opcode == 'ADD':
                registers[register1] = registers[register2] + registers[register3]
            elif opcode == 'SUB':
                registers[register1] = registers[register2] - registers[register3]
            elif opcode == 'MUL':
                registers[register1] = registers[register2] * registers[register3]
            elif opcode == 'DIV':
                registers[register1] = registers[register2] // registers[register3]
            elif opcode == 'MOD':
                registers[register1] = registers[register2] % registers[register3]

        elif opcode in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            register1 = parts[1]
            register2 = parts[2]
            if opcode == 'EQ':
                flag = registers[register1] == registers[register2]
            elif opcode == 'NEQ':
                flag = registers[register1] != registers[register2]
            elif opcode == 'LT':
                flag = registers[register1] < registers[register2]
            elif opcode == 'LTE':
                flag = registers[register1] <= registers[register2]
            elif opcode == 'GT':
                flag = registers[register1] > registers[register2]
            elif opcode == 'GTE':
                flag = registers[register1] >= registers[register2]

        elif opcode == 'INC':
            register = parts[1]
            registers[register] += 1

        elif opcode == 'DEC':
            register = parts[1]
            registers[register] -= 1

        elif opcode == 'JMP':
            label = parts[1][:-1]
            for idx, l in enumerate(program_lines):
                if l.strip().startswith(label + ':'):
                    instruction_pointer = idx
                    break

        elif opcode in ['JT', 'JF']:
            label = parts[2][:-1]
            if (opcode == 'JT' and flag) or (opcode == 'JF' and not flag):
                for idx, l in enumerate(program_lines):
                    if l.strip().startswith(label + ':'):
                        instruction_pointer = idx
                        break

        elif opcode == 'LOAD':
            register = parts[1]
            address = int(parts[2])
            registers[register] = memory[address]

        elif opcode == 'STORE':
            register = parts[1]
            address = int(parts[2])
            memory[address] = registers[register]

        elif opcode == 'HCF':
            break

        instruction_pointer += 1

    return [memory[i] for i in range(registers['R1'])]

# Example program to compute the first 20 square numbers
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 112, in <module> result = evaluate(program) File "/usr/src/app/main.py", line 84, in evaluate address = int(parts[2]) ValueError: invalid literal for int() with base 10: 'R1'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here is a Python interpreter for the given assembly language:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def evaluate(program):
    # Initialize registers, memory, and flags
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flags = False
    memory = [0] * 100
    instruction_pointer = 0

    # Split the program into lines
    lines = program.split('\n')

    # Define a function to parse arguments
    def parse_arg(arg):
        if arg[0] == 'R':
            return registers[arg]
        else:
            return int(arg)

    # Start executing the program
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip().split()

        if line[0][-1] == ':':  # Skip labels
            instruction_pointer += 1
            continue

        if line[0] == 'SET':
            registers[line[1]] = parse_arg(line[2])
        elif line[0] in {'ADD', 'SUB', 'MUL', 'DIV', 'MOD'}:
            op = eval(line[0])
            registers[line[1]] = op(parse_arg(line[2]), parse_arg(line[3]))
        elif line[0] in {'EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'}:
            flags = eval(f'{parse_arg(line[1])} {line[0]} {parse_arg(line[2])}')
        elif line[0] == 'INC':
            registers[line[1]] += 1
        elif line[0] == 'DEC':
            registers[line[1]] -= 1
        elif line[0] == 'JMP':
            instruction_pointer = lines.index(line[1] + ':')
            continue
        elif line[0] == 'JT':
            if flags:
                instruction_pointer = lines.index(line[1] + ':')
                continue
        elif line[0] == 'JF':
            if not flags:
                instruction_pointer = lines.index(line[1] + ':')
                continue
        elif line[0] == 'LOAD':
            registers[line[1]] = memory[parse_arg(line[2])]
        elif line[0] == 'STORE':
            memory[parse_arg(line[2])] = registers[line[1]]
        elif line[0] == 'HCF':
            break

        instruction_pointer += 1

    return memory[:registers['R1']]

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)
You can run this interpreter with a given program string to get the resulting memory state after running the program. The example program provided computes the first 20 square numbers and stores them in memory.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def evaluate(program):
    # Initialize registers, memory, and flags
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flags = False
    memory = [0] * 100
    instruction_pointer = 0

