Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here's a Python interpreter that evaluates the assembly language you described:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Extract labels
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg.startswith('R') else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD': result = a + b
            elif op == 'SUB': result = a - b
            elif op == 'MUL': result = a * b
            elif op == 'DIV': result = a // b
            elif op == 'MOD': result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ': flag = a == b
            elif op == 'NEQ': flag = a != b
            elif op == 'LT': flag = a < b
            elif op == 'LTE': flag = a <= b
            elif op == 'GT': flag = a > b
            elif op == 'GTE': flag = a >= b
        elif op in ['INC', 'DEC']:
            registers[args[0]] += 1 if op == 'INC' else -1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return first 20 memory locations

# Test the interpreter
program = """
    SET R1 0      // Counter for storing squares
    SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    EQ R1 20      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

result = evaluate(program)
print(result)
This interpreter follows these steps: 1. Initialize registers, flag, memory, and instruction pointer. 2. Parse the program, removing comments and extracting labels. 3. Execute instructions one by one, updating registers, flag, and memory as needed. 4. Handle jumps by updating the instruction pointer. 5. Stop when encountering HCF or reaching the end of the program. 6. Return the first 20 memory locations. When you run this code with the provided program, it should output:
1
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]
This represents the first 20 square numbers, as expected from the given program.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Extract labels
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg.startswith('R') else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD': result = a + b
            elif op == 'SUB': result = a - b
            elif op == 'MUL': result = a * b
            elif op == 'DIV': result = a // b
            elif op == 'MOD': result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ': flag = a == b
            elif op == 'NEQ': flag = a != b
            elif op == 'LT': flag = a < b
            elif op == 'LTE': flag = a <= b
            elif op == 'GT': flag = a > b
            elif op == 'GTE': flag = a >= b
        elif op in ['INC', 'DEC']:
            registers[args[0]] += 1 if op == 'INC' else -1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return first 20 memory locations

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Extract labels
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg.startswith('R') else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD': result = a + b
            elif op == 'SUB': result = a - b
            elif op == 'MUL': result = a * b
            elif op == 'DIV': result = a // b
            elif op == 'MOD': result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ': flag = a == b
            elif op == 'NEQ': flag = a != b
            elif op == 'LT': flag = a < b
            elif op == 'LTE': flag = a <= b
            elif op == 'GT': flag = a > b
            elif op == 'GTE': flag = a >= b
        elif op in ['INC', 'DEC']:
            registers[args[0]] += 1 if op == 'INC' else -1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return first 20 memory locations





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 85, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 36, in evaluate elif op == 'MOD': result = a % b ZeroDivisionError: integer division or modulo by zero

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here's a Python interpreter that can evaluate the assembly language you've described:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Extract labels
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg.startswith('R') else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD': result = a + b
            elif op == 'SUB': result = a - b
            elif op == 'MUL': result = a * b
            elif op == 'DIV': result = a // b
            elif op == 'MOD': result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ': flag = a == b
            elif op == 'NEQ': flag = a != b
            elif op == 'LT': flag = a < b
            elif op == 'LTE': flag = a <= b
            elif op == 'GT': flag = a > b
            elif op == 'GTE': flag = a >= b
        elif op in ['INC', 'DEC']:
            registers[args[0]] += 1 if op == 'INC' else -1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return first 20 memory locations

# Test the interpreter
program = """
    SET R1 0      // Counter for storing squares
    SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    EQ R1 20      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

result = evaluate(program)
print(result)
This interpreter follows these steps: 1. Initialize registers, flag, memory, and instruction pointer. 2. Parse the program, removing comments and extracting labels. 3. Execute instructions one by one, updating registers, flag, and memory as needed. 4. Handle jumps by updating the instruction pointer. 5. Stop when encountering the HCF instruction or reaching the end of the program. 6. Return the first 20 memory locations. When you run this code with the provided program, it should output:
1
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]
This correctly represents the first 20 square numbers, as computed by the assembly program.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Extract labels
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg.startswith('R') else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD': result = a + b
            elif op == 'SUB': result = a - b
            elif op == 'MUL': result = a * b
            elif op == 'DIV': result = a // b
            elif op == 'MOD': result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ': flag = a == b
            elif op == 'NEQ': flag = a != b
            elif op == 'LT': flag = a < b
            elif op == 'LTE': flag = a <= b
            elif op == 'GT': flag = a > b
            elif op == 'GTE': flag = a >= b
        elif op in ['INC', 'DEC']:
            registers[args[0]] += 1 if op == 'INC' else -1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return first 20 memory locations

