Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | def evaluate(program): """ Evaluates the given assembly program and returns the resulting memory state. Args: program (str): The assembly program as a string. Returns: list: The memory state after running the program. """ # Initialize registers, memory, and flag registers = {f"R{i+1}": 0 for i in range(8)} memory = [0] * 100 flag = False instruction_pointer = 0 # Parse program into lines and build label map lines = program.strip().split("\n") labels = {} for i, line in enumerate(lines): line = line.strip() if ":" in line: label, instruction = line.split(":") labels[label.strip()] = i # Execution loop while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() parts = line.split() # Skip labels if ":" in line: instruction_pointer += 1 continue # Instruction parsing and execution opcode = parts[0] operands = parts[1:] if opcode == "SET": registers[operands[0]] = int(operands[1]) elif opcode in ("ADD", "SUB", "MUL", "DIV", "MOD"): op1 = registers[operands[1]] op2 = registers[operands[2]] if opcode == "ADD": registers[operands[0]] = op1 + op2 elif opcode == "SUB": registers[operands[0]] = op1 - op2 elif opcode == "MUL": registers[operands[0]] = op1 * op2 elif opcode == "DIV": registers[operands[0]] = op1 // op2 # Integer division elif opcode == "MOD": registers[operands[0]] = op1 % op2 elif opcode == "EQ": flag = registers[operands[0]] == registers[operands[1]] elif opcode == "NEQ": flag = registers[operands[0]] != registers[operands[1]] elif opcode == "LT": flag = registers[operands[0]] < registers[operands[1]] elif opcode == "LTE": flag = registers[operands[0]] <= registers[operands[1]] elif opcode == "GT": flag = registers[operands[0]] > registers[operands[1]] elif opcode == "GTE": flag = registers[operands[0]] >= registers[operands[1]] elif opcode == "INC": registers[operands[0]] += 1 elif opcode == "DEC": registers[operands[0]] -= 1 elif opcode == "JMP": instruction_pointer = labels[operands[0]] continue # Skip regular increment elif opcode == "JT": if flag: instruction_pointer = labels[operands[0]] continue elif opcode == "JF": if not flag: instruction_pointer = labels[operands[0]] continue elif opcode == "LOAD": registers[operands[0]] = memory[int(operands[1])] elif opcode == "STORE": memory[int(operands[1])] = registers[operands[0]] elif opcode == "HCF": break # Stop execution instruction_pointer += 1 return memory # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ result = evaluate(program) print(result[:20]) # Print the first 20 memory addresses |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | def evaluate(program): """ Evaluates the given assembly program and returns the resulting memory state. Args: program (str): The assembly program as a string. Returns: list: The memory state after running the program. """ # Initialize registers, memory, and flag registers = {f"R{i+1}": 0 for i in range(8)} memory = [0] * 100 flag = False instruction_pointer = 0 # Parse program into lines and build label map lines = program.strip().split("\n") labels = {} for i, line in enumerate(lines): line = line.strip() if ":" in line: label, instruction = line.split(":") labels[label.strip()] = i # Execution loop while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() parts = line.split() # Skip labels if ":" in line: instruction_pointer += 1 continue # Instruction parsing and execution opcode = parts[0] operands = parts[1:] if opcode == "SET": registers[operands[0]] = int(operands[1]) elif opcode in ("ADD", "SUB", "MUL", "DIV", "MOD"): op1 = registers[operands[1]] op2 = registers[operands[2]] if opcode == "ADD": registers[operands[0]] = op1 + op2 elif opcode == "SUB": registers[operands[0]] = op1 - op2 elif opcode == "MUL": registers[operands[0]] = op1 * op2 elif opcode == "DIV": registers[operands[0]] = op1 // op2 # Integer division elif opcode == "MOD": registers[operands[0]] = op1 % op2 elif opcode == "EQ": flag = registers[operands[0]] == registers[operands[1]] elif opcode == "NEQ": flag = registers[operands[0]] != registers[operands[1]] elif opcode == "LT": flag = registers[operands[0]] < registers[operands[1]] elif opcode == "LTE": flag = registers[operands[0]] <= registers[operands[1]] elif opcode == "GT": flag = registers[operands[0]] > registers[operands[1]] elif opcode == "GTE": flag = registers[operands[0]] >= registers[operands[1]] elif opcode == "INC": registers[operands[0]] += 1 elif opcode == "DEC": registers[operands[0]] -= 1 elif opcode == "JMP": instruction_pointer = labels[operands[0]] continue # Skip regular increment elif opcode == "JT": if flag: instruction_pointer = labels[operands[0]] continue elif opcode == "JF": if not flag: instruction_pointer = labels[operands[0]] continue elif opcode == "LOAD": registers[operands[0]] = memory[int(operands[1])] elif opcode == "STORE": memory[int(operands[1])] = registers[operands[0]] elif opcode == "HCF": break # Stop execution instruction_pointer += 1 return memory # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ result = evaluate(program) print(result[:20]) # Print the first 20 memory addresses |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | def evaluate(program): """ Evaluates the given assembly program and returns the resulting memory state. Args: program (str): The assembly program as a string. Returns: list: The memory state after running the program. """ # Initialize registers, memory, and flag registers = {f"R{i+1}": 0 for i in range(8)} memory = [0] * 100 flag = False instruction_pointer = 0 # Parse program into lines and build label map lines = program.strip().split("\n") labels = {} for i, line in enumerate(lines): line = line.strip() if ":" in line: label, instruction = line.split(":") labels[label.strip()] = i # Execution loop while instruction_pointer < len(lines): line = lines[instruction_pointer].strip() parts = line.split() # Skip labels if ":" in line: instruction_pointer += 1 continue # Instruction parsing and execution opcode = parts[0] operands = parts[1:] if opcode == "SET": registers[operands[0]] = int(operands[1]) elif opcode in ("ADD", "SUB", "MUL", "DIV", "MOD"): op1 = registers[operands[1]] op2 = registers[operands[2]] if opcode == "ADD": registers[operands[0]] = op1 + op2 elif opcode == "SUB": registers[operands[0]] = op1 - op2 elif opcode == "MUL": registers[operands[0]] = op1 * op2 elif opcode == "DIV": registers[operands[0]] = op1 // op2 # Integer division elif opcode == "MOD": registers[operands[0]] = op1 % op2 elif opcode == "EQ": flag = registers[operands[0]] == registers[operands[1]] elif opcode == "NEQ": flag = registers[operands[0]] != registers[operands[1]] elif opcode == "LT": flag = registers[operands[0]] < registers[operands[1]] elif opcode == "LTE": flag = registers[operands[0]] <= registers[operands[1]] elif opcode == "GT": flag = registers[operands[0]] > registers[operands[1]] elif opcode == "GTE": flag = registers[operands[0]] >= registers[operands[1]] elif opcode == "INC": registers[operands[0]] += 1 elif opcode == "DEC": registers[operands[0]] -= 1 elif opcode == "JMP": instruction_pointer = labels[operands[0]] continue # Skip regular increment elif opcode == "JT": if flag: instruction_pointer = labels[operands[0]] continue elif opcode == "JF": if not flag: instruction_pointer = labels[operands[0]] continue elif opcode == "LOAD": registers[operands[0]] = memory[int(operands[1])] elif opcode == "STORE": memory[int(operands[1])] = registers[operands[0]] elif opcode == "HCF": break # Stop execution instruction_pointer += 1 return memory # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ result = evaluate(program) print(result[:20]) # Print the first 20 memory addresses answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 113, in <module>
result = evaluate(program)
File "/usr/src/app/main.py", line 39, in evaluate
opcode = parts[0]
IndexError: list index out of range
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | import re def evaluate(program): memory = [0] * 100 registers = [0] * 8 flag = False labels = {} instruction_pointer = 0 # Preprocess labels for line_number, line in enumerate(program.strip().splitlines()): if ':' in line: label, _ = line.split(':') labels[label] = line_number def get_value(arg): if arg.startswith('R'): return registers[int(arg[1:]) - 1] else: return int(arg) while instruction_pointer < len(program.strip().splitlines()): line = program.strip().splitlines()[instruction_pointer].strip() if ':' in line: instruction_pointer += 1 continue parts = line.split() instruction = parts[0] if instruction == 'SET': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) elif instruction == 'ADD': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) + get_value(parts[3]) elif instruction == 'SUB': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) - get_value(parts[3]) elif instruction == 'MUL': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) * get_value(parts[3]) elif instruction == 'DIV': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) // get_value(parts[3]) elif instruction == 'MOD': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) % get_value(parts[3]) elif instruction == 'EQ': flag = get_value(parts[1]) == get_value(parts[2]) elif instruction == 'NEQ': flag = get_value(parts[1]) != get_value(parts[2]) elif instruction == 'LT': flag = get_value(parts[1]) < get_value(parts[2]) elif instruction == 'LTE': flag = get_value(parts[1]) <= get_value(parts[2]) elif instruction == 'GT': flag = get_value(parts[1]) > get_value(parts[2]) elif instruction == 'GTE': flag = get_value(parts[1]) >= get_value(parts[2]) elif instruction == 'INC': registers[int(parts[1][1:]) - 1] += 1 elif instruction == 'DEC': registers[int(parts[1][1:]) - 1] -= 1 elif instruction == 'JMP': instruction_pointer = labels[parts[1]] elif instruction == 'JT': if flag: instruction_pointer = labels[parts[1]] elif instruction == 'JF': if not flag: instruction_pointer = labels[parts[1]] elif instruction == 'LOAD': registers[int(parts[1][1:]) - 1] = memory[get_value(parts[2])] elif instruction == 'STORE': memory[get_value(parts[2])] = get_value(parts[1]) elif instruction == 'HCF': break instruction_pointer += 1 return memory |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ result = evaluate(program) print(result[:20]) # Print the first 20 elements of the memory |