    # Split the program into lines
    lines = program.split('\n')

    # Define a function to parse arguments
    def parse_arg(arg):
        if arg[0] == 'R':
            return registers[arg]
        else:
            return int(arg)

    # Start executing the program
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip().split()

        if line[0][-1] == ':':  # Skip labels
            instruction_pointer += 1
            continue

        if line[0] == 'SET':
            registers[line[1]] = parse_arg(line[2])
        elif line[0] in {'ADD', 'SUB', 'MUL', 'DIV', 'MOD'}:
            op = eval(line[0])
            registers[line[1]] = op(parse_arg(line[2]), parse_arg(line[3]))
        elif line[0] in {'EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'}:
            flags = eval(f'{parse_arg(line[1])} {line[0]} {parse_arg(line[2])}')
        elif line[0] == 'INC':
            registers[line[1]] += 1
        elif line[0] == 'DEC':
            registers[line[1]] -= 1
        elif line[0] == 'JMP':
            instruction_pointer = lines.index(line[1] + ':')
            continue
        elif line[0] == 'JT':
            if flags:
                instruction_pointer = lines.index(line[1] + ':')
                continue
        elif line[0] == 'JF':
            if not flags:
                instruction_pointer = lines.index(line[1] + ':')
                continue
        elif line[0] == 'LOAD':
            registers[line[1]] = memory[parse_arg(line[2])]
        elif line[0] == 'STORE':
            memory[parse_arg(line[2])] = registers[line[1]]
        elif line[0] == 'HCF':
            break

        instruction_pointer += 1

    return memory[:registers['R1']]

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def evaluate(program):
    # Initialize registers, memory, and flags
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flags = False
    memory = [0] * 100
    instruction_pointer = 0

    # Split the program into lines
    lines = program.split('\n')

    # Define a function to parse arguments
    def parse_arg(arg):
        if arg[0] == 'R':
            return registers[arg]
        else:
            return int(arg)

    # Start executing the program
    while instruction_pointer < len(lines):
        line = lines[instruction_pointer].strip().split()

        if line[0][-1] == ':':  # Skip labels
            instruction_pointer += 1
            continue

        if line[0] == 'SET':
            registers[line[1]] = parse_arg(line[2])
        elif line[0] in {'ADD', 'SUB', 'MUL', 'DIV', 'MOD'}:
            op = eval(line[0])
            registers[line[1]] = op(parse_arg(line[2]), parse_arg(line[3]))
        elif line[0] in {'EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE'}:
            flags = eval(f'{parse_arg(line[1])} {line[0]} {parse_arg(line[2])}')
        elif line[0] == 'INC':
            registers[line[1]] += 1
        elif line[0] == 'DEC':
            registers[line[1]] -= 1
        elif line[0] == 'JMP':
            instruction_pointer = lines.index(line[1] + ':')
            continue
        elif line[0] == 'JT':
            if flags:
                instruction_pointer = lines.index(line[1] + ':')
                continue
        elif line[0] == 'JF':
            if not flags:
                instruction_pointer = lines.index(line[1] + ':')
                continue
        elif line[0] == 'LOAD':
            registers[line[1]] = memory[parse_arg(line[2])]
        elif line[0] == 'STORE':
            memory[parse_arg(line[2])] = registers[line[1]]
        elif line[0] == 'HCF':
            break

        instruction_pointer += 1

    return memory[:registers['R1']]

# Example program
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 78, in <module> result = evaluate(program) File "/usr/src/app/main.py", line 23, in evaluate if line[0][-1] == ':': # Skip labels IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here is an implementation of the interpreter in Python:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
class AssemblyInterpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 9)}
        self.memory = [0] * 100
        self.flag = False
        self.instruction_pointer = 0

    def evaluate(self, program):
        instructions = program.split('\n')
        labels = {}
        for i, instruction in enumerate(instructions):
            if instruction.endswith(':'):
                labels[instruction[:-1]] = i
        
        while self.instruction_pointer < len(instructions):
            instruction = instructions[self.instruction_pointer]
            self.execute_instruction(instruction, labels)
            self.instruction_pointer += 1
        
        return self.memory[:self.registers['R1']]