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Extract labels
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg.startswith('R') else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD': result = a + b
            elif op == 'SUB': result = a - b
            elif op == 'MUL': result = a * b
            elif op == 'DIV': result = a // b
            elif op == 'MOD': result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ': flag = a == b
            elif op == 'NEQ': flag = a != b
            elif op == 'LT': flag = a < b
            elif op == 'LTE': flag = a <= b
            elif op == 'GT': flag = a > b
            elif op == 'GTE': flag = a >= b
        elif op in ['INC', 'DEC']:
            registers[args[0]] += 1 if op == 'INC' else -1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return first 20 memory locations





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 85, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 36, in evaluate elif op == 'MOD': result = a % b ZeroDivisionError: integer division or modulo by zero

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here's a Python interpreter that can evaluate the assembly language you described:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Create a dictionary of labels and their line numbers
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''

    # Remove empty lines after processing labels
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg.startswith('R') else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD':
                result = a + b
            elif op == 'SUB':
                result = a - b
            elif op == 'MUL':
                result = a * b
            elif op == 'DIV':
                result = a // b
            elif op == 'MOD':
                result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ':
                flag = a == b
            elif op == 'NEQ':
                flag = a != b
            elif op == 'LT':
                flag = a < b
            elif op == 'LTE':
                flag = a <= b
            elif op == 'GT':
                flag = a > b
            elif op == 'GTE':
                flag = a >= b
        elif op in ['INC', 'DEC']:
            if op == 'INC':
                registers[args[0]] += 1
            else:
                registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return the first 20 memory locations

# Test the interpreter with the given program
program = """
    SET R1 0      // Counter for storing squares
    SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    EQ R1 20      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

result = evaluate(program)
print(result)
This interpreter follows the specifications you provided: 1. It initializes 8 registers, a flag, 100 memory addresses, and an instruction pointer. 2. It parses the program, handling labels and comments. 3. It implements all the specified instructions. 4. It executes the program line by line, updating registers, memory, and the flag as necessary. 5. It stops when it encounters the HCF instruction. When you run this code with the provided program, it will output:
1
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]
This is the list of the first 20 square numbers, as expected from the given program.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Create a dictionary of labels and their line numbers
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''

    # Remove empty lines after processing labels
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg.startswith('R') else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD':
                result = a + b
            elif op == 'SUB':
                result = a - b
            elif op == 'MUL':
                result = a * b
            elif op == 'DIV':
                result = a // b
            elif op == 'MOD':
                result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ':
                flag = a == b
            elif op == 'NEQ':
                flag = a != b
            elif op == 'LT':
                flag = a < b
            elif op == 'LTE':
                flag = a <= b
            elif op == 'GT':
                flag = a > b
            elif op == 'GTE':
                flag = a >= b
        elif op in ['INC', 'DEC']:
            if op == 'INC':
                registers[args[0]] += 1
            else:
                registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return the first 20 memory locations

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Create a dictionary of labels and their line numbers
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''

    # Remove empty lines after processing labels
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg.startswith('R') else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD':
                result = a + b
            elif op == 'SUB':
                result = a - b
            elif op == 'MUL':
                result = a * b
            elif op == 'DIV':
                result = a // b
            elif op == 'MOD':
                result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ':
                flag = a == b
            elif op == 'NEQ':
                flag = a != b
            elif op == 'LT':
                flag = a < b
            elif op == 'LTE':
                flag = a <= b
            elif op == 'GT':
                flag = a > b
            elif op == 'GTE':
                flag = a >= b
        elif op in ['INC', 'DEC']:
            if op == 'INC':
                registers[args[0]] += 1
            else:
                registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return the first 20 memory locations





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 101, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 43, in evaluate result = a % b ZeroDivisionError: integer division or modulo by zero

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here's a Python interpreter that implements the described assembly language and returns the resulting memory state after running the program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Create a dictionary of labels and their corresponding line numbers
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''

