Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def evaluate(program):
  """
  Evaluates an assembly program and returns the resulting memory state.

  Args:
      program: The assembly program as a string.

  Returns:
      The resulting memory state as a list of integers.
  """

  # Initialize registers, flag, and memory
  registers = {f"R{i+1}": 0 for i in range(8)}
  flag = False
  memory = [0] * 100
  ip = 0

  # Define instructions
  instructions = {
      "SET": lambda arg1, arg2: set_reg(registers, arg1, arg2),
      "ADD": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x + y),
      "SUB": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x - y),
      "MUL": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x * y),
      "DIV": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x // y),
      "MOD": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x % y),
      "EQ": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x == y),
      "NEQ": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x != y),
      "LT": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x < y),
      "LTE": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x <= y),
      "GT": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x > y),
      "GTE": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x >= y),
      "INC": lambda arg1: inc_dec(registers, arg1, 1),
      "DEC": lambda arg1: inc_dec(registers, arg1, -1),
      "JMP": lambda arg1: jump(arg1),
      "JT": lambda arg1: jump_if(arg1, flag),
      "JF": lambda arg1: jump_if(arg1, not flag),
      "LOAD": lambda arg1, arg2: load(registers, memory, arg1, arg2),
      "STORE": lambda arg1, arg2: store(registers, memory, arg1, arg2),
      "HCF": lambda: halt(),
  }

  # Parse program and create label dictionary
  lines = program.splitlines()
  labels = {line.split(":")[0].lower(): i for i, line in enumerate(lines) if line.endswith(":")}

  # Execution loop
  while True:
    # Fetch instruction
    instruction = lines[ip].split()
    op, args = instruction[0].upper(), instruction[1:]

    # Execute instruction
    try:
      instructions[op](*args)
    except KeyError:
      raise Exception(f"Invalid instruction: {op}")

    # Check for halt
    if op == "HCF":
      break

    # Increment instruction pointer
    ip += 1

  # Return memory state
  return memory

# Helper functions
def set_reg(registers, reg, value):
  registers[reg] = int(value)

def binary_op(registers, reg1, reg2, reg3, op):
  registers[reg1] = op(registers[reg2], registers[reg3])

def compare(registers, reg1, reg2, cmp):
  global flag
  flag = cmp(registers[reg1], registers[reg2])

def inc_dec(registers, reg, value):
  registers[reg] += value

def jump(label):
  global ip
  ip = labels[label.lower()]

def jump_if(label, condition):
  if condition:
    jump(label)

def load(registers, memory, reg, address):
  registers[reg] = memory[int(address)]

def store(registers, memory, reg, address):
  memory[int(address)] = registers[reg]

def halt():
  raise SystemExit()
**Usage:**
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
program = """
SET R1 0      // Counter for storing squares
SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

result = evaluate(program)
print(result)  # Output: [1, 4, 9, 16, 25, ...]

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def evaluate(program):
  """
  Evaluates an assembly program and returns the resulting memory state.

  Args:
      program: The assembly program as a string.

  Returns:
      The resulting memory state as a list of integers.
  """

  # Initialize registers, flag, and memory
  registers = {f"R{i+1}": 0 for i in range(8)}
  flag = False
  memory = [0] * 100
  ip = 0

  # Define instructions
  instructions = {
      "SET": lambda arg1, arg2: set_reg(registers, arg1, arg2),
      "ADD": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x + y),
      "SUB": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x - y),
      "MUL": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x * y),
      "DIV": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x // y),
      "MOD": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x % y),
      "EQ": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x == y),
      "NEQ": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x != y),
      "LT": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x < y),
      "LTE": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x <= y),
      "GT": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x > y),
      "GTE": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x >= y),
      "INC": lambda arg1: inc_dec(registers, arg1, 1),
      "DEC": lambda arg1: inc_dec(registers, arg1, -1),
      "JMP": lambda arg1: jump(arg1),
      "JT": lambda arg1: jump_if(arg1, flag),
      "JF": lambda arg1: jump_if(arg1, not flag),
      "LOAD": lambda arg1, arg2: load(registers, memory, arg1, arg2),
      "STORE": lambda arg1, arg2: store(registers, memory, arg1, arg2),
      "HCF": lambda: halt(),
  }

  # Parse program and create label dictionary
  lines = program.splitlines()
  labels = {line.split(":")[0].lower(): i for i, line in enumerate(lines) if line.endswith(":")}