    def execute_instruction(self, instruction, labels):
        parts = instruction.split()
        op = parts[0]
        if op == 'SET':
            self.registers[parts[1]] = int(parts[2])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            x = self.get_value(parts[2])
            y = self.get_value(parts[3])
            result = eval(f'{x} {op.lower()} {y}')
            self.registers[parts[1]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            x = self.get_value(parts[1])
            y = self.get_value(parts[2])
            self.flag = eval(f'{x} {op.lower()} {y}')
        elif op == 'INC':
            self.registers[parts[1]] += 1
        elif op == 'DEC':
            self.registers[parts[1]] -= 1
        elif op == 'JMP':
            self.instruction_pointer = labels[parts[1]]
        elif op in ['JT', 'JF']:
            if (op == 'JT' and self.flag) or (op == 'JF' and not self.flag):
                self.instruction_pointer = labels[parts[1]]
        elif op == 'LOAD':
            self.registers[parts[1]] = self.memory[self.get_value(parts[2])]
        elif op == 'STORE':
            self.memory[self.get_value(parts[2])] = self.get_value(parts[1])
        elif op == 'HCF':
            self.instruction_pointer = len(instructions)
    
    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[arg]
        else:
            return int(arg)

def evaluate(program):
    interpreter = AssemblyInterpreter()
    return interpreter.evaluate(program)

program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)
You can copy and paste this code into a Python environment to run the interpreter and see the resulting memory state after running the program.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
class AssemblyInterpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 9)}
        self.memory = [0] * 100
        self.flag = False
        self.instruction_pointer = 0

    def evaluate(self, program):
        instructions = program.split('\n')
        labels = {}
        for i, instruction in enumerate(instructions):
            if instruction.endswith(':'):
                labels[instruction[:-1]] = i
        
        while self.instruction_pointer < len(instructions):
            instruction = instructions[self.instruction_pointer]
            self.execute_instruction(instruction, labels)
            self.instruction_pointer += 1
        
        return self.memory[:self.registers['R1']]

    def execute_instruction(self, instruction, labels):
        parts = instruction.split()
        op = parts[0]
        if op == 'SET':
            self.registers[parts[1]] = int(parts[2])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            x = self.get_value(parts[2])
            y = self.get_value(parts[3])
            result = eval(f'{x} {op.lower()} {y}')
            self.registers[parts[1]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            x = self.get_value(parts[1])
            y = self.get_value(parts[2])
            self.flag = eval(f'{x} {op.lower()} {y}')
        elif op == 'INC':
            self.registers[parts[1]] += 1
        elif op == 'DEC':
            self.registers[parts[1]] -= 1
        elif op == 'JMP':
            self.instruction_pointer = labels[parts[1]]
        elif op in ['JT', 'JF']:
            if (op == 'JT' and self.flag) or (op == 'JF' and not self.flag):
                self.instruction_pointer = labels[parts[1]]
        elif op == 'LOAD':
            self.registers[parts[1]] = self.memory[self.get_value(parts[2])]
        elif op == 'STORE':
            self.memory[self.get_value(parts[2])] = self.get_value(parts[1])
        elif op == 'HCF':
            self.instruction_pointer = len(instructions)
    
    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[arg]
        else:
            return int(arg)

def evaluate(program):
    interpreter = AssemblyInterpreter()
    return interpreter.evaluate(program)

program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
class AssemblyInterpreter:
    def __init__(self):
        self.registers = {f'R{i}': 0 for i in range(1, 9)}
        self.memory = [0] * 100
        self.flag = False
        self.instruction_pointer = 0

    def evaluate(self, program):
        instructions = program.split('\n')
        labels = {}
        for i, instruction in enumerate(instructions):
            if instruction.endswith(':'):
                labels[instruction[:-1]] = i
        
        while self.instruction_pointer < len(instructions):
            instruction = instructions[self.instruction_pointer]
            self.execute_instruction(instruction, labels)
            self.instruction_pointer += 1
        
        return self.memory[:self.registers['R1']]

