Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | import re def evaluate(program): # Initialize registers, flag, memory, and instruction pointer registers = [0] * 8 flag = False memory = [0] * 100 ip = 0 # Define instructions and their corresponding functions instructions = { "SET": lambda arg1, arg2: registers[arg1] := arg2, "ADD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] + registers[arg3], "SUB": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] - registers[arg3], "MUL": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] * registers[arg3], "DIV": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] // registers[arg3], "MOD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] % registers[arg3], "EQ": lambda arg1, arg2: flag := registers[arg1] == registers[arg2], "NEQ": lambda arg1, arg2: flag := registers[arg1] != registers[arg2], "LT": lambda arg1, arg2: flag := registers[arg1] < registers[arg2], "LTE": lambda arg1, arg2: flag := registers[arg1] <= registers[arg2], "GT": lambda arg1, arg2: flag := registers[arg1] > registers[arg2], "GTE": lambda arg1, arg2: flag := registers[arg1] >= registers[arg2], "INC": lambda arg1: registers[arg1] += 1, "DEC": lambda arg1: registers[arg1] -= 1, "JMP": lambda arg1: ip := arg1, "JT": lambda arg1: ip := arg1 if flag else ip + 1, "JF": lambda arg1: ip := arg1 if not flag else ip + 1, "LOAD": lambda arg1, arg2: registers[arg1] := memory[arg2], "STORE": lambda arg1, arg2: memory[arg2] := registers[arg1], "HCF": lambda: exit() } # Define labels and their corresponding addresses labels = {} for line in program.split("\n"): match = re.match(r"([a-z]+):", line) if match: labels[match.group(1)] = ip # Run the program while ip < len(program): line = program[ip].strip() if not line: ip += 1 continue # Parse the instruction op, *args = line.split() args = [int(arg) if arg.isdigit() else arg for arg in args] # Execute the instruction instructions[op](*args) ip += 1 # Return the memory state return memory |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | import re def evaluate(program): # Initialize registers, flag, memory, and instruction pointer registers = [0] * 8 flag = False memory = [0] * 100 ip = 0 # Define instructions and their corresponding functions instructions = { "SET": lambda arg1, arg2: registers[arg1] := arg2, "ADD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] + registers[arg3], "SUB": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] - registers[arg3], "MUL": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] * registers[arg3], "DIV": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] // registers[arg3], "MOD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] % registers[arg3], "EQ": lambda arg1, arg2: flag := registers[arg1] == registers[arg2], "NEQ": lambda arg1, arg2: flag := registers[arg1] != registers[arg2], "LT": lambda arg1, arg2: flag := registers[arg1] < registers[arg2], "LTE": lambda arg1, arg2: flag := registers[arg1] <= registers[arg2], "GT": lambda arg1, arg2: flag := registers[arg1] > registers[arg2], "GTE": lambda arg1, arg2: flag := registers[arg1] >= registers[arg2], "INC": lambda arg1: registers[arg1] += 1, "DEC": lambda arg1: registers[arg1] -= 1, "JMP": lambda arg1: ip := arg1, "JT": lambda arg1: ip := arg1 if flag else ip + 1, "JF": lambda arg1: ip := arg1 if not flag else ip + 1, "LOAD": lambda arg1, arg2: registers[arg1] := memory[arg2], "STORE": lambda arg1, arg2: memory[arg2] := registers[arg1], "HCF": lambda: exit() } # Define labels and their corresponding addresses labels = {} for line in program.split("\n"): match = re.match(r"([a-z]+):", line) if match: labels[match.group(1)] = ip # Run the program while ip < len(program): line = program[ip].strip() if not line: ip += 1 continue # Parse the instruction op, *args = line.split() args = [int(arg) if arg.isdigit() else arg for arg in args] # Execute the instruction instructions[op](*args) ip += 1 # Return the memory state return memory |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | import re def evaluate(program): # Initialize registers, flag, memory, and instruction pointer registers = [0] * 8 flag = False memory = [0] * 100 ip = 0 # Define instructions and their corresponding functions instructions = { "SET": lambda arg1, arg2: registers[arg1] := arg2, "ADD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] + registers[arg3], "SUB": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] - registers[arg3], "MUL": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] * registers[arg3], "DIV": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] // registers[arg3], "MOD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] % registers[arg3], "EQ": lambda arg1, arg2: flag := registers[arg1] == registers[arg2], "NEQ": lambda arg1, arg2: flag := registers[arg1] != registers[arg2], "LT": lambda arg1, arg2: flag := registers[arg1] < registers[arg2], "LTE": lambda arg1, arg2: flag := registers[arg1] <= registers[arg2], "GT": lambda arg1, arg2: flag := registers[arg1] > registers[arg2], "GTE": lambda arg1, arg2: flag := registers[arg1] >= registers[arg2], "INC": lambda arg1: registers[arg1] += 1, "DEC": lambda arg1: registers[arg1] -= 1, "JMP": lambda arg1: ip := arg1, "JT": lambda arg1: ip := arg1 if flag else ip + 1, "JF": lambda arg1: ip := arg1 if not flag else ip + 1, "LOAD": lambda arg1, arg2: registers[arg1] := memory[arg2], "STORE": lambda arg1, arg2: memory[arg2] := registers[arg1], "HCF": lambda: exit() } # Define labels and their corresponding addresses labels = {} for line in program.split("\n"): match = re.match(r"([a-z]+):", line) if match: labels[match.group(1)] = ip # Run the program while ip < len(program): line = program[ip].strip() if not line: ip += 1 continue # Parse the instruction op, *args = line.split() args = [int(arg) if arg.isdigit() else arg for arg in args] # Execute the instruction instructions[op](*args) ip += 1 # Return the memory state return memory answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
File "/usr/src/app/main.py", line 13
"SET": lambda arg1, arg2: registers[arg1] := arg2,
^^
SyntaxError: invalid syntax
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | def evaluate(program): """ Evaluates an assembly language program and returns the resulting memory state. Args: program (str): The assembly language program. Returns: list: The resulting memory state. """ # Initialize the registers, flag, memory, and instruction pointer. registers = [0] * 8 flag = False memory = [0] * 100 ip = 0 # Parse the program into a list of instructions. instructions = program.split("\n") # Execute the program. while ip < len(instructions): # Get the current instruction. instruction = instructions[ip] # Parse the instruction. op, *args = instruction.split() # Execute the instruction. if op == "SET": registers[int(args[0][1:]) - 1] = int(args[1]) elif op in ["ADD", "SUB", "MUL", "DIV", "MOD"]: registers[int(args[0][1:]) - 1] = eval( f"{registers[int(args[1][1:]) - 1]} {op} {registers[int(args[2][1:]) - 1]}" ) elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]: flag = eval( f"{registers[int(args[0][1:]) - 1]} {op} {registers[int(args[1][1:]) - 1]}" ) elif op == "INC": registers[int(args[0][1:]) - 1] += 1 elif op == "DEC": registers[int(args[0][1:]) - 1] -= 1 elif op == "JMP": ip = instructions.index(args[0] + ":") - 1 elif op in ["JT", "JF"]: if (op == "JT" and flag) or (op == "JF" and not flag): ip = instructions.index(args[0] + ":") - 1 elif op == "LOAD": registers[int(args[0][1:]) - 1] = memory[int(args[1])] elif op == "STORE": memory[int(args[1])] = registers[int(args[0][1:]) - 1] elif op == "HCF": break # Increment the instruction pointer. ip += 1 # Return the resulting memory state. return memory |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | def evaluate(program): """ Evaluates an assembly language program and returns the resulting memory state. Args: program (str): The assembly language