1 | [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | import re def evaluate(program): memory = [0] * 100 registers = [0] * 8 flag = False labels = {} instruction_pointer = 0 # Preprocess labels for line_number, line in enumerate(program.strip().splitlines()): if ':' in line: label, _ = line.split(':') labels[label] = line_number def get_value(arg): if arg.startswith('R'): return registers[int(arg[1:]) - 1] else: return int(arg) while instruction_pointer < len(program.strip().splitlines()): line = program.strip().splitlines()[instruction_pointer].strip() if ':' in line: instruction_pointer += 1 continue parts = line.split() instruction = parts[0] if instruction == 'SET': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) elif instruction == 'ADD': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) + get_value(parts[3]) elif instruction == 'SUB': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) - get_value(parts[3]) elif instruction == 'MUL': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) * get_value(parts[3]) elif instruction == 'DIV': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) // get_value(parts[3]) elif instruction == 'MOD': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) % get_value(parts[3]) elif instruction == 'EQ': flag = get_value(parts[1]) == get_value(parts[2]) elif instruction == 'NEQ': flag = get_value(parts[1]) != get_value(parts[2]) elif instruction == 'LT': flag = get_value(parts[1]) < get_value(parts[2]) elif instruction == 'LTE': flag = get_value(parts[1]) <= get_value(parts[2]) elif instruction == 'GT': flag = get_value(parts[1]) > get_value(parts[2]) elif instruction == 'GTE': flag = get_value(parts[1]) >= get_value(parts[2]) elif instruction == 'INC': registers[int(parts[1][1:]) - 1] += 1 elif instruction == 'DEC': registers[int(parts[1][1:]) - 1] -= 1 elif instruction == 'JMP': instruction_pointer = labels[parts[1]] elif instruction == 'JT': if flag: instruction_pointer = labels[parts[1]] elif instruction == 'JF': if not flag: instruction_pointer = labels[parts[1]] elif instruction == 'LOAD': registers[int(parts[1][1:]) - 1] = memory[get_value(parts[2])] elif instruction == 'STORE': memory[get_value(parts[2])] = get_value(parts[1]) elif instruction == 'HCF': break instruction_pointer += 1 return memory |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | import re def evaluate(program): memory = [0] * 100 registers = [0] * 8 flag = False labels = {} instruction_pointer = 0 # Preprocess labels for line_number, line in enumerate(program.strip().splitlines()): if ':' in line: label, _ = line.split(':') labels[label] = line_number def get_value(arg): if arg.startswith('R'): return registers[int(arg[1:]) - 1] else: return int(arg) while instruction_pointer < len(program.strip().splitlines()): line = program.strip().splitlines()[instruction_pointer].strip() if ':' in line: instruction_pointer += 1 continue parts = line.split() instruction = parts[0] if instruction == 'SET': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) elif instruction == 'ADD': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) + get_value(parts[3]) elif instruction == 'SUB': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) - get_value(parts[3]) elif instruction == 'MUL': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) * get_value(parts[3]) elif instruction == 'DIV': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) // get_value(parts[3]) elif instruction == 'MOD': registers[int(parts[1][1:]) - 1] = get_value(parts[2]) % get_value(parts[3]) elif instruction == 'EQ': flag = get_value(parts[1]) == get_value(parts[2]) elif instruction == 'NEQ': flag = get_value(parts[1]) != get_value(parts[2]) elif instruction == 'LT': flag = get_value(parts[1]) < get_value(parts[2]) elif instruction == 'LTE': flag = get_value(parts[1]) <= get_value(parts[2]) elif instruction == 'GT': flag = get_value(parts[1]) > get_value(parts[2]) elif instruction == 'GTE': flag = get_value(parts[1]) >= get_value(parts[2]) elif instruction == 'INC': registers[int(parts[1][1:]) - 1] += 1 elif instruction == 'DEC': registers[int(parts[1][1:]) - 1] -= 1 elif instruction == 'JMP': instruction_pointer = labels[parts[1]] elif instruction == 'JT': if flag: instruction_pointer = labels[parts[1]] elif instruction == 'JF': if not flag: instruction_pointer = labels[parts[1]] elif instruction == 'LOAD': registers[int(parts[1][1:]) - 1] = memory[get_value(parts[2])] elif instruction == 'STORE': memory[get_value(parts[2])] = get_value(parts[1]) elif instruction == 'HCF': break instruction_pointer += 1 return memory answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 97, in <module>
answer = evaluate("""
File "/usr/src/app/main.py", line 29, in evaluate
instruction = parts[0]
IndexError: list index out of range