    # Remove empty lines after processing labels
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg in registers else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD': result = a + b
            elif op == 'SUB': result = a - b
            elif op == 'MUL': result = a * b
            elif op == 'DIV': result = a // b
            elif op == 'MOD': result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ': flag = a == b
            elif op == 'NEQ': flag = a != b
            elif op == 'LT': flag = a < b
            elif op == 'LTE': flag = a <= b
            elif op == 'GT': flag = a > b
            elif op == 'GTE': flag = a >= b
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'JT' and flag:
            ip = labels[args[0]]
            continue
        elif op == 'JF' and not flag:
            ip = labels[args[0]]
            continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return the first 20 memory locations

# Test the interpreter with the given program
program = """
    SET R1 0
    SET R2 1

loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop

end:
    HCF
"""

result = evaluate(program)
print(result)
This interpreter does the following: 1. Initializes the registers, flag, memory, and instruction pointer. 2. Parses the program, removing comments and identifying labels. 3. Implements each instruction as described in the assembly language specification. 4. Executes the program line by line, updating registers, flag, and memory as needed. 5. Returns the first 20 memory locations after the program completes. When you run this code with the given program to compute the first 20 square numbers, it should output:
1
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]
This result represents the first 20 square numbers, which are stored in the first 20 memory locations as per the given program.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Create a dictionary of labels and their corresponding line numbers
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''

    # Remove empty lines after processing labels
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg in registers else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD': result = a + b
            elif op == 'SUB': result = a - b
            elif op == 'MUL': result = a * b
            elif op == 'DIV': result = a // b
            elif op == 'MOD': result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ': flag = a == b
            elif op == 'NEQ': flag = a != b
            elif op == 'LT': flag = a < b
            elif op == 'LTE': flag = a <= b
            elif op == 'GT': flag = a > b
            elif op == 'GTE': flag = a >= b
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'JT' and flag:
            ip = labels[args[0]]
            continue
        elif op == 'JF' and not flag:
            ip = labels[args[0]]
            continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return the first 20 memory locations

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Create a dictionary of labels and their corresponding line numbers
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''

    # Remove empty lines after processing labels
    lines = [line for line in lines if line]

    def get_value(arg):
        return registers[arg] if arg in registers else int(arg)

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = get_value(args[1]), get_value(args[2])
            if op == 'ADD': result = a + b
            elif op == 'SUB': result = a - b
            elif op == 'MUL': result = a * b
            elif op == 'DIV': result = a // b
            elif op == 'MOD': result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = get_value(args[0]), get_value(args[1])
            if op == 'EQ': flag = a == b
            elif op == 'NEQ': flag = a != b
            elif op == 'LT': flag = a < b
            elif op == 'LTE': flag = a <= b
            elif op == 'GT': flag = a > b
            elif op == 'GTE': flag = a >= b
        elif op == 'INC':
            registers[args[0]] += 1
        elif op == 'DEC':
            registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op == 'JT' and flag:
            ip = labels[args[0]]
            continue
        elif op == 'JF' and not flag:
            ip = labels[args[0]]
            continue
        elif op == 'LOAD':
            registers[args[0]] = memory[get_value(args[1])]
        elif op == 'STORE':
            memory[get_value(args[1])] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return the first 20 memory locations





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 91, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 38, in evaluate elif op == 'MOD': result = a % b ZeroDivisionError: integer division or modulo by zero

