Initial Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

LLM Generation

Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import re

def rle_to_arr(rle_string, h, w):
    """
    Converts a Run-Length Encoded (RLE) string for Conway's Game of Life
    into a NumPy array.

    Args:
        rle_string (str): The RLE string pattern.
                          'b' = dead cell, 'o' = live cell, '$' = end of line,
                          '!' = end of pattern, numbers indicate run length.
        h (int): The desired height of the output NumPy array.
        w (int): The desired width of the output NumPy array.

    Returns:
        numpy.ndarray: A NumPy array of shape (h, w) with 1s for live cells
                       and 0s for dead cells.
    """
    arr = np.zeros((h, w), dtype=np.int8)
    row, col = 0, 0
    i = 0
    n_str = "" # To accumulate multi-digit run counts

    while i < len(rle_string):
        char = rle_string[i]

        if char.isdigit():
            n_str += char
            i += 1
            continue # Keep reading digits

        # Process the accumulated run count (if any)
        run_count = 1
        if n_str:
            run_count = int(n_str)
            n_str = "" # Reset run count string

        # Process the character ('b', 'o', '$', '!')
        if char == 'b': # Dead cell
            col += run_count
        elif char == 'o': # Live cell
            # Ensure we don't write past the array width or height
            if row < h:
                end_col = min(col + run_count, w)
                if col < w: # Only write if start col is within bounds
                    arr[row, col:end_col] = 1
            col += run_count
        elif char == '$': # End of line
            row += run_count
            col = 0 # Reset column to the beginning of the next line(s)
            # Stop if we go past the specified height
            if row >= h:
                print(f"Warning: Pattern exceeded specified height ({h}). Stopping.")
                break
        elif char == '!': # End of pattern
            break
        else:
            # Ignore unexpected characters like spaces or newlines often found in RLE
            # Or raise an error if strict parsing is needed:
            # raise ValueError(f"Unexpected character '{char}' at index {i}")
            pass

        i += 1 # Move to the next character

    # Handle potential trailing number if string ends unexpectedly (optional)
    # if n_str:
    #    print(f"Warning: RLE string ended with unapplied run count '{n_str}'")

    return arr

# --- Example Usage ---
rle_pattern = "26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5bo15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2bo$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o!"

# Determine appropriate dimensions (can be tricky without metadata)
# Let's estimate based on the RLE - looks like height around 100, width around 100
# A safer approach might be to parse once to find max row/col, then create array.
# For this example, let's use generous dimensions.
height = 110
width = 100

# Remove potential newlines from the string if copied/pasted
rle_pattern_clean = "".join(rle_pattern.split())

life_array = rle_to_arr(rle_pattern_clean, height, width)

print(f"Created NumPy array with shape: {life_array.shape}")
# print("\nArray representation (potentially large):")
# print(life_array)

# Optional: Verify a known part of the pattern
print("\nVerification:")
print("First few rows (rows 26-30):")
print(life_array[26:31, 10:20]) # Expect nothing in row 26, then 2o, bo, bobo, b2o starting col 13/14/15

print("\nPart of the complex structure (rows 80-85):")
print(life_array[80:86, 50:80])
**Explanation:** 1. **Import NumPy:** Imports the necessary library. 2. **Initialize Array:** Creates a NumPy array `arr` of the specified `h` (height) and `w` (width), filled with zeros (`dtype=np.int8` is efficient for 0s and 1s). 3. **Track Position:** `row` and `col` keep track of the current cell coordinates where the next RLE element should be processed. 4. **Iterate Through RLE String:** The `while` loop goes through the `rle_string` character by character using index `i`. 5. **Handle Run Counts:** * If the character `char` is a digit, it's appended to `n_str`. The loop continues (`continue`) to potentially read multi-digit numbers. * If `char` is *not* a digit, it means any previously read digits in `n_str` form the `run_count`. If `n_str` is empty, `run_count` defaults to 1. `n_str` is then reset. 6. **Process Characters:** * **`b` (dead):** Simply advances the `col` by the `run_count`. No change to the array is needed since it's initialized with 0s. * **`o` (live):** * Calculates the `end_col` for the run, ensuring it doesn't exceed the array width `w` using `min()`. * Checks if the current `row` is within the array height `h`. * If the starting `col` is also within the width `w`, it uses NumPy slicing `arr[row, col:end_col] = 1` to efficiently set the run of cells to 1 (live). * Advances the `col` by the `run_count`. * **`$` (end of line):** Advances the `row` by the `run_count` and resets `col` to 0. It includes a check to stop processing if the pattern exceeds the specified height `h`. * **`!` (end of pattern):** Breaks the loop, finishing the process. * **Other Characters:** Ignores any other characters (like potential whitespace). You could add an error raise here if strict RLE adherence is required. 7. **Increment Index:** `i` is incremented to move to the character *after* the number (if any) or the processed character (`b`, `o`, `$`). 8. **Return Array:** The function returns the populated NumPy array. 9. **Example Usage:** Demonstrates how to call the function with the provided RLE string and estimated dimensions. It also includes cleaning the input string (removing potential newlines) and printing parts of the resulting array for verification.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import re

def rle_to_arr(rle_string, h, w):
    """
    Converts a Run-Length Encoded (RLE) string for Conway's Game of Life
    into a NumPy array.