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | def evaluate(program): """ Evaluates an assembly program and returns the resulting memory state. Args: program (str): The assembly program as a string. Returns: list: A list representing the memory state after program execution. """ memory = [0] * 100 registers = {f"R{i+1}": 0 for i in range(8)} flag = False labels = {} # Preprocess: Find labels and their corresponding instruction indices instructions = program.strip().split("\n") for i, line in enumerate(instructions): line = line.strip() if ":" in line: label, instruction = line.split(":") labels[label.strip()] = i instruction_pointer = 0 while instruction_pointer < len(instructions): line = instructions[instruction_pointer].strip() if ":" in line: # Skip label definitions instruction_pointer += 1 continue parts = line.split() opcode = parts[0] if opcode == "SET": reg, val = parts[1:] registers[reg] = int(val) elif opcode in ("ADD", "SUB", "MUL", "DIV", "MOD"): reg, arg1, arg2 = parts[1:] arg1_val = registers[arg1] if arg1 in registers else int(arg1) arg2_val = registers[arg2] if arg2 in registers else int(arg2) if opcode == "ADD": registers[reg] = arg1_val + arg2_val elif opcode == "SUB": registers[reg] = arg1_val - arg2_val elif opcode == "MUL": registers[reg] = arg1_val * arg2_val elif opcode == "DIV": registers[reg] = arg1_val // arg2_val elif opcode == "MOD": registers[reg] = arg1_val % arg2_val elif opcode == "EQ": reg1, reg2 = parts[1:] flag = registers[reg1] == registers[reg2] elif opcode == "NEQ": reg1, reg2 = parts[1:] flag = registers[reg1] != registers[reg2] elif opcode == "LT": reg1, reg2 = parts[1:] flag = registers[reg1] < registers[reg2] elif opcode == "LTE": reg1, reg2 = parts[1:] flag = registers[reg1] <= registers[reg2] elif opcode == "GT": reg1, reg2 = parts[1:] flag = registers[reg1] > registers[reg2] elif opcode == "GTE": reg1, reg2 = parts[1:] flag = registers[reg1] >= registers[reg2] elif opcode == "INC": reg = parts[1] registers[reg] += 1 elif opcode == "DEC": reg = parts[1] registers[reg] -= 1 elif opcode == "JMP": label = parts[1] instruction_pointer = labels[label] - 1 # Adjust for increment later elif opcode == "JT": label = parts[1] if flag: instruction_pointer = labels[label] - 1 # Adjust for increment later elif opcode == "JF": label = parts[1] if not flag: instruction_pointer = labels[label] - 1 # Adjust for increment later elif opcode == "LOAD": reg, addr = parts[1:] registers[reg] = memory[int(addr)] elif opcode == "STORE": reg, addr = parts[1:] memory[int(addr)] = registers[reg] elif opcode == "HCF": break # Stop execution instruction_pointer += 1 return memory # Example usage (using the program you provided): program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ memory_state = evaluate(program) print(memory_state[:20]) # Print the first 20 memory locations |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | def evaluate(program): """ Evaluates an assembly program and returns the resulting memory state. Args: program (str): The assembly program as a string. Returns: list: A list representing the memory state after program execution. """ memory = [0] * 100 registers = {f"R{i+1}": 0 for i in range(8)} flag = False labels = {} # Preprocess: Find labels and their corresponding instruction indices instructions = program.strip().split("\n") for i, line in enumerate(instructions): line = line.strip() if ":" in line: label, instruction = line.split(":") labels[label.strip()] = i instruction_pointer = 0 while instruction_pointer < len(instructions): line = instructions[instruction_pointer].strip() if ":" in line: # Skip label definitions instruction_pointer += 1 continue parts = line.split() opcode = parts[0] if opcode == "SET": reg, val = parts[1:] registers[reg] = int(val) elif opcode in ("ADD", "SUB", "MUL", "DIV", "MOD"): reg, arg1, arg2 = parts[1:] arg1_val = registers[arg1] if arg1 in registers else int(arg1) arg2_val = registers[arg2] if arg2 in registers else int(arg2) if opcode == "ADD": registers[reg] = arg1_val + arg2_val elif opcode == "SUB": registers[reg] = arg1_val - arg2_val elif opcode == "MUL": registers[reg] = arg1_val * arg2_val elif opcode == "DIV": registers[reg] = arg1_val // arg2_val elif opcode == "MOD": registers[reg] = arg1_val % arg2_val elif opcode == "EQ": reg1, reg2 = parts[1:] flag = registers[reg1] == registers[reg2] elif opcode == "NEQ": reg1, reg2 = parts[1:] flag = registers[reg1] != registers[reg2] elif opcode == "LT": reg1, reg2 = parts[1:] flag = registers[reg1] < registers[reg2] elif opcode == "LTE": reg1, reg2 = parts[1:] flag = registers[reg1] <= registers[reg2] elif opcode == "GT": reg1, reg2 = parts[1:] flag = registers[reg1] > registers[reg2] elif opcode == "GTE": reg1, reg2 = parts[1:] flag = registers[reg1] >= registers[reg2] elif opcode == "INC": reg = parts[1] registers[reg] += 1 elif opcode == "DEC": reg = parts[1] registers[reg] -= 1 elif opcode == "JMP": label = parts[1] instruction_pointer = labels[label] - 1 # Adjust for increment later elif opcode == "JT": label = parts[1] if flag: instruction_pointer = labels[label] - 1 # Adjust for increment later elif opcode == "JF": label = parts[1] if not flag: instruction_pointer = labels[label] - 1 # Adjust for increment later elif opcode == "LOAD": reg, addr = parts[1:] registers[reg] = memory[int(addr)] elif opcode == "STORE": reg, addr = parts[1:] memory[int(addr)] = registers[reg] elif