Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

# Python Interpreter for the Assembly Language I'll create a Python interpreter for this assembly language. The function will parse and execute the given assembly code, then return the state of the memory after execution.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def evaluate(program_str):
    # Parse the program
    lines = []
    for line in program_str.split('\n'):
        line = line.strip()
        if not line:
            continue
        # Remove comments
        if '//' in line:
            line = line.split('//')[0].strip()
        if line:
            lines.append(line)
    
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    ip = 0
    
    # Extract labels
    labels = {}
    for i, line in enumerate(lines):
        if ':' in line:
            label, rest = line.split(':', 1)
            label = label.strip()
            labels[label] = i
            lines[i] = rest.strip()
    
    # Helper function to get value (either from register or constant)
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        return int(arg)
    
    # Execute the program
    while ip < len(lines):
        instruction = lines[ip]
        if not instruction:
            ip += 1
            continue
        
        parts = instruction.split()
        op = parts[0].upper()
        
        if op == 'SET':
            registers[parts[1]] = get_value(parts[2])
        
        elif op == 'ADD':
            registers[parts[1]] = get_value(parts[2]) + get_value(parts[3])
        
        elif op == 'SUB':
            registers[parts[1]] = get_value(parts[2]) - get_value(parts[3])
        
        elif op == 'MUL':
            registers[parts[1]] = get_value(parts[2]) * get_value(parts[3])
        
        elif op == 'DIV':
            registers[parts[1]] = get_value(parts[2]) // get_value(parts[3])
        
        elif op == 'MOD':
            registers[parts[1]] = get_value(parts[2]) % get_value(parts[3])
        
        elif op == 'EQ':
            flag = get_value(parts[1]) == get_value(parts[2])
        
        elif op == 'NEQ':
            flag = get_value(parts[1]) != get_value(parts[2])
        
        elif op == 'LT':
            flag = get_value(parts[1]) < get_value(parts[2])
        
        elif op == 'LTE':
            flag = get_value(parts[1]) <= get_value(parts[2])
        
        elif op == 'GT':
            flag = get_value(parts[1]) > get_value(parts[2])
        
        elif op == 'GTE':
            flag = get_value(parts[1]) >= get_value(parts[2])
        
        elif op == 'INC':
            registers[parts[1]] += 1
        
        elif op == 'DEC':
            registers[parts[1]] -= 1
        
        elif op == 'JMP':
            ip = labels[parts[1]]
            continue
        
        elif op == 'JT':
            if flag:
                ip = labels[parts[1]]
                continue
        
        elif op == 'JF':
            if not flag:
                ip = labels[parts[1]]
                continue
        
        elif op == 'LOAD':
            addr = get_value(parts[2])
            registers[parts[1]] = memory[addr]
        
        elif op == 'STORE':
            addr = get_value(parts[2])
            memory[addr] = registers[parts[1]]
        
        elif op == 'HCF':
            break
        
        ip += 1
    
    return memory

# Testing with the example program
program = """
    SET R1 0      // Counter for storing squares
    SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

# Running the example would give:
# [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 0, ...]
This interpreter: 1. Parses the assembly code, removing comments and empty lines 2. Identifies labels and their positions 3. Executes the instructions one by one, handling registers, memory access, jumps, and the flag 4. Returns the final memory state when the program terminates with HCF For the example program calculating the first 20 square numbers, it would return an array with those squares stored in the first 20 memory locations.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def evaluate(program_str):
    # Parse the program
    lines = []
    for line in program_str.split('\n'):
        line = line.strip()
        if not line:
            continue
        # Remove comments
        if '//' in line:
            line = line.split('//')[0].strip()
        if line:
            lines.append(line)
    
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    ip = 0
    
    # Extract labels
    labels = {}
    for i, line in enumerate(lines):
        if ':' in line:
            label, rest = line.split(':', 1)
            label = label.strip()
            labels[label] = i
            lines[i] = rest.strip()
    
    # Helper function to get value (either from register or constant)
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        return int(arg)
    
    # Execute the program
    while ip < len(lines):
        instruction = lines[ip]
        if not instruction:
            ip += 1
            continue
        
        parts = instruction.split()
        op = parts[0].upper()
        
        if op == 'SET':
            registers[parts[1]] = get_value(parts[2])
        
        elif op == 'ADD':
            registers[parts[1]] = get_value(parts[2]) + get_value(parts[3])
        
        elif op == 'SUB':
            registers[parts[1]] = get_value(parts[2]) - get_value(parts[3])
        
        elif op == 'MUL':
            registers[parts[1]] = get_value(parts[2]) * get_value(parts[3])
        
        elif op == 'DIV':
            registers[parts[1]] = get_value(parts[2]) // get_value(parts[3])
        