    Args:
        rle_string (str): The RLE string pattern.
                          'b' = dead cell, 'o' = live cell, '$' = end of line,
                          '!' = end of pattern, numbers indicate run length.
        h (int): The desired height of the output NumPy array.
        w (int): The desired width of the output NumPy array.

    Returns:
        numpy.ndarray: A NumPy array of shape (h, w) with 1s for live cells
                       and 0s for dead cells.
    """
    arr = np.zeros((h, w), dtype=np.int8)
    row, col = 0, 0
    i = 0
    n_str = "" # To accumulate multi-digit run counts

    while i < len(rle_string):
        char = rle_string[i]

        if char.isdigit():
            n_str += char
            i += 1
            continue # Keep reading digits

        # Process the accumulated run count (if any)
        run_count = 1
        if n_str:
            run_count = int(n_str)
            n_str = "" # Reset run count string

        # Process the character ('b', 'o', '$', '!')
        if char == 'b': # Dead cell
            col += run_count
        elif char == 'o': # Live cell
            # Ensure we don't write past the array width or height
            if row < h:
                end_col = min(col + run_count, w)
                if col < w: # Only write if start col is within bounds
                    arr[row, col:end_col] = 1
            col += run_count
        elif char == '$': # End of line
            row += run_count
            col = 0 # Reset column to the beginning of the next line(s)
            # Stop if we go past the specified height
            if row >= h:
                print(f"Warning: Pattern exceeded specified height ({h}). Stopping.")
                break
        elif char == '!': # End of pattern
            break
        else:
            # Ignore unexpected characters like spaces or newlines often found in RLE
            # Or raise an error if strict parsing is needed:
            # raise ValueError(f"Unexpected character '{char}' at index {i}")
            pass

        i += 1 # Move to the next character

    # Handle potential trailing number if string ends unexpectedly (optional)
    # if n_str:
    #    print(f"Warning: RLE string ended with unapplied run count '{n_str}'")

    return arr

# --- Example Usage ---
rle_pattern = "26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5bo15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2bo$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o!"

# Determine appropriate dimensions (can be tricky without metadata)
# Let's estimate based on the RLE - looks like height around 100, width around 100
# A safer approach might be to parse once to find max row/col, then create array.
# For this example, let's use generous dimensions.
height = 110
width = 100

# Remove potential newlines from the string if copied/pasted
rle_pattern_clean = "".join(rle_pattern.split())

life_array = rle_to_arr(rle_pattern_clean, height, width)

print(f"Created NumPy array with shape: {life_array.shape}")
# print("\nArray representation (potentially large):")
# print(life_array)

# Optional: Verify a known part of the pattern
print("\nVerification:")
print("First few rows (rows 26-30):")
print(life_array[26:31, 10:20]) # Expect nothing in row 26, then 2o, bo, bobo, b2o starting col 13/14/15

print("\nPart of the complex structure (rows 80-85):")
print(life_array[80:86, 50:80])

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import re

def rle_to_arr(rle_string, h, w):
    """
    Converts a Run-Length Encoded (RLE) string for Conway's Game of Life
    into a NumPy array.

    Args:
        rle_string (str): The RLE string pattern.
                          'b' = dead cell, 'o' = live cell, '$' = end of line,
                          '!' = end of pattern, numbers indicate run length.
        h (int): The desired height of the output NumPy array.
        w (int): The desired width of the output NumPy array.

    Returns:
        numpy.ndarray: A NumPy array of shape (h, w) with 1s for live cells
                       and 0s for dead cells.
    """
    arr = np.zeros((h, w), dtype=np.int8)
    row, col = 0, 0
    i = 0
    n_str = "" # To accumulate multi-digit run counts

    while i < len(rle_string):
        char = rle_string[i]

        if char.isdigit():
            n_str += char
            i += 1
            continue # Keep reading digits

        # Process the accumulated run count (if any)
        run_count = 1
        if n_str:
            run_count = int(n_str)
            n_str = "" # Reset run count string