program. Returns: list: The resulting memory state. """ # Initialize the registers, flag, memory, and instruction pointer. registers = [0] * 8 flag = False memory = [0] * 100 ip = 0 # Parse the program into a list of instructions. instructions = program.split("\n") # Execute the program. while ip < len(instructions): # Get the current instruction. instruction = instructions[ip] # Parse the instruction. op, *args = instruction.split() # Execute the instruction. if op == "SET": registers[int(args[0][1:]) - 1] = int(args[1]) elif op in ["ADD", "SUB", "MUL", "DIV", "MOD"]: registers[int(args[0][1:]) - 1] = eval( f"{registers[int(args[1][1:]) - 1]} {op} {registers[int(args[2][1:]) - 1]}" ) elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]: flag = eval( f"{registers[int(args[0][1:]) - 1]} {op} {registers[int(args[1][1:]) - 1]}" ) elif op == "INC": registers[int(args[0][1:]) - 1] += 1 elif op == "DEC": registers[int(args[0][1:]) - 1] -= 1 elif op == "JMP": ip = instructions.index(args[0] + ":") - 1 elif op in ["JT", "JF"]: if (op == "JT" and flag) or (op == "JF" and not flag): ip = instructions.index(args[0] + ":") - 1 elif op == "LOAD": registers[int(args[0][1:]) - 1] = memory[int(args[1])] elif op == "STORE": memory[int(args[1])] = registers[int(args[0][1:]) - 1] elif op == "HCF": break # Increment the instruction pointer. ip += 1 # Return the resulting memory state. return memory |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | def evaluate(program): """ Evaluates an assembly language program and returns the resulting memory state. Args: program (str): The assembly language program. Returns: list: The resulting memory state. """ # Initialize the registers, flag, memory, and instruction pointer. registers = [0] * 8 flag = False memory = [0] * 100 ip = 0 # Parse the program into a list of instructions. instructions = program.split("\n") # Execute the program. while ip < len(instructions): # Get the current instruction. instruction = instructions[ip] # Parse the instruction. op, *args = instruction.split() # Execute the instruction. if op == "SET": registers[int(args[0][1:]) - 1] = int(args[1]) elif op in ["ADD", "SUB", "MUL", "DIV", "MOD"]: registers[int(args[0][1:]) - 1] = eval( f"{registers[int(args[1][1:]) - 1]} {op} {registers[int(args[2][1:]) - 1]}" ) elif op in ["EQ", "NEQ", "LT", "LTE", "GT", "GTE"]: flag = eval( f"{registers[int(args[0][1:]) - 1]} {op} {registers[int(args[1][1:]) - 1]}" ) elif op == "INC": registers[int(args[0][1:]) - 1] += 1 elif op == "DEC": registers[int(args[0][1:]) - 1] -= 1 elif op == "JMP": ip = instructions.index(args[0] + ":") - 1 elif op in ["JT", "JF"]: if (op == "JT" and flag) or (op == "JF" and not flag): ip = instructions.index(args[0] + ":") - 1 elif op == "LOAD": registers[int(args[0][1:]) - 1] = memory[int(args[1])] elif op == "STORE": memory[int(args[1])] = registers[int(args[0][1:]) - 1] elif op == "HCF": break # Increment the instruction pointer. ip += 1 # Return the resulting memory state. return memory answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 67, in <module>
answer = evaluate("""
^^^^^^^^^^^^
File "/usr/src/app/main.py", line 28, in evaluate
op, *args = instruction.split()
^^^^^^^^^
ValueError: not enough values to unpack (expected at least 1, got 0)
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | def evaluate(program): """ Evaluate an assembly language program and return the resulting memory state. Args: program: A string containing the assembly language program. Returns: A list of integers representing the values in memory after the program has been executed. """ # Initialize the registers, flag, memory, and instruction pointer. registers = [0 for _ in range(8)] flag = False memory = [0 for _ in range(100)] ip = 0 # Define a dictionary of instructions and their corresponding functions. instructions = { "SET": lambda arg1, arg2: registers[arg1] := arg2, "ADD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] + registers[arg3], "SUB": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] - registers[arg3], "MUL": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] * registers[arg3], "DIV": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] // registers[arg3], "MOD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] % registers[arg3], "EQ": lambda arg1, arg2: flag := registers[arg1] == registers[arg2], "NEQ": lambda arg1, arg2: flag := registers[arg1] != registers[arg2], "LT": lambda arg1, arg2: flag := registers[arg1] < registers[arg2], "LTE": lambda arg1, arg2: flag := registers[arg1] <= registers[arg2], "GT": lambda arg1, arg2: flag := registers[arg1] > registers[arg2], "GTE": lambda arg1, arg2: flag := registers[arg1] >= registers[arg2], "INC": lambda arg1: registers[arg1] += 1, "DEC": lambda arg1: registers[arg1] -= 1, "JMP": lambda arg1: ip := arg1, "JT": lambda arg1: ip := arg1 if flag else ip + 1, "JF": lambda arg1: ip := arg1 if not flag else ip + 1, "LOAD": lambda arg1, arg2: registers[arg1] := memory[arg2], "STORE": lambda arg1, arg2: memory[arg2] := registers[arg1], "HCF": lambda: exit(0), } # Split the program into lines. lines = program.split("\n") # Create a dictionary of labels and their corresponding line numbers. labels = {} for line in lines: if ":" in line: label, _ = line.split(":") labels[label] = lines.index(line) # Execute the program. while ip < len(lines): # Get the current line. line = lines[ip] # Split the line into the instruction and arguments. instruction, *args = line.split() # Convert the arguments to integers. args = [int(arg) if arg.isdigit() else arg for arg in args] # Execute the instruction. instructions[instruction](*args) # Increment the instruction pointer. ip += 1 # Return the resulting memory state. return memory |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | def evaluate(program): """ Evaluate an assembly language program and return the resulting memory state. Args: program: A string containing the assembly language program. Returns: A list of integers representing the values in memory after the program has been executed. """ # Initialize the registers, flag, memory, and instruction pointer. registers = [0 for _ in range(8)] flag = False memory = [0 for _ in range(100)] ip = 0 # Define a dictionary of instructions and their corresponding functions. instructions = { "SET": lambda arg1, arg2: registers[arg1] := arg2, "ADD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] + registers[arg3], "SUB": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] - registers[arg3], "MUL": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] * registers[arg3], "DIV": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] // registers[arg3], "MOD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] % registers[arg3], "EQ": lambda arg1, arg2: flag := registers[arg1] == registers[arg2], "NEQ": lambda arg1, arg2: flag := registers[arg1] != registers[arg2], "LT": lambda arg1, arg2: flag := registers[arg1] < registers[arg2], "LTE": lambda arg1, arg2: flag := registers[arg1] <= registers[arg2], "GT": lambda arg1, arg2: flag := registers[arg1] > registers[arg2], "GTE": lambda arg1, arg2: flag := registers[arg1] >= registers[arg2], "INC": lambda arg1: registers[arg1] += 1, "DEC": lambda arg1: registers[arg1] -= 1, "JMP": lambda arg1: ip := arg1, "JT": lambda arg1: ip := arg1 if flag else ip + 1, "JF": lambda arg1: ip := arg1 if not flag else ip + 1, "LOAD": lambda arg1, arg2: registers[arg1] := memory[arg2], "STORE": lambda arg1, arg2: memory[arg2] := registers[arg1], "HCF": lambda: exit(0), } # Split the program into lines. lines = program.split("\n") # Create a dictionary of labels and their corresponding line numbers. labels = {} for line in lines: if ":" in line: label, _ = line.split(":") labels[label] = lines.index(line) # Execute the program. while ip < len(lines): # Get the current line. line = lines[ip] # Split the line into the instruction and arguments. instruction, *args = line.split() # Convert