  # Execution loop
  while True:
    # Fetch instruction
    instruction = lines[ip].split()
    op, args = instruction[0].upper(), instruction[1:]

    # Execute instruction
    try:
      instructions[op](*args)
    except KeyError:
      raise Exception(f"Invalid instruction: {op}")

    # Check for halt
    if op == "HCF":
      break

    # Increment instruction pointer
    ip += 1

  # Return memory state
  return memory

# Helper functions
def set_reg(registers, reg, value):
  registers[reg] = int(value)

def binary_op(registers, reg1, reg2, reg3, op):
  registers[reg1] = op(registers[reg2], registers[reg3])

def compare(registers, reg1, reg2, cmp):
  global flag
  flag = cmp(registers[reg1], registers[reg2])

def inc_dec(registers, reg, value):
  registers[reg] += value

def jump(label):
  global ip
  ip = labels[label.lower()]

def jump_if(label, condition):
  if condition:
    jump(label)

def load(registers, memory, reg, address):
  registers[reg] = memory[int(address)]

def store(registers, memory, reg, address):
  memory[int(address)] = registers[reg]

def halt():
  raise SystemExit()

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def evaluate(program):
  """
  Evaluates an assembly program and returns the resulting memory state.

  Args:
      program: The assembly program as a string.

  Returns:
      The resulting memory state as a list of integers.
  """

  # Initialize registers, flag, and memory
  registers = {f"R{i+1}": 0 for i in range(8)}
  flag = False
  memory = [0] * 100
  ip = 0

  # Define instructions
  instructions = {
      "SET": lambda arg1, arg2: set_reg(registers, arg1, arg2),
      "ADD": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x + y),
      "SUB": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x - y),
      "MUL": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x * y),
      "DIV": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x // y),
      "MOD": lambda arg1, arg2, arg3: binary_op(registers, arg1, arg2, arg3, lambda x, y: x % y),
      "EQ": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x == y),
      "NEQ": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x != y),
      "LT": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x < y),
      "LTE": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x <= y),
      "GT": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x > y),
      "GTE": lambda arg1, arg2: compare(registers, arg1, arg2, lambda x, y: x >= y),
      "INC": lambda arg1: inc_dec(registers, arg1, 1),
      "DEC": lambda arg1: inc_dec(registers, arg1, -1),
      "JMP": lambda arg1: jump(arg1),
      "JT": lambda arg1: jump_if(arg1, flag),
      "JF": lambda arg1: jump_if(arg1, not flag),
      "LOAD": lambda arg1, arg2: load(registers, memory, arg1, arg2),
      "STORE": lambda arg1, arg2: store(registers, memory, arg1, arg2),
      "HCF": lambda: halt(),
  }

  # Parse program and create label dictionary
  lines = program.splitlines()
  labels = {line.split(":")[0].lower(): i for i, line in enumerate(lines) if line.endswith(":")}

  # Execution loop
  while True:
    # Fetch instruction
    instruction = lines[ip].split()
    op, args = instruction[0].upper(), instruction[1:]

    # Execute instruction
    try:
      instructions[op](*args)
    except KeyError:
      raise Exception(f"Invalid instruction: {op}")

    # Check for halt
    if op == "HCF":
      break

    # Increment instruction pointer
    ip += 1

  # Return memory state
  return memory

# Helper functions
def set_reg(registers, reg, value):
  registers[reg] = int(value)

def binary_op(registers, reg1, reg2, reg3, op):
  registers[reg1] = op(registers[reg2], registers[reg3])

def compare(registers, reg1, reg2, cmp):
  global flag
  flag = cmp(registers[reg1], registers[reg2])

def inc_dec(registers, reg, value):
  registers[reg] += value

def jump(label):
  global ip
  ip = labels[label.lower()]

def jump_if(label, condition):
  if condition:
    jump(label)

def load(registers, memory, reg, address):
  registers[reg] = memory[int(address)]

def store(registers, memory, reg, address):
  memory[int(address)] = registers[reg]

def halt():
  raise SystemExit()





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 104, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 51, in evaluate op, args = instruction[0].upper(), instruction[1:] IndexError: list index out of range

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def evaluate(program):
  """
  Evaluates an assembly language program and returns the resulting memory state.