        # Process the character ('b', 'o', '$', '!')
        if char == 'b': # Dead cell
            col += run_count
        elif char == 'o': # Live cell
            # Ensure we don't write past the array width or height
            if row < h:
                end_col = min(col + run_count, w)
                if col < w: # Only write if start col is within bounds
                    arr[row, col:end_col] = 1
            col += run_count
        elif char == '$': # End of line
            row += run_count
            col = 0 # Reset column to the beginning of the next line(s)
            # Stop if we go past the specified height
            if row >= h:
                print(f"Warning: Pattern exceeded specified height ({h}). Stopping.")
                break
        elif char == '!': # End of pattern
            break
        else:
            # Ignore unexpected characters like spaces or newlines often found in RLE
            # Or raise an error if strict parsing is needed:
            # raise ValueError(f"Unexpected character '{char}' at index {i}")
            pass

        i += 1 # Move to the next character

    # Handle potential trailing number if string ends unexpectedly (optional)
    # if n_str:
    #    print(f"Warning: RLE string ended with unapplied run count '{n_str}'")

    return arr

# --- Example Usage ---
rle_pattern = "26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5bo15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2bo$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o!"

# Determine appropriate dimensions (can be tricky without metadata)
# Let's estimate based on the RLE - looks like height around 100, width around 100
# A safer approach might be to parse once to find max row/col, then create array.
# For this example, let's use generous dimensions.
height = 110
width = 100

# Remove potential newlines from the string if copied/pasted
rle_pattern_clean = "".join(rle_pattern.split())

life_array = rle_to_arr(rle_pattern_clean, height, width)

print(f"Created NumPy array with shape: {life_array.shape}")
# print("\nArray representation (potentially large):")
# print(life_array)

# Optional: Verify a known part of the pattern
print("\nVerification:")
print("First few rows (rows 26-30):")
print(life_array[26:31, 10:20]) # Expect nothing in row 26, then 2o, bo, bobo, b2o starting col 13/14/15

print("\nPart of the complex structure (rows 80-85):")
print(life_array[80:86, 50:80])





answer = (np.array(rle_to_arr('''
16b2o3b2o$2o$2o$19b2o$17b5o$21bo$17b3o$o16bo$o17b2o$bo16b2o$b2o$3bo$o
17b2o3b2o$2b2o14bobobobo$11bobo5b5o$11b2o7b3o$2o10bo8bo$b2o$b2o2$2o$bo
2$6bobo$2o3bo$bo3bo$o4bo2bo7bo$5b3o7b2o7bo$15bobo5b3o$22b5o$21b2o3b2o$
22b5o$22b5o$14b2o6bo2bo$14bobo4bo3bo$11b2obobo4bo$11bobobo5bob2o$13bo
8bo$4bobo6b2o$7bo5b3o50bo$7bo5b3o3b2o3b2o40b4o$4bo2bo5b3o3bo5bo41b4o$
5b3o5b2o35bo16bo2bo$13bo6bo3bo24bobo15b4o4b2o$11bobobo5b3o15b2o7bob2o
14b4o5b2o$11b2obobo21bobo6b2ob2o14bo8b2o$14bobo20bo6b3obob2o$14b2o12b
2o7bo2bo2bo2bo2bobo$28b2o7bo6b2o4bo16bobo$38bobo26b2o$39b2o27bo4b2o$
21b2o49bo2bo$21b2o28bobo18b3o$52b2o21b2o$52bo21bo$74b2o$59bo$62bo$59bo
14bo$62bo$61bob3o8bo$59b4o2bo9b2o$64bo$52bo$51b2o$40b2o8b2o4b2o5bo$40b
2o7b3o4b2o3bobo$50b2o4b2o2bobo11b2o$4bobo44b2o6bo2bo11b2o$7bo44bo7bobo
$o6bo53bobo$o3bo2bo55bo$5b3o5$4b4o$3bo3bo$7bo$3bo2bo3$o2b3o2b2o$2b5o2b
o64b3o$9o67bo$9b3o63bo$o7bo2bo$9b2o3$4b2o$o3b3o$o5b2obo5b2o$bo4bo2bo5b
2o$2o4b2obo$o3b3o$4b2o2$59b3o12b2o$61bo12b2o!
''', 101, 77),dtype=np.uint32).flatten() * np.arange(77*101)).sum()
expected = 1563304
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Warning: Pattern exceeded specified height (110). Stopping. Created NumPy array with shape: (110, 100) Verification: First few rows (rows 26-30): [[0 0 0 1 1 0 0 0 0 0] [0 0 0 0 1 0 0 0 0 0] [0 0 0 0 1 0 1 0 0 0] [0 0 0 0 0 1 1 0 0 0] [0 0 0 0 0 0 0 0 0 0]] Part of the complex structure (rows 80-85): [[0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0]] All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True