opcode == "HCF": break # Stop execution instruction_pointer += 1 return memory # Example usage (using the program you provided): program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ memory_state = evaluate(program) print(memory_state[:20]) # Print the first 20 memory locations |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | def evaluate(program): """ Evaluates an assembly program and returns the resulting memory state. Args: program (str): The assembly program as a string. Returns: list: A list representing the memory state after program execution. """ memory = [0] * 100 registers = {f"R{i+1}": 0 for i in range(8)} flag = False labels = {} # Preprocess: Find labels and their corresponding instruction indices instructions = program.strip().split("\n") for i, line in enumerate(instructions): line = line.strip() if ":" in line: label, instruction = line.split(":") labels[label.strip()] = i instruction_pointer = 0 while instruction_pointer < len(instructions): line = instructions[instruction_pointer].strip() if ":" in line: # Skip label definitions instruction_pointer += 1 continue parts = line.split() opcode = parts[0] if opcode == "SET": reg, val = parts[1:] registers[reg] = int(val) elif opcode in ("ADD", "SUB", "MUL", "DIV", "MOD"): reg, arg1, arg2 = parts[1:] arg1_val = registers[arg1] if arg1 in registers else int(arg1) arg2_val = registers[arg2] if arg2 in registers else int(arg2) if opcode == "ADD": registers[reg] = arg1_val + arg2_val elif opcode == "SUB": registers[reg] = arg1_val - arg2_val elif opcode == "MUL": registers[reg] = arg1_val * arg2_val elif opcode == "DIV": registers[reg] = arg1_val // arg2_val elif opcode == "MOD": registers[reg] = arg1_val % arg2_val elif opcode == "EQ": reg1, reg2 = parts[1:] flag = registers[reg1] == registers[reg2] elif opcode == "NEQ": reg1, reg2 = parts[1:] flag = registers[reg1] != registers[reg2] elif opcode == "LT": reg1, reg2 = parts[1:] flag = registers[reg1] < registers[reg2] elif opcode == "LTE": reg1, reg2 = parts[1:] flag = registers[reg1] <= registers[reg2] elif opcode == "GT": reg1, reg2 = parts[1:] flag = registers[reg1] > registers[reg2] elif opcode == "GTE": reg1, reg2 = parts[1:] flag = registers[reg1] >= registers[reg2] elif opcode == "INC": reg = parts[1] registers[reg] += 1 elif opcode == "DEC": reg = parts[1] registers[reg] -= 1 elif opcode == "JMP": label = parts[1] instruction_pointer = labels[label] - 1 # Adjust for increment later elif opcode == "JT": label = parts[1] if flag: instruction_pointer = labels[label] - 1 # Adjust for increment later elif opcode == "JF": label = parts[1] if not flag: instruction_pointer = labels[label] - 1 # Adjust for increment later elif opcode == "LOAD": reg, addr = parts[1:] registers[reg] = memory[int(addr)] elif opcode == "STORE": reg, addr = parts[1:] memory[int(addr)] = registers[reg] elif opcode == "HCF": break # Stop execution instruction_pointer += 1 return memory # Example usage (using the program you provided): program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ memory_state = evaluate(program) print(memory_state[:20]) # Print the first 20 memory locations answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 117, in <module>
memory_state = evaluate(program)
File "/usr/src/app/main.py", line 37, in evaluate
reg, val = parts[1:]
ValueError: too many values to unpack (expected 2)
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | def evaluate(program): """Evaluates an assembly program and returns the resulting memory state. Args: program: The assembly program as a string. Returns: A list representing the memory state after program execution. """ memory = [0] * 100 registers = {f"R{i+1}": 0 for i in range(8)} flag = False labels = {} # Preprocess labels lines = program.strip().split("\n") for i, line in enumerate(lines): line = line.strip() if ":" in line: label, instr = line.split(":") labels[label.strip()] = i pc = 0 # Program counter while pc < len(lines): line = lines[pc].strip() if ":" in line: # Skip label definitions pc += 1 continue parts = line.split() instruction = parts[0] if instruction == "SET": registers[parts[1]] = int(parts[2]) elif instruction in ("ADD", "SUB", "MUL", "DIV", "MOD"): arg1 = registers[parts[1]] arg2 = registers[parts[2]] arg3 = registers[parts[3]] if instruction == "ADD": registers[parts[1]] = arg2 + arg3 elif instruction == "SUB": registers[parts[1]] = arg2 - arg3 elif instruction == "MUL": registers[parts[1]] = arg2 * arg3 elif instruction == "DIV": registers[parts[1]] = arg2 // arg3 # Integer division elif instruction == "MOD": registers[parts[1]] = arg2 % arg3 elif instruction == "EQ": flag = registers[parts[1]] == registers[parts[2]] elif instruction == "NEQ": flag = registers[parts[1]] != registers[parts[2]] elif instruction == "LT": flag = registers[parts[1]] < registers[parts[2]] elif instruction == "LTE": flag = registers[parts[1]] <= registers[parts[2]] elif instruction == "GT": flag = registers[parts[1]] > registers[parts[2]] elif instruction == "GTE": flag = registers[parts[1]] >= registers[parts[2]] elif instruction == "INC": registers[parts[1]] += 1 