    def execute_instruction(self, instruction, labels):
        parts = instruction.split()
        op = parts[0]
        if op == 'SET':
            self.registers[parts[1]] = int(parts[2])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            x = self.get_value(parts[2])
            y = self.get_value(parts[3])
            result = eval(f'{x} {op.lower()} {y}')
            self.registers[parts[1]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            x = self.get_value(parts[1])
            y = self.get_value(parts[2])
            self.flag = eval(f'{x} {op.lower()} {y}')
        elif op == 'INC':
            self.registers[parts[1]] += 1
        elif op == 'DEC':
            self.registers[parts[1]] -= 1
        elif op == 'JMP':
            self.instruction_pointer = labels[parts[1]]
        elif op in ['JT', 'JF']:
            if (op == 'JT' and self.flag) or (op == 'JF' and not self.flag):
                self.instruction_pointer = labels[parts[1]]
        elif op == 'LOAD':
            self.registers[parts[1]] = self.memory[self.get_value(parts[2])]
        elif op == 'STORE':
            self.memory[self.get_value(parts[2])] = self.get_value(parts[1])
        elif op == 'HCF':
            self.instruction_pointer = len(instructions)
    
    def get_value(self, arg):
        if arg.startswith('R'):
            return self.registers[arg]
        else:
            return int(arg)

def evaluate(program):
    interpreter = AssemblyInterpreter()
    return interpreter.evaluate(program)

program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
MUL R3 R2 R2  // R3 = R2 * R2
STORE R3 R1   // Store R3 at address R1
INC R1        // Increment address
INC R2        // Increment number
SET R3 20
EQ R1 R3      // Check if 20 squares are found
JF loop       // If not 20 squares found yet, continue finding

end:
HCF           // Stop program
"""

result = evaluate(program)
print(result)





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 80, in <module> result = evaluate(program) File "/usr/src/app/main.py", line 61, in evaluate return interpreter.evaluate(program) File "/usr/src/app/main.py", line 18, in evaluate self.execute_instruction(instruction, labels) File "/usr/src/app/main.py", line 25, in execute_instruction op = parts[0] IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here is a Python interpreter for the assembly language described above:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def evaluate(program):
    instructions = program.split("\n")
    memory = [0] * 100
    registers = [0] * 8
    flag = False
    ip = 0

    while ip < len(instructions):
        instruction = instructions[ip].split()
        op = instruction[0]

        if op == "SET":
            register = int(instruction[1][1])
            value = int(instruction[2])
            registers[register - 1] = value

        elif op == "ADD":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] + registers[register3 - 1]

        elif op == "SUB":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] - registers[register3 - 1]

        elif op == "MUL":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] * registers[register3 - 1]

        elif op == "DIV":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] // registers[register3 - 1]

        elif op == "MOD":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] % registers[register3 - 1]

        elif op == "EQ":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            flag = registers[register1 - 1] == registers[register2 - 1]

        elif op == "INC":
            register = int(instruction[1][1])
            registers[register - 1] += 1

        elif op == "DEC":
            register = int(instruction[1][1])
            registers[register - 1] -= 1

        elif op == "JMP":
            label = instruction[1]
            for i, instr in enumerate(instructions):
                if instr.startswith(label + ":"):
                    ip = i - 1
                    break

        elif op == "JT":
            label = instruction[2]
            if flag:
                for i, instr in enumerate(instructions):
                    if instr.startswith(label + ":"):
                        ip = i - 1
                        break

        elif op == "JF":
            label = instruction[2]
            if not flag:
                for i, instr in enumerate(instructions):
                    if instr.startswith(label + ":"):
                        ip = i - 1
                        break

        elif op == "LOAD":
            register = int(instruction[1][1])
            address = int(instruction[2])
            registers[register - 1] = memory[address]

        elif op == "STORE":
            register = int(instruction[1][1])
            address = int(instruction[2])
            memory[address] = registers[register - 1]

        elif op == "HCF":
            break

        ip += 1

    return [memory[i] for i in range(registers[0])]