  Args:
    program: A string containing the assembly language program.

  Returns:
    A list containing the values of the memory addresses after the program has been executed.
  """

  # Initialize registers, flag, memory, and instruction pointer
  registers = [0] * 8
  flag = False
  memory = [0] * 100
  instruction_pointer = 0

  # Parse the program into a list of instructions
  instructions = program.splitlines()

  # Main loop of the interpreter
  while instruction_pointer < len(instructions):
    # Get the current instruction
    instruction = instructions[instruction_pointer]

    # Split the instruction into opcode and arguments
    opcode, *args = instruction.split()

    # Execute the instruction
    if opcode == "SET":
      register, value = args
      registers[int(register[1:]) - 1] = int(value)
    elif opcode in ("ADD", "SUB", "MUL", "DIV", "MOD"):
      dest, arg1, arg2 = args
      registers[int(dest[1:]) - 1] = eval(f"{registers[int(arg1[1:]) - 1]} {opcode.lower()} {registers[int(arg2[1:]) - 1]}")
    elif opcode in ("EQ", "NEQ", "LT", "LTE", "GT", "GTE"):
      arg1, arg2 = args
      flag = eval(f"{registers[int(arg1[1:]) - 1]} {opcode.lower()} {registers[int(arg2[1:]) - 1]}")
    elif opcode == "INC":
      register = args[0]
      registers[int(register[1:]) - 1] += 1
    elif opcode == "DEC":
      register = args[0]
      registers[int(register[1:]) - 1] -= 1
    elif opcode == "JMP":
      label = args[0]
      instruction_pointer = instructions.index(label + ":") - 1
    elif opcode in ("JT", "JF"):
      label = args[0]
      if (opcode == "JT" and flag) or (opcode == "JF" and not flag):
        instruction_pointer = instructions.index(label + ":") - 1
    elif opcode == "LOAD":
      register, address = args
      registers[int(register[1:]) - 1] = memory[int(address)]
    elif opcode == "STORE":
      register, address = args
      memory[int(address)] = registers[int(register[1:]) - 1]
    elif opcode == "HCF":
      break
    else:
      raise ValueError(f"Invalid opcode: {opcode}")

    # Increment the instruction pointer
    instruction_pointer += 1

  # Return the final memory state
  return memory

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def evaluate(program):
  """
  Evaluates an assembly language program and returns the resulting memory state.

  Args:
    program: A string containing the assembly language program.

  Returns:
    A list containing the values of the memory addresses after the program has been executed.
  """

  # Initialize registers, flag, memory, and instruction pointer
  registers = [0] * 8
  flag = False
  memory = [0] * 100
  instruction_pointer = 0

  # Parse the program into a list of instructions
  instructions = program.splitlines()

  # Main loop of the interpreter
  while instruction_pointer < len(instructions):
    # Get the current instruction
    instruction = instructions[instruction_pointer]

    # Split the instruction into opcode and arguments
    opcode, *args = instruction.split()

    # Execute the instruction
    if opcode == "SET":
      register, value = args
      registers[int(register[1:]) - 1] = int(value)
    elif opcode in ("ADD", "SUB", "MUL", "DIV", "MOD"):
      dest, arg1, arg2 = args
      registers[int(dest[1:]) - 1] = eval(f"{registers[int(arg1[1:]) - 1]} {opcode.lower()} {registers[int(arg2[1:]) - 1]}")
    elif opcode in ("EQ", "NEQ", "LT", "LTE", "GT", "GTE"):
      arg1, arg2 = args
      flag = eval(f"{registers[int(arg1[1:]) - 1]} {opcode.lower()} {registers[int(arg2[1:]) - 1]}")
    elif opcode == "INC":
      register = args[0]
      registers[int(register[1:]) - 1] += 1
    elif opcode == "DEC":
      register = args[0]
      registers[int(register[1:]) - 1] -= 1
    elif opcode == "JMP":
      label = args[0]
      instruction_pointer = instructions.index(label + ":") - 1
    elif opcode in ("JT", "JF"):
      label = args[0]
      if (opcode == "JT" and flag) or (opcode == "JF" and not flag):
        instruction_pointer = instructions.index(label + ":") - 1
    elif opcode == "LOAD":
      register, address = args
      registers[int(register[1:]) - 1] = memory[int(address)]
    elif opcode == "STORE":
      register, address = args
      memory[int(address)] = registers[int(register[1:]) - 1]
    elif opcode == "HCF":
      break
    else:
      raise ValueError(f"Invalid opcode: {opcode}")

    # Increment the instruction pointer
    instruction_pointer += 1

  # Return the final memory state
  return memory

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def evaluate(program):
  """
  Evaluates an assembly language program and returns the resulting memory state.