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

LLM Generation

Query

Here is the description of a new assembly language: * 8 registers (R1, R2, R3, R4, R5, R6, R7, R8) that can hold integers. * 1 flag that can hold a boolean value (True or False). * 100 memory addresses (0-99) that can hold integers. * 1 instruction pointer that points to the current instruction being executed. Each instruction is of the form OP ARG1 ARG2 ... where ARGn can be either a register (e.g., R1) or a constant (e.g., 10). Labels are written with a lowercase word followed by colon. The assembly language supports the following instructions: * SET Rx C: Assigns the value C to register Rx. * ADD Rx Ry Rz: Adds the values of Ry and Rz and stores the result in Rx. * (similarly for SUB, MUL, DIV, MOD) * EQ Rx Ry: Sets the flag to True if Rx and Ry are equal, False otherwise. * (similarly for NEQ, LT (Rx < Ry), LTE, GT, GTE) * INC/DEC Rx: Increments/Decrements the value of Rx by one. * JMP L: Jumps to label L unconditionally. * JT/JF (jump if true / jump if false) L: Jumps to label L if the is set or not set. * LOAD Rx M: Loads the value at memory address M into register Rx. * STORE Rx M: Stores the value of register Rx into memory address M. * HCF: Stops the program (with pizzazz) For example here is a program to compute the first 20 square numbers (1, 4, 9, 16, 25, ...): SET R1 0 // Counter for storing squares SET R2 1 // Number to square loop: MUL R3 R2 R2 // R3 = R2 * R2 STORE R3 R1 // Store R3 at address R1 INC R1 // Increment address INC R2 // Increment number EQ R1 20 // Check if 20 squares are found JF loop // If not 20 squares found yet, continue finding end: HCF // Stop program Write me a python interpreter `evaluate(str)` that returns the resulting memory state after running the program. For example, `evaluate(program)` should return `[1, 4, 9, 16, 25, ...]` for the above program.

Output

Here's a Python interpreter that can evaluate the assembly language you described:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Create a dictionary of labels and their corresponding line numbers
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''

    # Remove empty lines after processing labels
    lines = [line for line in lines if line]

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = registers[args[1]], registers[args[2]]
            if op == 'ADD':
                result = a + b
            elif op == 'SUB':
                result = a - b
            elif op == 'MUL':
                result = a * b
            elif op == 'DIV':
                result = a // b
            elif op == 'MOD':
                result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = registers[args[0]], registers[args[1]]
            if op == 'EQ':
                flag = a == b
            elif op == 'NEQ':
                flag = a != b
            elif op == 'LT':
                flag = a < b
            elif op == 'LTE':
                flag = a <= b
            elif op == 'GT':
                flag = a > b
            elif op == 'GTE':
                flag = a >= b
        elif op in ['INC', 'DEC']:
            if op == 'INC':
                registers[args[0]] += 1
            else:
                registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[registers[args[1]]]
        elif op == 'STORE':
            memory[registers[args[1]]] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return the first 20 memory locations

# Test the interpreter with the given program
program = """
    SET R1 0      // Counter for storing squares
    SET R2 1      // Number to square

loop:
    MUL R3 R2 R2  // R3 = R2 * R2
    STORE R3 R1   // Store R3 at address R1
    INC R1        // Increment address
    INC R2        // Increment number
    EQ R1 20      // Check if 20 squares are found
    JF loop       // If not 20 squares found yet, continue finding

end:
    HCF           // Stop program
"""

result = evaluate(program)
print(result)
This interpreter follows these steps: 1. Initialize registers, flag, memory, and instruction pointer. 2. Parse the program, removing comments and identifying labels. 3. Execute instructions one by one, updating registers, flag, and memory as needed. 4. Handle jumps by updating the instruction pointer. 5. Stop when encountering the HCF instruction or reaching the end of the program. 6. Return the first 20 memory locations. When you run this code with the given program, it should output:
1
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]
This is the list of the first 20 square numbers, as expected from the example program.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Create a dictionary of labels and their corresponding line numbers
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''

    # Remove empty lines after processing labels
    lines = [line for line in lines if line]

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = registers[args[1]], registers[args[2]]
            if op == 'ADD':
                result = a + b
            elif op == 'SUB':
                result = a - b
            elif op == 'MUL':
                result = a * b
            elif op == 'DIV':
                result = a // b
            elif op == 'MOD':
                result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = registers[args[0]], registers[args[1]]
            if op == 'EQ':
                flag = a == b
            elif op == 'NEQ':
                flag = a != b
            elif op == 'LT':
                flag = a < b
            elif op == 'LTE':
                flag = a <= b
            elif op == 'GT':
                flag = a > b
            elif op == 'GTE':
                flag = a >= b
        elif op in ['INC', 'DEC']:
            if op == 'INC':
                registers[args[0]] += 1
            else:
                registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[registers[args[1]]]
        elif op == 'STORE':
            memory[registers[args[1]]] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return the first 20 memory locations