# Example program to compute the first 20 square numbers
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
SET R3 20
EQ R1 R3
JF loop

end:
HCF
"""

print(evaluate(program))
This interpreter will run the provided assembly language program and return the resulting memory state after executing the program. The example program in the code snippet will compute the first 20 square numbers and return the list `[1, 4, 9, 16, 25, ...]`.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def evaluate(program):
    instructions = program.split("\n")
    memory = [0] * 100
    registers = [0] * 8
    flag = False
    ip = 0

    while ip < len(instructions):
        instruction = instructions[ip].split()
        op = instruction[0]

        if op == "SET":
            register = int(instruction[1][1])
            value = int(instruction[2])
            registers[register - 1] = value

        elif op == "ADD":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] + registers[register3 - 1]

        elif op == "SUB":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] - registers[register3 - 1]

        elif op == "MUL":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] * registers[register3 - 1]

        elif op == "DIV":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] // registers[register3 - 1]

        elif op == "MOD":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] % registers[register3 - 1]

        elif op == "EQ":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            flag = registers[register1 - 1] == registers[register2 - 1]

        elif op == "INC":
            register = int(instruction[1][1])
            registers[register - 1] += 1

        elif op == "DEC":
            register = int(instruction[1][1])
            registers[register - 1] -= 1

        elif op == "JMP":
            label = instruction[1]
            for i, instr in enumerate(instructions):
                if instr.startswith(label + ":"):
                    ip = i - 1
                    break

        elif op == "JT":
            label = instruction[2]
            if flag:
                for i, instr in enumerate(instructions):
                    if instr.startswith(label + ":"):
                        ip = i - 1
                        break

        elif op == "JF":
            label = instruction[2]
            if not flag:
                for i, instr in enumerate(instructions):
                    if instr.startswith(label + ":"):
                        ip = i - 1
                        break

        elif op == "LOAD":
            register = int(instruction[1][1])
            address = int(instruction[2])
            registers[register - 1] = memory[address]

        elif op == "STORE":
            register = int(instruction[1][1])
            address = int(instruction[2])
            memory[address] = registers[register - 1]

        elif op == "HCF":
            break

        ip += 1

    return [memory[i] for i in range(registers[0])]

# Example program to compute the first 20 square numbers
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
SET R3 20
EQ R1 R3
JF loop

end:
HCF
"""

print(evaluate(program))

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def evaluate(program):
    instructions = program.split("\n")
    memory = [0] * 100
    registers = [0] * 8
    flag = False
    ip = 0

    while ip < len(instructions):
        instruction = instructions[ip].split()
        op = instruction[0]

        if op == "SET":
            register = int(instruction[1][1])
            value = int(instruction[2])
            registers[register - 1] = value

        elif op == "ADD":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] + registers[register3 - 1]

        elif op == "SUB":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] - registers[register3 - 1]

        elif op == "MUL":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] * registers[register3 - 1]

        elif op == "DIV":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] // registers[register3 - 1]

        elif op == "MOD":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            register3 = int(instruction[3][1])
            registers[register1 - 1] = registers[register2 - 1] % registers[register3 - 1]

        elif op == "EQ":
            register1 = int(instruction[1][1])
            register2 = int(instruction[2][1])
            flag = registers[register1 - 1] == registers[register2 - 1]

        elif op == "INC":
            register = int(instruction[1][1])
            registers[register - 1] += 1

        elif op == "DEC":
            register = int(instruction[1][1])
            registers[register - 1] -= 1

        elif op == "JMP":
            label = instruction[1]
            for i, instr in enumerate(instructions):
                if instr.startswith(label + ":"):
                    ip = i - 1
                    break

        elif op == "JT":
            label = instruction[2]
            if flag:
                for i, instr in enumerate(instructions):
                    if instr.startswith(label + ":"):
                        ip = i - 1
                        break

        elif op == "JF":
            label = instruction[2]
            if not flag:
                for i, instr in enumerate(instructions):
                    if instr.startswith(label + ":"):
                        ip = i - 1
                        break

        elif op == "LOAD":
            register = int(instruction[1][1])
            address = int(instruction[2])
            registers[register - 1] = memory[address]

        elif op == "STORE":
            register = int(instruction[1][1])
            address = int(instruction[2])
            memory[address] = registers[register - 1]

        elif op == "HCF":
            break

        ip += 1

    return [memory[i] for i in range(registers[0])]

# Example program to compute the first 20 square numbers
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
SET R3 20
EQ R1 R3
JF loop

end:
HCF
"""

print(evaluate(program))





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 119, in <module> print(evaluate(program)) File "/usr/src/app/main.py", line 11, in evaluate op = instruction[0] IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False