        elif op == 'MOD':
            registers[parts[1]] = get_value(parts[2]) % get_value(parts[3])
        
        elif op == 'EQ':
            flag = get_value(parts[1]) == get_value(parts[2])
        
        elif op == 'NEQ':
            flag = get_value(parts[1]) != get_value(parts[2])
        
        elif op == 'LT':
            flag = get_value(parts[1]) < get_value(parts[2])
        
        elif op == 'LTE':
            flag = get_value(parts[1]) <= get_value(parts[2])
        
        elif op == 'GT':
            flag = get_value(parts[1]) > get_value(parts[2])
        
        elif op == 'GTE':
            flag = get_value(parts[1]) >= get_value(parts[2])
        
        elif op == 'INC':
            registers[parts[1]] += 1
        
        elif op == 'DEC':
            registers[parts[1]] -= 1
        
        elif op == 'JMP':
            ip = labels[parts[1]]
            continue
        
        elif op == 'JT':
            if flag:
                ip = labels[parts[1]]
                continue
        
        elif op == 'JF':
            if not flag:
                ip = labels[parts[1]]
                continue
        
        elif op == 'LOAD':
            addr = get_value(parts[2])
            registers[parts[1]] = memory[addr]
        
        elif op == 'STORE':
            addr = get_value(parts[2])
            memory[addr] = registers[parts[1]]
        
        elif op == 'HCF':
            break
        
        ip += 1
    
    return memory

# Testing with the example program
program = """
    SET R1 0      // Counter for storing squares
    SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

# Running the example would give:
# [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 0, ...]

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def evaluate(program_str):
    # Parse the program
    lines = []
    for line in program_str.split('\n'):
        line = line.strip()
        if not line:
            continue
        # Remove comments
        if '//' in line:
            line = line.split('//')[0].strip()
        if line:
            lines.append(line)
    
    # Initialize registers, memory, flag, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    ip = 0
    
    # Extract labels
    labels = {}
    for i, line in enumerate(lines):
        if ':' in line:
            label, rest = line.split(':', 1)
            label = label.strip()
            labels[label] = i
            lines[i] = rest.strip()
    
    # Helper function to get value (either from register or constant)
    def get_value(arg):
        if arg in registers:
            return registers[arg]
        return int(arg)
    
    # Execute the program
    while ip < len(lines):
        instruction = lines[ip]
        if not instruction:
            ip += 1
            continue
        
        parts = instruction.split()
        op = parts[0].upper()
        
        if op == 'SET':
            registers[parts[1]] = get_value(parts[2])
        
        elif op == 'ADD':
            registers[parts[1]] = get_value(parts[2]) + get_value(parts[3])
        
        elif op == 'SUB':
            registers[parts[1]] = get_value(parts[2]) - get_value(parts[3])
        
        elif op == 'MUL':
            registers[parts[1]] = get_value(parts[2]) * get_value(parts[3])
        
        elif op == 'DIV':
            registers[parts[1]] = get_value(parts[2]) // get_value(parts[3])
        
        elif op == 'MOD':
            registers[parts[1]] = get_value(parts[2]) % get_value(parts[3])
        
        elif op == 'EQ':
            flag = get_value(parts[1]) == get_value(parts[2])
        
        elif op == 'NEQ':
            flag = get_value(parts[1]) != get_value(parts[2])
        
        elif op == 'LT':
            flag = get_value(parts[1]) < get_value(parts[2])
        
        elif op == 'LTE':
            flag = get_value(parts[1]) <= get_value(parts[2])
        
        elif op == 'GT':
            flag = get_value(parts[1]) > get_value(parts[2])
        
        elif op == 'GTE':
            flag = get_value(parts[1]) >= get_value(parts[2])
        
        elif op == 'INC':
            registers[parts[1]] += 1
        
        elif op == 'DEC':
            registers[parts[1]] -= 1
        
        elif op == 'JMP':
            ip = labels[parts[1]]
            continue
        
        elif op == 'JT':
            if flag:
                ip = labels[parts[1]]
                continue
        
        elif op == 'JF':
            if not flag:
                ip = labels[parts[1]]
                continue
        
        elif op == 'LOAD':
            addr = get_value(parts[2])
            registers[parts[1]] = memory[addr]
        
        elif op == 'STORE':
            addr = get_value(parts[2])
            memory[addr] = registers[parts[1]]
        
        elif op == 'HCF':
            break
        
        ip += 1
    
    return memory

# Testing with the example program
program = """
    SET R1 0      // Counter for storing squares
    SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    SET R3 20
    EQ R1 R3      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

# Running the example would give:
# [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 0, ...]





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number SET R3 20 EQ R1 R3 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