elif instruction == "DEC": registers[parts[1]] -= 1 elif instruction == "JMP": pc = labels[parts[1]] elif instruction == "JT": if flag: pc = labels[parts[1]] elif instruction == "JF": if not flag: pc = labels[parts[1]] elif instruction == "LOAD": registers[parts[1]] = memory[int(parts[2])] elif instruction == "STORE": memory[int(parts[2])] = registers[parts[1]] elif instruction == "HCF": break # Stop program execution pc += 1 return memory # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ result = evaluate(program) print(result[:20]) # Print the first 20 elements of the memory |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | def evaluate(program): """Evaluates an assembly program and returns the resulting memory state. Args: program: The assembly program as a string. Returns: A list representing the memory state after program execution. """ memory = [0] * 100 registers = {f"R{i+1}": 0 for i in range(8)} flag = False labels = {} # Preprocess labels lines = program.strip().split("\n") for i, line in enumerate(lines): line = line.strip() if ":" in line: label, instr = line.split(":") labels[label.strip()] = i pc = 0 # Program counter while pc < len(lines): line = lines[pc].strip() if ":" in line: # Skip label definitions pc += 1 continue parts = line.split() instruction = parts[0] if instruction == "SET": registers[parts[1]] = int(parts[2]) elif instruction in ("ADD", "SUB", "MUL", "DIV", "MOD"): arg1 = registers[parts[1]] arg2 = registers[parts[2]] arg3 = registers[parts[3]] if instruction == "ADD": registers[parts[1]] = arg2 + arg3 elif instruction == "SUB": registers[parts[1]] = arg2 - arg3 elif instruction == "MUL": registers[parts[1]] = arg2 * arg3 elif instruction == "DIV": registers[parts[1]] = arg2 // arg3 # Integer division elif instruction == "MOD": registers[parts[1]] = arg2 % arg3 elif instruction == "EQ": flag = registers[parts[1]] == registers[parts[2]] elif instruction == "NEQ": flag = registers[parts[1]] != registers[parts[2]] elif instruction == "LT": flag = registers[parts[1]] < registers[parts[2]] elif instruction == "LTE": flag = registers[parts[1]] <= registers[parts[2]] elif instruction == "GT": flag = registers[parts[1]] > registers[parts[2]] elif instruction == "GTE": flag = registers[parts[1]] >= registers[parts[2]] elif instruction == "INC": registers[parts[1]] += 1 elif instruction == "DEC": registers[parts[1]] -= 1 elif instruction == "JMP": pc = labels[parts[1]] elif instruction == "JT": if flag: pc = labels[parts[1]] elif instruction == "JF": if not flag: pc = labels[parts[1]] elif instruction == "LOAD": registers[parts[1]] = memory[int(parts[2])] elif instruction == "STORE": memory[int(parts[2])] = registers[parts[1]] elif instruction == "HCF": break # Stop program execution pc += 1 return memory # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ result = evaluate(program) print(result[:20]) # Print the first 20 elements of the memory |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | def evaluate(program): """Evaluates an assembly program and returns the resulting memory state. Args: program: The assembly program as a string. Returns: A list representing the memory state after program execution. """ memory = [0] * 100 registers = {f"R{i+1}": 0 for i in range(8)} flag = False labels = {} # Preprocess labels lines = program.strip().split("\n") for i, line in enumerate(lines): line = line.strip() if ":" in line: label, instr = line.split(":") labels[label.strip()] = i pc = 0 # Program counter while pc < len(lines): line = lines[pc].strip() if ":" in line: # Skip label definitions pc += 1 continue parts = line.split() instruction = parts[0] if instruction == "SET": registers[parts[1]] = int(parts[2]) elif instruction in ("ADD", "SUB", "MUL", "DIV", "MOD"): arg1 = registers[parts[1]] arg2 = registers[parts[2]] arg3 = registers[parts[3]] if instruction == "ADD": registers[parts[1]] = arg2 + arg3 elif instruction == "SUB": registers[parts[1]] = arg2 - arg3 elif instruction == "MUL": registers[parts[1]] = arg2 * arg3 elif instruction == "DIV": registers[parts[1]] = arg2 // arg3 # Integer division elif instruction == "MOD": registers[parts[1]] = arg2 % arg3 elif instruction == "EQ": flag = registers[parts[1]] == registers[parts[2]] elif instruction == "NEQ": flag = registers[parts[1]] != registers[parts[2]] elif instruction == "LT": flag = registers[parts[1]] < registers[parts[2]] elif instruction == "LTE": flag = registers[parts[1]] <= registers[parts[2]] elif instruction == "GT": flag = registers[parts[1]] > registers[parts[2]] elif instruction == "GTE": flag = registers[parts[1]] >= registers[parts[2]] elif instruction == "INC": registers[parts[1]] += 1 elif instruction == "DEC": registers[parts[1]] -= 1 elif instruction == "JMP": pc = labels[parts[1]] elif instruction == "JT": if flag: pc = labels[parts[1]] elif instruction == "JF": if not flag: pc = labels[parts[1]] elif instruction == "LOAD": registers[parts[1]] = memory[int(parts[2])] elif instruction == "STORE": memory[int(parts[2])] = registers[parts[1]] elif instruction == "HCF": break # Stop program execution pc += 1 return memory # Example usage: program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ result = evaluate(program) print(result[:20]) # Print the first 20 elements of the memory answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 105, in <module>