the arguments to integers. args = [int(arg) if arg.isdigit() else arg for arg in args] # Execute the instruction. instructions[instruction](*args) # Increment the instruction pointer. ip += 1 # Return the resulting memory state. return memory |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | def evaluate(program): """ Evaluate an assembly language program and return the resulting memory state. Args: program: A string containing the assembly language program. Returns: A list of integers representing the values in memory after the program has been executed. """ # Initialize the registers, flag, memory, and instruction pointer. registers = [0 for _ in range(8)] flag = False memory = [0 for _ in range(100)] ip = 0 # Define a dictionary of instructions and their corresponding functions. instructions = { "SET": lambda arg1, arg2: registers[arg1] := arg2, "ADD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] + registers[arg3], "SUB": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] - registers[arg3], "MUL": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] * registers[arg3], "DIV": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] // registers[arg3], "MOD": lambda arg1, arg2, arg3: registers[arg1] := registers[arg2] % registers[arg3], "EQ": lambda arg1, arg2: flag := registers[arg1] == registers[arg2], "NEQ": lambda arg1, arg2: flag := registers[arg1] != registers[arg2], "LT": lambda arg1, arg2: flag := registers[arg1] < registers[arg2], "LTE": lambda arg1, arg2: flag := registers[arg1] <= registers[arg2], "GT": lambda arg1, arg2: flag := registers[arg1] > registers[arg2], "GTE": lambda arg1, arg2: flag := registers[arg1] >= registers[arg2], "INC": lambda arg1: registers[arg1] += 1, "DEC": lambda arg1: registers[arg1] -= 1, "JMP": lambda arg1: ip := arg1, "JT": lambda arg1: ip := arg1 if flag else ip + 1, "JF": lambda arg1: ip := arg1 if not flag else ip + 1, "LOAD": lambda arg1, arg2: registers[arg1] := memory[arg2], "STORE": lambda arg1, arg2: memory[arg2] := registers[arg1], "HCF": lambda: exit(0), } # Split the program into lines. lines = program.split("\n") # Create a dictionary of labels and their corresponding line numbers. labels = {} for line in lines: if ":" in line: label, _ = line.split(":") labels[label] = lines.index(line) # Execute the program. while ip < len(lines): # Get the current line. line = lines[ip] # Split the line into the instruction and arguments. instruction, *args = line.split() # Convert the arguments to integers. args = [int(arg) if arg.isdigit() else arg for arg in args] # Execute the instruction. instructions[instruction](*args) # Increment the instruction pointer. ip += 1 # Return the resulting memory state. return memory answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
File "/usr/src/app/main.py", line 21
"SET": lambda arg1, arg2: registers[arg1] := arg2,
^^
SyntaxError: invalid syntax
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | def evaluate(program): """ Evaluate an assembly language program and return the resulting memory state. Args: program (str): The assembly language program to evaluate. Returns: list: The resulting memory state. """ # Initialize the registers, flag, memory, and instruction pointer. registers = [0] * 8 flag = False memory = [0] * 100 ip = 0 # Parse the program into instructions. instructions = [] for line in program.splitlines(): if line.strip(): # Ignore empty lines op, *args = line.split() instructions.append((op, args)) # Execute the instructions. while ip < len(instructions): op, args = instructions[ip] # Handle each instruction type. if op == "SET": registers[int(args[0][1:]) - 1] = int(args[1]) elif op in ("ADD", "SUB", "MUL", "DIV", "MOD"): rx, ry, rz = map(int, args) registers[rx - 1] = getattr(registers[ry - 1], op)(registers[rz - 1]) elif op in ("EQ", "NEQ", "LT", "LTE", "GT", "GTE"): rx, ry = map(int, args) flag = getattr(registers[rx - 1], op)(registers[ry - 1]) elif op in ("INC", "DEC"): rx = int(args[0][1:]) registers[rx - 1] = getattr(registers[rx - 1], op)() elif op == "JMP": ip = instructions.index(args[0] + ":", ip + 1) - 1 elif op in ("JT", "JF"): if (op == "JT" and flag) or (op == "JF" and not flag): ip = instructions.index(args[0] + ":", ip + 1) - 1 elif op == "LOAD": rx, m = map(int, args) registers[rx - 1] = memory[m] elif op == "STORE": rx, m = map(int, args) memory[m] = registers[rx - 1] elif op == "HCF": break # Increment the instruction pointer. ip += 1 # Return the resulting memory state. return memory |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | def evaluate(program): """ Evaluate an assembly language program and return the resulting memory state. Args: program (str): The assembly language program to evaluate. Returns: list: The resulting memory state. """ # Initialize the registers, flag, memory, and instruction pointer. registers = [0] * 8 flag = False memory = [0] * 100 ip = 0 # Parse the program into instructions. instructions = [] for line in program.splitlines(): if line.strip(): # Ignore empty lines op, *args = line.split() instructions.append((op, args)) # Execute the instructions. while ip < len(instructions): op, args = instructions[ip] # Handle each instruction type. if op == "SET": registers[int(args[0][1:]) - 1] = int(args[1]) elif op in ("ADD", "SUB", "MUL", "DIV", "MOD"): rx, ry, rz = map(int, args) registers[rx - 1] = getattr(registers[ry - 1], op)(registers[rz - 1]) elif op in ("EQ", "NEQ", "LT", "LTE", "GT", "GTE"): rx, ry = map(int, args) flag = getattr(registers[rx - 1], op)(registers[ry - 1]) elif op in ("INC", "DEC"): rx = int(args[0][1:]) registers[rx - 1] = getattr(registers[rx - 1], op)() elif op == "JMP": ip = instructions.index(args[0] + ":", ip + 1) - 1 elif op in ("JT", "JF"): if (op == "JT" and flag) or (op == "JF" and not flag): ip = instructions.index(args[0] + ":", ip + 1) - 1 elif op == "LOAD": rx, m = map(int, args) registers[rx - 1] = memory[m] elif op == "STORE": rx, m = map(int, args) memory[m] = registers[rx - 1] elif op == "HCF": break # Increment the instruction pointer. ip += 1 # Return the resulting memory state. return memory |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | def evaluate(program): """ Evaluate an assembly language program and return the resulting memory state. Args: program (str): The assembly language program to evaluate. Returns: list: The resulting memory state. """ # Initialize the registers, flag, memory, and instruction pointer. registers = [0] * 8 flag = False memory = [0] * 100 ip = 0 # Parse the program into instructions. instructions = [] for line in program.splitlines(): if line.strip(): # Ignore empty lines op, *args = line.split() instructions.append((op, args)) # Execute the instructions. while ip < len(instructions): op, args = instructions[ip] # Handle each instruction type. if op == "SET": registers[int(args[0][1:]) - 1] = int(args[1]) elif op in ("ADD", "SUB", "MUL", "DIV", "MOD"): rx, ry, rz = map(int, args) registers[rx - 1] = getattr(registers[ry - 1], op)(registers[rz - 1]) elif op in ("EQ", "NEQ", "LT", "LTE", "GT", "GTE"): rx, ry = map(int, args) flag = getattr(registers[rx - 1], op)(registers[ry - 1]) elif op in ("INC", "DEC"): rx = int(args[0][1:]) registers[rx - 1] = getattr(registers[rx - 1], op)() elif op == "JMP": ip = instructions.index(args[0] + ":", ip + 1) - 1 elif op in ("JT", "JF"): if (op == "JT" and flag) or (op == "JF" and not flag): ip = instructions.index(args[0] + ":", ip + 1) - 1 elif op == "LOAD": rx, m = map(int, args) registers[rx - 1] = memory[m] elif op == "STORE": rx, m = map(int, args) memory[m] = registers[rx - 1] elif op == "HCF": break # Increment the instruction pointer. ip += 1 # Return the resulting memory state. return memory answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 66, in <module>
answer = evaluate("""
^^^^^^^^^^^^
File "/usr/src/app/main.py", line 34, in evaluate
rx, ry, rz = map(int, args)
^^^^^^^^^^
ValueError: invalid literal for int() with base 10: 'R3'