  Args:
    program: A string containing the assembly language program.

  Returns:
    A list containing the values of the memory addresses after the program has been executed.
  """

  # Initialize registers, flag, memory, and instruction pointer
  registers = [0] * 8
  flag = False
  memory = [0] * 100
  instruction_pointer = 0

  # Parse the program into a list of instructions
  instructions = program.splitlines()

  # Main loop of the interpreter
  while instruction_pointer < len(instructions):
    # Get the current instruction
    instruction = instructions[instruction_pointer]

    # Split the instruction into opcode and arguments
    opcode, *args = instruction.split()

    # Execute the instruction
    if opcode == "SET":
      register, value = args
      registers[int(register[1:]) - 1] = int(value)
    elif opcode in ("ADD", "SUB", "MUL", "DIV", "MOD"):
      dest, arg1, arg2 = args
      registers[int(dest[1:]) - 1] = eval(f"{registers[int(arg1[1:]) - 1]} {opcode.lower()} {registers[int(arg2[1:]) - 1]}")
    elif opcode in ("EQ", "NEQ", "LT", "LTE", "GT", "GTE"):
      arg1, arg2 = args
      flag = eval(f"{registers[int(arg1[1:]) - 1]} {opcode.lower()} {registers[int(arg2[1:]) - 1]}")
    elif opcode == "INC":
      register = args[0]
      registers[int(register[1:]) - 1] += 1
    elif opcode == "DEC":
      register = args[0]
      registers[int(register[1:]) - 1] -= 1
    elif opcode == "JMP":
      label = args[0]
      instruction_pointer = instructions.index(label + ":") - 1
    elif opcode in ("JT", "JF"):
      label = args[0]
      if (opcode == "JT" and flag) or (opcode == "JF" and not flag):
        instruction_pointer = instructions.index(label + ":") - 1
    elif opcode == "LOAD":
      register, address = args
      registers[int(register[1:]) - 1] = memory[int(address)]
    elif opcode == "STORE":
      register, address = args
      memory[int(address)] = registers[int(register[1:]) - 1]
    elif opcode == "HCF":
      break
    else:
      raise ValueError(f"Invalid opcode: {opcode}")

    # Increment the instruction pointer
    instruction_pointer += 1

  # Return the final memory state
  return memory





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 74, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 28, in evaluate opcode, *args = instruction.split() ValueError: not enough values to unpack (expected at least 1, got 0)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
def evaluate(program):
  """
  Evaluates an assembly program and returns the resulting memory state.

  Args:
    program: A string containing the assembly program.

  Returns:
    A list representing the final memory state.
  """

  # Initialize registers, flag, and memory
  registers = [0] * 8
  flag = False
  memory = [0] * 100
  instruction_pointer = 0

  # Define functions for each instruction
  def SET(rx, c):
    registers[rx - 1] = c

  def ADD(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] + registers[rz - 1]

  def SUB(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] - registers[rz - 1]

  def MUL(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] * registers[rz - 1]

  def DIV(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] // registers[rz - 1]

  def MOD(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] % registers[rz - 1]

  def EQ(rx, ry):
    flag = registers[rx - 1] == registers[ry - 1]

  def NEQ(rx, ry):
    flag = registers[rx - 1] != registers[ry - 1]

  def LT(rx, ry):
    flag = registers[rx - 1] < registers[ry - 1]

  def LTE(rx, ry):
    flag = registers[rx - 1] <= registers[ry - 1]

  def GT(rx, ry):
    flag = registers[rx - 1] > registers[ry - 1]

  def GTE(rx, ry):
    flag = registers[rx - 1] >= registers[ry - 1]

  def INC(rx):
    registers[rx - 1] += 1

  def DEC(rx):
    registers[rx - 1] -= 1

  def JMP(label):
    nonlocal instruction_pointer
    instruction_pointer = labels[label]

  def JT(label):
    if flag:
      JMP(label)

  def JF(label):
    if not flag:
      JMP(label)

  def LOAD(rx, m):
    registers[rx - 1] = memory[m]

  def STORE(rx, m):
    memory[m] = registers[rx - 1]

  def HCF():
    return memory

  # Parse the program and create a dictionary of labels
  lines = program.splitlines()
  labels = {}
  for line in lines:
    if line.endswith(":"):
      labels[line[:-1]] = instruction_pointer
    instruction_pointer += 1