result = evaluate(program)
File "/usr/src/app/main.py", line 33, in evaluate
instruction = parts[0]
IndexError: list index out of range
Testing if the previous output contains the string All tests passed
: False
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | def evaluate(program): """Evaluates the given assembly program and returns the memory state. Args: program: The assembly program as a string. Returns: A list representing the memory state after the program execution. """ memory = [0] * 100 registers = {f"R{i + 1}": 0 for i in range(8)} flag = False labels = {} # Preprocess labels instructions = program.strip().split("\n") for i, line in enumerate(instructions): line = line.strip() if ":" in line: label, instruction = line.split(":", 1) labels[label.strip()] = i instructions[i] = instruction.strip() def get_value(arg): """Returns the value of an argument, which can be a register or a constant.""" try: return int(arg) except ValueError: return registers[arg] pc = 0 while pc < len(instructions): instruction = instructions[pc].split() opcode = instruction[0] if opcode == "SET": registers[instruction[1]] = get_value(instruction[2]) elif opcode == "ADD": registers[instruction[1]] = get_value(instruction[2]) + get_value( instruction[3] ) elif opcode == "SUB": registers[instruction[1]] = get_value(instruction[2]) - get_value( instruction[3] ) elif opcode == "MUL": registers[instruction[1]] = get_value(instruction[2]) * get_value( instruction[3] ) elif opcode == "DIV": registers[instruction[1]] = get_value(instruction[2]) // get_value( instruction[3] ) elif opcode == "MOD": registers[instruction[1]] = get_value(instruction[2]) % get_value( instruction[3] ) elif opcode == "EQ": flag = get_value(instruction[1]) == get_value(instruction[2]) elif opcode == "NEQ": flag = get_value(instruction[1]) != get_value(instruction[2]) elif opcode == "LT": flag = get_value(instruction[1]) < get_value(instruction[2]) elif opcode == "LTE": flag = get_value(instruction[1]) <= get_value(instruction[2]) elif opcode == "GT": flag = get_value(instruction[1]) > get_value(instruction[2]) elif opcode == "GTE": flag = get_value(instruction[1]) >= get_value(instruction[2]) elif opcode == "INC": registers[instruction[1]] += 1 elif opcode == "DEC": registers[instruction[1]] -= 1 elif opcode == "JMP": pc = labels[instruction[1]] continue elif opcode == "JT": if flag: pc = labels[instruction[1]] continue elif opcode == "JF": if not flag: pc = labels[instruction[1]] continue elif opcode == "LOAD": registers[instruction[1]] = memory[get_value(instruction[2])] elif opcode == "STORE": memory[get_value(instruction[2])] = registers[instruction[1]] elif opcode == "HCF": break # Stop the program pc += 1 return memory # Test the interpreter with the example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ memory_state = evaluate(program) print(memory_state[:20]) # Print the first 20 memory locations |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | def evaluate(program): """Evaluates the given assembly program and returns the memory state. Args: program: The assembly program as a string. Returns: A list representing the memory state after the program execution. """ memory = [0] * 100 registers = {f"R{i + 1}": 0 for i in range(8)} flag = False labels = {} # Preprocess labels instructions = program.strip().split("\n") for i, line in enumerate(instructions): line = line.strip() if ":" in line: label, instruction = line.split(":", 1) labels[label.strip()] = i instructions[i] = instruction.strip() def get_value(arg): """Returns the value of an argument, which can be a register or a constant.""" try: return int(arg) except ValueError: return registers[arg] pc = 0 while pc < len(instructions): instruction = instructions[pc].split() opcode = instruction[0] if opcode == "SET": registers[instruction[1]] = get_value(instruction[2]) elif opcode == "ADD": registers[instruction[1]] = get_value(instruction[2]) + get_value( instruction[3] ) elif opcode == "SUB": registers[instruction[1]] = get_value(instruction[2]) - get_value( instruction[3] ) elif opcode == "MUL": registers[instruction[1]] = get_value(instruction[2]) * get_value( instruction[3] ) elif opcode == "DIV": registers[instruction[1]] = get_value(instruction[2]) // get_value( instruction[3] ) elif opcode == "MOD": registers[instruction[1]] = get_value(instruction[2]) % get_value( instruction[3] ) elif opcode == "EQ": flag = get_value(instruction[1]) == get_value(instruction[2]) elif opcode == "NEQ": flag = get_value(instruction[1]) != get_value(instruction[2]) elif opcode == "LT": flag = get_value(instruction[1]) < get_value(instruction[2]) elif opcode == "LTE": flag = get_value(instruction[1]) <= get_value(instruction[2]) elif opcode == "GT": flag = get_value(instruction[1]) > get_value(instruction[2]) elif opcode == "GTE": flag = get_value(instruction[1]) >= get_value(instruction[2]) elif opcode == "INC": registers[instruction[1]] += 1 elif opcode == "DEC": registers[instruction[1]] -= 1 elif opcode == "JMP": pc = labels[instruction[1]] continue elif opcode == "JT": if flag: pc = labels[instruction[1]] continue elif opcode == "JF": if not flag: pc = labels[instruction[1]] continue elif opcode == "LOAD": registers[instruction[1]] = memory[get_value(instruction[2])] elif opcode == "STORE": memory[get_value(instruction[2])] = registers[instruction[1]] elif opcode == "HCF": break # Stop the program pc += 1 return memory # Test the interpreter with the example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ memory_state = evaluate(program) print(memory_state[:20]) # Print the first 20 memory locations |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | def evaluate(program): """Evaluates the given assembly program and returns the memory state. Args: program: The assembly program as a string. Returns: A list representing the memory state after the program execution. """ memory = [0] * 100 registers = {f"R{i + 1}": 0 for i in range(8)} flag = False labels = {} # Preprocess labels instructions = program.strip().split("\n") for i, line in enumerate(instructions): line = line.strip() if ":" in line: label, instruction = line.split(":", 1) labels[label.strip()] = i instructions[i] = instruction.strip() def get_value(arg): """Returns the value of an argument, which can be a register or a constant.""" try: return int(arg) except ValueError: return registers[arg] pc = 0 while pc < len(instructions): instruction = instructions[pc].split() opcode = instruction[0] if opcode == "SET": registers[instruction[1]] = get_value(instruction[2]) elif opcode == "ADD": registers[instruction[1]] = get_value(instruction[2]) + get_value( instruction[3] ) elif opcode == "SUB": registers[instruction[1]] = get_value(instruction[2]) - get_value( instruction[3] ) elif opcode == "MUL": registers[instruction[1]] = get_value(instruction[2]) * get_value( instruction[3] ) elif opcode == "DIV": registers[instruction[1]] = get_value(instruction[2]) // get_value( instruction[3] ) elif opcode == "MOD": registers[instruction[1]] = get_value(instruction[2]) % get_value( instruction[3] ) elif opcode == "EQ": flag = get_value(instruction[1]) == get_value(instruction[2]) elif opcode == "NEQ": flag = get_value(instruction[1]) != get_value(instruction[2]) elif opcode == "LT": flag = get_value(instruction[1]) < get_value(instruction[2]) elif opcode == "LTE": flag = get_value(instruction[1]) <= get_value(instruction[2]) elif opcode == "GT": flag = get_value(instruction[1]) > get_value(instruction[2]) elif opcode == "GTE": flag = get_value(instruction[1]) >= get_value(instruction[2]) elif opcode == "INC": registers[instruction[1]] += 1 elif opcode == "DEC": registers[instruction[1]] -= 1 elif opcode == "JMP": pc = labels[instruction[1]] continue elif opcode == "JT": if flag: pc = labels[instruction[1]] continue elif opcode == "JF": if not flag: pc = labels[instruction[1]] continue elif opcode == "LOAD": registers[instruction[1]] = memory[get_value(instruction[2])] elif opcode == "STORE": memory[get_value(instruction[2])] = registers[instruction[1]] elif opcode == "HCF": break # Stop the program pc += 1 return memory # Test the interpreter with the example program program = """ SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program """ memory_state = evaluate(program) print(memory_state[:20]) # Print the first 20 memory locations answer = evaluate(""" SET R1 0 SET R2 1 loop: MUL R3 R2 R2 STORE R3 R1 INC R1 INC R2 EQ R1 20 JF loop HCF """)[:10] expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' answer = evaluate(""" SET R1 2 // Starting number to check for prime start_find_primes: JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result ready_prime: EQ R2 1 // Check if R2 is 1 (prime) JF increment // If not prime, skip storing and increment the number // Store prime number in memory and increment count STORE R1 R8 // Store prime number at address pointed by R8 INC R8 // Increment prime count // Check if 100 primes are found EQ R8 100 JF increment // If not 100 primes found yet, continue finding JMP end // If 100 primes found, end program increment: INC R1 // Increment number to check for prime JMP start_find_primes // Check next number is_prime: SET R2 1 // Assume number is prime initially SET R3 2 // Start divisor from 2 start_loop: // Label to start the loop // Check if we have exceeded the square root of R1 MUL R4 R3 R3 // R4 = R3 * R3 GT R4 R1 // Set flag if R4 > R1 JT is_prime_end // If not exceeded, continue; else, end loop MOD R6 R1 R3 // R6 = R1 % R3 EQ R7 R6 0 // Check if R6 is 0 JT not_prime // If yes, number is not prime INC R3 // Increment divisor JMP start_loop // Repeat loop not_prime: SET R2 0 // Set result to 0 (not prime) is_prime_end: JMP ready_prime end: """)[:10] expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 116, in <module>
memory_state = evaluate(program)
File "/usr/src/app/main.py", line 36, in evaluate
opcode = instruction[0]
IndexError: list index out of range
Testing if the previous output contains the string All tests passed
: False