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | def evaluate(program): """ Evaluate an assembly program and return the resulting memory state. Args: program (str): The assembly program to evaluate. Returns: list: The resulting memory state. """ # Initialize the registers, flag, and memory. registers = [0] * 8 flag = False memory = [0] * 100 instruction_pointer = 0 # Parse the program. instructions = program.split("\n") labels = {} for instruction in instructions: if ":" in instruction: label, instruction = instruction.split(":") labels[label] = instruction_pointer instruction_pointer += 1 # Execute the program. while instruction_pointer < len(instructions): instruction = instructions[instruction_pointer].split() op = instruction[0] # Handle each instruction type. if op == "SET": registers[int(instruction[1]) - 1] = int(instruction[2]) elif op == "ADD": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] + registers[int(instruction[3]) - 1] elif op == "SUB": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] - registers[int(instruction[3]) - 1] elif op == "MUL": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] * registers[int(instruction[3]) - 1] elif op == "DIV": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] // registers[int(instruction[3]) - 1] elif op == "MOD": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] % registers[int(instruction[3]) - 1] elif op == "EQ": flag = registers[int(instruction[1]) - 1] == registers[int(instruction[2]) - 1] elif op == "NEQ": flag = registers[int(instruction[1]) - 1] != registers[int(instruction[2]) - 1] elif op == "LT": flag = registers[int(instruction[1]) - 1] < registers[int(instruction[2]) - 1] elif op == "LTE": flag = registers[int(instruction[1]) - 1] <= registers[int(instruction[2]) - 1] elif op == "GT": flag = registers[int(instruction[1]) - 1] > registers[int(instruction[2]) - 1] elif op == "GTE": flag = registers[int(instruction[1]) - 1] >= registers[int(instruction[2]) - 1] elif op == "INC": registers[int(instruction[1]) - 1] += 1 elif op == "DEC": registers[int(instruction[1]) - 1] -= 1 elif op == "JMP": instruction_pointer = labels[instruction[1]] - 1 elif op == "JT": if flag: instruction_pointer = labels[instruction[1]] - 1 elif op == "JF": if not flag: instruction_pointer = labels[instruction[1]] - 1 elif op == "LOAD": registers[int(instruction[1]) - 1] = memory[int(instruction[2])] elif op == "STORE": memory[int(instruction[2])] = registers[int(instruction[1]) - 1] elif op == "HCF": break # Return the memory state. return memory |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | def evaluate(program): """ Evaluate an assembly program and return the resulting memory state. Args: program (str): The assembly program to evaluate. Returns: list: The resulting memory state. """ # Initialize the registers, flag, and memory. registers = [0] * 8 flag = False memory = [0] * 100 instruction_pointer = 0 # Parse the program. instructions = program.split("\n") labels = {} for instruction in instructions: if ":" in instruction: label, instruction = instruction.split(":") labels[label] = instruction_pointer instruction_pointer += 1 # Execute the program. while instruction_pointer < len(instructions): instruction = instructions[instruction_pointer].split() op = instruction[0] # Handle each instruction type. if op == "SET": registers[int(instruction[1]) - 1] = int(instruction[2]) elif op == "ADD": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] + registers[int(instruction[3]) - 1] elif op == "SUB": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] - registers[int(instruction[3]) - 1] elif op == "MUL": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] * registers[int(instruction[3]) - 1] elif op == "DIV": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] // registers[int(instruction[3]) - 1] elif op == "MOD": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] % registers[int(instruction[3]) - 1] elif