  # Reset instruction pointer
  instruction_pointer = 0

  # Execute the program
  while True:
    line = lines[instruction_pointer]
    instruction, *args = line.split()

    # Execute the instruction
    if instruction == "SET":
      SET(int(args[0][1:]), int(args[1]))
    elif instruction == "ADD":
      ADD(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "SUB":
      SUB(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "MUL":
      MUL(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "DIV":
      DIV(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "MOD":
      MOD(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "EQ":
      EQ(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "NEQ":
      NEQ(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "LT":
      LT(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "LTE":
      LTE(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "GT":
      GT(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "GTE":
      GTE(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "INC":
      INC(int(args[0][1:]))
    elif instruction == "DEC":
      DEC(int(args[0][1:]))
    elif instruction == "JMP":
      JMP(args[0])
    elif instruction == "JT":
      JT(args[0])
    elif instruction == "JF":
      JF(args[0])
    elif instruction == "LOAD":
      LOAD(int(args[0][1:]), int(args[1]))
    elif instruction == "STORE":
      STORE(int(args[0][1:]), int(args[1]))
    elif instruction == "HCF":
      return HCF()

    # Increment instruction pointer
    instruction_pointer += 1
**Example Usage:**
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
program = """
SET R1 0
SET R2 1

loop:
MUL R3 R2 R2
STORE R3 R1
INC R1
INC R2
SET R3 20
EQ R1 R3
JF loop

end:
HCF
"""

result = evaluate(program)
print(result)  # Output: [1, 4, 9, 16, 25, ...]

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
def evaluate(program):
  """
  Evaluates an assembly program and returns the resulting memory state.

  Args:
    program: A string containing the assembly program.

  Returns:
    A list representing the final memory state.
  """

  # Initialize registers, flag, and memory
  registers = [0] * 8
  flag = False
  memory = [0] * 100
  instruction_pointer = 0

  # Define functions for each instruction
  def SET(rx, c):
    registers[rx - 1] = c

  def ADD(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] + registers[rz - 1]

  def SUB(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] - registers[rz - 1]

  def MUL(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] * registers[rz - 1]

  def DIV(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] // registers[rz - 1]

  def MOD(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] % registers[rz - 1]

  def EQ(rx, ry):
    flag = registers[rx - 1] == registers[ry - 1]

  def NEQ(rx, ry):
    flag = registers[rx - 1] != registers[ry - 1]

  def LT(rx, ry):
    flag = registers[rx - 1] < registers[ry - 1]

  def LTE(rx, ry):
    flag = registers[rx - 1] <= registers[ry - 1]

  def GT(rx, ry):
    flag = registers[rx - 1] > registers[ry - 1]

  def GTE(rx, ry):
    flag = registers[rx - 1] >= registers[ry - 1]

  def INC(rx):
    registers[rx - 1] += 1

  def DEC(rx):
    registers[rx - 1] -= 1

  def JMP(label):
    nonlocal instruction_pointer
    instruction_pointer = labels[label]

  def JT(label):
    if flag:
      JMP(label)

  def JF(label):
    if not flag:
      JMP(label)

  def LOAD(rx, m):
    registers[rx - 1] = memory[m]

  def STORE(rx, m):
    memory[m] = registers[rx - 1]

  def HCF():
    return memory

  # Parse the program and create a dictionary of labels
  lines = program.splitlines()
  labels = {}
  for line in lines:
    if line.endswith(":"):
      labels[line[:-1]] = instruction_pointer
    instruction_pointer += 1