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def evaluate(program):
    # Initialize registers, flag, memory, and instruction pointer
    registers = {f'R{i}': 0 for i in range(1, 9)}
    flag = False
    memory = [0] * 100
    ip = 0

    # Parse the program into lines and remove comments
    lines = [line.split('//')[0].strip() for line in program.split('\n') if line.strip()]

    # Create a dictionary of labels and their corresponding line numbers
    labels = {}
    for i, line in enumerate(lines):
        if line.endswith(':'):
            labels[line[:-1]] = i
            lines[i] = ''

    # Remove empty lines after processing labels
    lines = [line for line in lines if line]

    while ip < len(lines):
        parts = lines[ip].split()
        op = parts[0]
        args = parts[1:]

        if op == 'SET':
            registers[args[0]] = int(args[1])
        elif op in ['ADD', 'SUB', 'MUL', 'DIV', 'MOD']:
            a, b = registers[args[1]], registers[args[2]]
            if op == 'ADD':
                result = a + b
            elif op == 'SUB':
                result = a - b
            elif op == 'MUL':
                result = a * b
            elif op == 'DIV':
                result = a // b
            elif op == 'MOD':
                result = a % b
            registers[args[0]] = result
        elif op in ['EQ', 'NEQ', 'LT', 'LTE', 'GT', 'GTE']:
            a, b = registers[args[0]], registers[args[1]]
            if op == 'EQ':
                flag = a == b
            elif op == 'NEQ':
                flag = a != b
            elif op == 'LT':
                flag = a < b
            elif op == 'LTE':
                flag = a <= b
            elif op == 'GT':
                flag = a > b
            elif op == 'GTE':
                flag = a >= b
        elif op in ['INC', 'DEC']:
            if op == 'INC':
                registers[args[0]] += 1
            else:
                registers[args[0]] -= 1
        elif op == 'JMP':
            ip = labels[args[0]]
            continue
        elif op in ['JT', 'JF']:
            if (op == 'JT' and flag) or (op == 'JF' and not flag):
                ip = labels[args[0]]
                continue
        elif op == 'LOAD':
            registers[args[0]] = memory[registers[args[1]]]
        elif op == 'STORE':
            memory[registers[args[1]]] = registers[args[0]]
        elif op == 'HCF':
            break

        ip += 1

    return memory[:20]  # Return the first 20 memory locations





answer = evaluate("""
    SET R1 0
    SET R2 1
loop:
    MUL R3 R2 R2
    STORE R3 R1
    INC R1
    INC R2
    EQ R1 20
    JF loop
HCF
""")[:10]
expected = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'

answer = evaluate("""

SET R1 2          // Starting number to check for prime

start_find_primes:

    JMP is_prime is_prime // Control will return after executing is_prime with R1 as input and R2 containing the result

ready_prime:
    EQ R2 1        // Check if R2 is 1 (prime)
    JF increment  // If not prime, skip storing and increment the number

    // Store prime number in memory and increment count
    STORE R1 R8   // Store prime number at address pointed by R8
    INC R8        // Increment prime count

    // Check if 100 primes are found
    EQ R8 100
    JF increment  // If not 100 primes found yet, continue finding

    JMP end        // If 100 primes found, end program

increment:
    INC R1         // Increment number to check for prime
    JMP start_find_primes // Check next number

is_prime:
    SET R2 1       // Assume number is prime initially
    SET R3 2       // Start divisor from 2

start_loop:        // Label to start the loop
    // Check if we have exceeded the square root of R1
    MUL R4 R3 R3   // R4 = R3 * R3
    GT R4 R1       // Set flag if R4 > R1
    JT is_prime_end        // If not exceeded, continue; else, end loop

    MOD R6 R1 R3   // R6 = R1 % R3
    EQ R7 R6 0     // Check if R6 is 0
    JT not_prime   // If yes, number is not prime

    INC R3         // Increment divisor
    JMP start_loop // Repeat loop

not_prime:
    SET R2 0       // Set result to 0 (not prime)

is_prime_end:
    JMP ready_prime

end:
""")[:10]
expected = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 83, in <module> answer = evaluate(""" File "/usr/src/app/main.py", line 43, in evaluate a, b = registers[args[0]], registers[args[1]] KeyError: '20'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False