# Assembly Language Interpreter I'll create a Python function that interprets the given assembly language and returns the memory state after execution.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def evaluate(program_str):
    # Parse the program
    lines = program_str.split('\n')
    program = []
    labels = {}
    
    # First pass: collect labels and instructions
    for i, line in enumerate(lines):
        # Remove comments and strip whitespace
        if '//' in line:
            line = line.split('//')[0]
        line = line.strip()
        if not line:
            continue
            
        # Check for label
        if ':' in line:
            label, rest = line.split(':', 1)
            label = label.strip()
            labels[label] = len(program)
            line = rest.strip()
            if not line:
                continue
                
        program.append(line)
    
    # Initialize system state
    registers = {f"R{i}": 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    ip = 0  # instruction pointer
    
    # Helper function to get value from argument
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)
    
    # Execute program
    while 0 <= ip < len(program):
        parts = program[ip].split()
        op = parts[0].upper()
        
        if op == "SET":
            rx, val = parts[1], parts[2]
            registers[rx] = get_value(val)
            ip += 1
            
        elif op == "ADD":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) + get_value(rz)
            ip += 1
            
        elif op == "SUB":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) - get_value(rz)
            ip += 1
            
        elif op == "MUL":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) * get_value(rz)
            ip += 1
            
        elif op == "DIV":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) // get_value(rz)
            ip += 1
            
        elif op == "MOD":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) % get_value(rz)
            ip += 1
            
        elif op == "EQ":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) == get_value(ry)
            ip += 1
            
        elif op == "NEQ":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) != get_value(ry)
            ip += 1
            
        elif op == "LT":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) < get_value(ry)
            ip += 1
            
        elif op == "LTE":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) <= get_value(ry)
            ip += 1
            
        elif op == "GT":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) > get_value(ry)
            ip += 1
            
        elif op == "GTE":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) >= get_value(ry)
            ip += 1
            
        elif op == "INC":
            rx = parts[1]
            registers[rx] += 1
            ip += 1
            
        elif op == "DEC":
            rx = parts[1]
            registers[rx] -= 1
            ip += 1
            
        elif op == "JMP":
            label = parts[1]
            ip = labels[label]
            
        elif op == "JT":
            label = parts[1]
            if flag:
                ip = labels[label]
            else:
                ip += 1
                
        elif op == "JF":
            label = parts[1]
            if not flag:
                ip = labels[label]
            else:
                ip += 1
                
        elif op == "LOAD":
            rx, addr = parts[1], parts[2]
            memory_addr = get_value(addr)
            registers[rx] = memory[memory_addr]
            ip += 1
            
        elif op == "STORE":
            rx, addr = parts[1], parts[2]
            memory_addr = get_value(addr)
            memory[memory_addr] = registers[rx]
            ip += 1
            
        elif op == "HCF":
            break
    
    # Return the memory state
    return memory
## Testing with the example program Let's trace through what this would do with the square number program: 1. Program initializes R1 = 0 (address counter) and R2 = 1 (number to square) 2. The loop: - Calculates R3 = R2 * R2 (square of the current number) - Stores that square at memory location R1 - Increments both R1 and R2 - Checks if R1 equals 20, if not, loops again After running, memory[0] through memory[19] will contain the first 20 square numbers: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400] And the rest of the memory will be zeros. The function correctly returns the entire memory array as requested.

Extract Code

I extracted the following code from that output:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def evaluate(program_str):
    # Parse the program
    lines = program_str.split('\n')
    program = []
    labels = {}
    
    # First pass: collect labels and instructions
    for i, line in enumerate(lines):
        # Remove comments and strip whitespace
        if '//' in line:
            line = line.split('//')[0]
        line = line.strip()
        if not line:
            continue
            
        # Check for label
        if ':' in line:
            label, rest = line.split(':', 1)
            label = label.strip()
            labels[label] = len(program)
            line = rest.strip()
            if not line:
                continue
                
        program.append(line)
    
    # Initialize system state
    registers = {f"R{i}": 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    ip = 0  # instruction pointer
    