  # Reset instruction pointer
  instruction_pointer = 0

  # Execute the program
  while True:
    line = lines[instruction_pointer]
    instruction, *args = line.split()

    # Execute the instruction
    if instruction == "SET":
      SET(int(args[0][1:]), int(args[1]))
    elif instruction == "ADD":
      ADD(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "SUB":
      SUB(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "MUL":
      MUL(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "DIV":
      DIV(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "MOD":
      MOD(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "EQ":
      EQ(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "NEQ":
      NEQ(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "LT":
      LT(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "LTE":
      LTE(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "GT":
      GT(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "GTE":
      GTE(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "INC":
      INC(int(args[0][1:]))
    elif instruction == "DEC":
      DEC(int(args[0][1:]))
    elif instruction == "JMP":
      JMP(args[0])
    elif instruction == "JT":
      JT(args[0])
    elif instruction == "JF":
      JF(args[0])
    elif instruction == "LOAD":
      LOAD(int(args[0][1:]), int(args[1]))
    elif instruction == "STORE":
      STORE(int(args[0][1:]), int(args[1]))
    elif instruction == "HCF":
      return HCF()

    # Increment instruction pointer
    instruction_pointer += 1

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def evaluate(program):
  """
  Evaluates an assembly program and returns the resulting memory state.

  Args:
    program: A string containing the assembly program.

  Returns:
    A list representing the final memory state.
  """

  # Initialize registers, flag, and memory
  registers = [0] * 8
  flag = False
  memory = [0] * 100
  instruction_pointer = 0

  # Define functions for each instruction
  def SET(rx, c):
    registers[rx - 1] = c

  def ADD(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] + registers[rz - 1]

  def SUB(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] - registers[rz - 1]

  def MUL(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] * registers[rz - 1]

  def DIV(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] // registers[rz - 1]

  def MOD(rx, ry, rz):
    registers[rx - 1] = registers[ry - 1] % registers[rz - 1]

  def EQ(rx, ry):
    flag = registers[rx - 1] == registers[ry - 1]

  def NEQ(rx, ry):
    flag = registers[rx - 1] != registers[ry - 1]

  def LT(rx, ry):
    flag = registers[rx - 1] < registers[ry - 1]

  def LTE(rx, ry):
    flag = registers[rx - 1] <= registers[ry - 1]

  def GT(rx, ry):
    flag = registers[rx - 1] > registers[ry - 1]

  def GTE(rx, ry):
    flag = registers[rx - 1] >= registers[ry - 1]

  def INC(rx):
    registers[rx - 1] += 1

  def DEC(rx):
    registers[rx - 1] -= 1

  def JMP(label):
    nonlocal instruction_pointer
    instruction_pointer = labels[label]

  def JT(label):
    if flag:
      JMP(label)

  def JF(label):
    if not flag:
      JMP(label)

  def LOAD(rx, m):
    registers[rx - 1] = memory[m]

  def STORE(rx, m):
    memory[m] = registers[rx - 1]

  def HCF():
    return memory

  # Parse the program and create a dictionary of labels
  lines = program.splitlines()
  labels = {}
  for line in lines:
    if line.endswith(":"):
      labels[line[:-1]] = instruction_pointer
    instruction_pointer += 1

  # Reset instruction pointer
  instruction_pointer = 0

  # Execute the program
  while True:
    line = lines[instruction_pointer]
    instruction, *args = line.split()

    # Execute the instruction
    if instruction == "SET":
      SET(int(args[0][1:]), int(args[1]))
    elif instruction == "ADD":
      ADD(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "SUB":
      SUB(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "MUL":
      MUL(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "DIV":
      DIV(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "MOD":
      MOD(int(args[0][1:]), int(args[1][1:]), int(args[2][1:]))
    elif instruction == "EQ":
      EQ(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "NEQ":
      NEQ(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "LT":
      LT(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "LTE":
      LTE(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "GT":
      GT(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "GTE":
      GTE(int(args[0][1:]), int(args[1][1:]))
    elif instruction == "INC":
      INC(int(args[0][1:]))
    elif instruction == "DEC":
      DEC(int(args[0][1:]))
    elif instruction == "JMP":
      JMP(args[0])
    elif instruction == "JT":
      JT(args[0])
    elif instruction == "JF":
      JF(args[0])
    elif instruction == "LOAD":
      LOAD(int(args[0][1:]), int(args[1]))
    elif instruction == "STORE":
      STORE(int(args[0][1:]), int(args[1]))
    elif instruction == "HCF":
      return HCF()

    # Increment instruction pointer
    instruction_pointer += 1





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 148, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 97, in evaluate instruction, *args = line.split() ValueError: not enough values to unpack (expected at least 1, got 0)

Substring Evaluation

Testing if the previous output contains the string All tests passed: False