op == "EQ": flag = registers[int(instruction[1]) - 1] == registers[int(instruction[2]) - 1] elif op == "NEQ": flag = registers[int(instruction[1]) - 1] != registers[int(instruction[2]) - 1] elif op == "LT": flag = registers[int(instruction[1]) - 1] < registers[int(instruction[2]) - 1] elif op == "LTE": flag = registers[int(instruction[1]) - 1] <= registers[int(instruction[2]) - 1] elif op == "GT": flag = registers[int(instruction[1]) - 1] > registers[int(instruction[2]) - 1] elif op == "GTE": flag = registers[int(instruction[1]) - 1] >= registers[int(instruction[2]) - 1] elif op == "INC": registers[int(instruction[1]) - 1] += 1 elif op == "DEC": registers[int(instruction[1]) - 1] -= 1 elif op == "JMP": instruction_pointer = labels[instruction[1]] - 1 elif op == "JT": if flag: instruction_pointer = labels[instruction[1]] - 1 elif op == "JF": if not flag: instruction_pointer = labels[instruction[1]] - 1 elif op == "LOAD": registers[int(instruction[1]) - 1] = memory[int(instruction[2])] elif op == "STORE": memory[int(instruction[2])] = registers[int(instruction[1]) - 1] elif op == "HCF": break # Return the memory state. return memory |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | def evaluate(program): """ Evaluate an assembly program and return the resulting memory state. Args: program (str): The assembly program to evaluate. Returns: list: The resulting memory state. """ # Initialize the registers, flag, and memory. registers = [0] * 8 flag = False memory = [0] * 100 instruction_pointer = 0 # Parse the program. instructions = program.split("\n") labels = {} for instruction in instructions: if ":" in instruction: label, instruction = instruction.split(":") labels[label] = instruction_pointer instruction_pointer += 1 # Execute the program. while instruction_pointer < len(instructions): instruction = instructions[instruction_pointer].split() op = instruction[0] # Handle each instruction type. if op == "SET": registers[int(instruction[1]) - 1] = int(instruction[2]) elif op == "ADD": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] + registers[int(instruction[3]) - 1] elif op == "SUB": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] - registers[int(instruction[3]) - 1] elif op == "MUL": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] * registers[int(instruction[3]) - 1] elif op == "DIV": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] // registers[int(instruction[3]) - 1] elif op == "MOD": registers[int(instruction[1]) - 1] = registers[int(instruction[2]) - 1] % registers[int(instruction[3]) - 1] elif op == "EQ": flag = registers[int(instruction[1]) - 1] == registers[int(instruction[2]) - 1] elif op == "NEQ": flag = registers[int(instruction[1]) - 1] != registers[int(instruction[2]) - 1] elif op == "LT": flag = registers[int(instruction[1]) - 1] < registers[int(instruction[2]) - 1] elif op == "LTE": flag = registers[int(instruction[1]) - 1] <= registers[int(instruction[2]) - 1] elif op == "GT": flag = registers[int(instruction[1]) - 1] > registers[int(instruction[2]) - 1] elif op == "GTE": flag = registers[int(instruction[1]) - 1] >= registers[int(instruction[2]) - 1] elif op == "INC": registers[int(instruction[1]) - 1] += 1 elif op == "DEC": registers[int(instruction[1]) - 1] -= 1 elif op == "JMP": instruction_pointer = labels[instruction[1]] - 1 elif op == "JT": if flag: instruction_pointer = labels[instruction[1]] - 1 elif op == "JF": if not flag: instruction_pointer = labels[instruction[1]] - 1 elif op == "LOAD": registers[int(instruction[1]) - 1] = memory[int(instruction[2])] elif op == "STORE": memory[int(instruction[2])] = registers[int(instruction[1]) - 1] elif op == "HCF": break # Return the memory state. return memory answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 97, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] instead of [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
Testing if the previous output contains the string All tests passed
: False