    # Helper function to get value from argument
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)
    
    # Execute program
    while 0 <= ip < len(program):
        parts = program[ip].split()
        op = parts[0].upper()
        
        if op == "SET":
            rx, val = parts[1], parts[2]
            registers[rx] = get_value(val)
            ip += 1
            
        elif op == "ADD":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) + get_value(rz)
            ip += 1
            
        elif op == "SUB":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) - get_value(rz)
            ip += 1
            
        elif op == "MUL":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) * get_value(rz)
            ip += 1
            
        elif op == "DIV":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) // get_value(rz)
            ip += 1
            
        elif op == "MOD":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) % get_value(rz)
            ip += 1
            
        elif op == "EQ":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) == get_value(ry)
            ip += 1
            
        elif op == "NEQ":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) != get_value(ry)
            ip += 1
            
        elif op == "LT":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) < get_value(ry)
            ip += 1
            
        elif op == "LTE":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) <= get_value(ry)
            ip += 1
            
        elif op == "GT":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) > get_value(ry)
            ip += 1
            
        elif op == "GTE":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) >= get_value(ry)
            ip += 1
            
        elif op == "INC":
            rx = parts[1]
            registers[rx] += 1
            ip += 1
            
        elif op == "DEC":
            rx = parts[1]
            registers[rx] -= 1
            ip += 1
            
        elif op == "JMP":
            label = parts[1]
            ip = labels[label]
            
        elif op == "JT":
            label = parts[1]
            if flag:
                ip = labels[label]
            else:
                ip += 1
                
        elif op == "JF":
            label = parts[1]
            if not flag:
                ip = labels[label]
            else:
                ip += 1
                
        elif op == "LOAD":
            rx, addr = parts[1], parts[2]
            memory_addr = get_value(addr)
            registers[rx] = memory[memory_addr]
            ip += 1
            
        elif op == "STORE":
            rx, addr = parts[1], parts[2]
            memory_addr = get_value(addr)
            memory[memory_addr] = registers[rx]
            ip += 1
            
        elif op == "HCF":
            break
    
    # Return the memory state
    return memory

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def evaluate(program_str):
    # Parse the program
    lines = program_str.split('\n')
    program = []
    labels = {}
    
    # First pass: collect labels and instructions
    for i, line in enumerate(lines):
        # Remove comments and strip whitespace
        if '//' in line:
            line = line.split('//')[0]
        line = line.strip()
        if not line:
            continue
            
        # Check for label
        if ':' in line:
            label, rest = line.split(':', 1)
            label = label.strip()
            labels[label] = len(program)
            line = rest.strip()
            if not line:
                continue
                
        program.append(line)
    
    # Initialize system state
    registers = {f"R{i}": 0 for i in range(1, 9)}
    memory = [0] * 100
    flag = False
    ip = 0  # instruction pointer
    
    # Helper function to get value from argument
    def get_value(arg):
        if arg.startswith('R'):
            return registers[arg]
        return int(arg)
    
    # Execute program
    while 0 <= ip < len(program):
        parts = program[ip].split()
        op = parts[0].upper()
        
        if op == "SET":
            rx, val = parts[1], parts[2]
            registers[rx] = get_value(val)
            ip += 1
            
        elif op == "ADD":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) + get_value(rz)
            ip += 1
            
        elif op == "SUB":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) - get_value(rz)
            ip += 1
            
        elif op == "MUL":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) * get_value(rz)
            ip += 1
            
        elif op == "DIV":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) // get_value(rz)
            ip += 1
            
        elif op == "MOD":
            rx, ry, rz = parts[1], parts[2], parts[3]
            registers[rx] = get_value(ry) % get_value(rz)
            ip += 1
            
        elif op == "EQ":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) == get_value(ry)
            ip += 1
            
        elif op == "NEQ":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) != get_value(ry)
            ip += 1
            
        elif op == "LT":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) < get_value(ry)
            ip += 1
            
        elif op == "LTE":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) <= get_value(ry)
            ip += 1
            
        elif op == "GT":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) > get_value(ry)
            ip += 1
            
        elif op == "GTE":
            rx, ry = parts[1], parts[2]
            flag = get_value(rx) >= get_value(ry)
            ip += 1
            
        elif op == "INC":
            rx = parts[1]
            registers[rx] += 1
            ip += 1
            
        elif op == "DEC":
            rx = parts[1]
            registers[rx] -= 1
            ip += 1
            
        elif op == "JMP":
            label = parts[1]
            ip = labels[label]
            
        elif op == "JT":
            label = parts[1]
            if flag:
                ip = labels[label]
            else:
                ip += 1
                
        elif op == "JF":
            label = parts[1]
            if not flag:
                ip = labels[label]
            else:
                ip += 1
                
        elif op == "LOAD":
            rx, addr = parts[1], parts[2]
            memory_addr = get_value(addr)
            registers[rx] = memory[memory_addr]
            ip += 1
            
        elif op == "STORE":
            rx, addr = parts[1], parts[2]
            memory_addr = get_value(addr)
            memory[memory_addr] = registers[rx]
            ip += 1
            
        elif op == "HCF":
            break
    
    # Return the memory state
    return memory





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    SET R3 20
    EQ R1 R3
    JF loop
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    SET R7 1
    EQ R2 R7        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    SET R7 100
    EQ R8 R7
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    SET R7 0
    EQ R7 R6     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True