Initial Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

LLM Generation

Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

Output

Here's the Python code that implements the `rle_to_arr(string, h, w)` function to convert the game of life pattern in run-length encoded format to a numpy array:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np

def rle_to_arr(string, h, w):
    arr = np.zeros((h, w), dtype=int)
    lines = string.split("$")
    row = 0
    col = 0

    for line in lines:
        line = line.strip()
        if not line:
            continue

        count = 0
        for char in line:
            if char.isdigit():
                count = count * 10 + int(char)
            else:
                if count == 0:
                    count = 1
                if char == 'b':
                    col += count
                elif char == 'o':
                    arr[row, col:col+count] = 1
                    col += count
                count = 0

        row += 1
        col = 0

    return arr
Explanation: 1. We create a numpy array `arr` of shape `(h, w)` initialized with zeros using `np.zeros((h, w), dtype=int)`. 2. We split the input `string` by the '$' character to get individual lines of the pattern. 3. We initialize variables `row` and `col` to keep track of the current position in the array. 4. We iterate over each line in the pattern: - If the line is empty (after stripping whitespace), we skip it. - We initialize a variable `count` to keep track of the count of consecutive cells. - We iterate over each character in the line: - If the character is a digit, we update the `count` by multiplying it by 10 and adding the current digit. - If the character is 'b' (dead cell), we increment the `col` by the current `count`. - If the character is 'o' (live cell), we set the corresponding elements in `arr` to 1 using `arr[row, col:col+count] = 1` and increment the `col` by the current `count`. - We reset the `count` to 0 after processing each character. 5. After processing each line, we increment the `row` and reset the `col` to 0. 6. Finally, we return the resulting numpy array `arr`. To use the function, you can call it with the game of life pattern string, the desired height `h`, and width `w` of the array:
1
2
3
4
5
6
pattern = "26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5bo15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2bo$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o!"

h = 80
w = 80
arr = rle_to_arr(pattern, h, w)
print(arr)
The code will output the corresponding numpy array representation of the game of life pattern.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np

def rle_to_arr(string, h, w):
    arr = np.zeros((h, w), dtype=int)
    lines = string.split("$")
    row = 0
    col = 0

    for line in lines:
        line = line.strip()
        if not line:
            continue

        count = 0
        for char in line:
            if char.isdigit():
                count = count * 10 + int(char)
            else:
                if count == 0:
                    count = 1
                if char == 'b':
                    col += count
                elif char == 'o':
                    arr[row, col:col+count] = 1
                    col += count
                count = 0

        row += 1
        col = 0

    return arr

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np

def rle_to_arr(string, h, w):
    arr = np.zeros((h, w), dtype=int)
    lines = string.split("$")
    row = 0
    col = 0

    for line in lines:
        line = line.strip()
        if not line:
            continue

        count = 0
        for char in line:
            if char.isdigit():
                count = count * 10 + int(char)
            else:
                if count == 0:
                    count = 1
                if char == 'b':
                    col += count
                elif char == 'o':
                    arr[row, col:col+count] = 1
                    col += count
                count = 0

        row += 1
        col = 0

    return arr





answer = (np.array(rle_to_arr('''
16b2o3b2o$2o$2o$19b2o$17b5o$21bo$17b3o$o16bo$o17b2o$bo16b2o$b2o$3bo$o
17b2o3b2o$2b2o14bobobobo$11bobo5b5o$11b2o7b3o$2o10bo8bo$b2o$b2o2$2o$bo
2$6bobo$2o3bo$bo3bo$o4bo2bo7bo$5b3o7b2o7bo$15bobo5b3o$22b5o$21b2o3b2o$
22b5o$22b5o$14b2o6bo2bo$14bobo4bo3bo$11b2obobo4bo$11bobobo5bob2o$13bo
8bo$4bobo6b2o$7bo5b3o50bo$7bo5b3o3b2o3b2o40b4o$4bo2bo5b3o3bo5bo41b4o$
5b3o5b2o35bo16bo2bo$13bo6bo3bo24bobo15b4o4b2o$11bobobo5b3o15b2o7bob2o
14b4o5b2o$11b2obobo21bobo6b2ob2o14bo8b2o$14bobo20bo6b3obob2o$14b2o12b
2o7bo2bo2bo2bo2bobo$28b2o7bo6b2o4bo16bobo$38bobo26b2o$39b2o27bo4b2o$
21b2o49bo2bo$21b2o28bobo18b3o$52b2o21b2o$52bo21bo$74b2o$59bo$62bo$59bo
14bo$62bo$61bob3o8bo$59b4o2bo9b2o$64bo$52bo$51b2o$40b2o8b2o4b2o5bo$40b
2o7b3o4b2o3bobo$50b2o4b2o2bobo11b2o$4bobo44b2o6bo2bo11b2o$7bo44bo7bobo
$o6bo53bobo$o3bo2bo55bo$5b3o5$4b4o$3bo3bo$7bo$3bo2bo3$o2b3o2b2o$2b5o2b
o64b3o$9o67bo$9b3o63bo$o7bo2bo$9b2o3$4b2o$o3b3o$o5b2obo5b2o$bo4bo2bo5b
2o$2o4b2obo$o3b3o$4b2o2$59b3o12b2o$61bo12b2o!
''', 101, 77),dtype=np.uint32).flatten() * np.arange(77*101)).sum()
expected = 1563304
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 55, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got 1468671 instead of 1563304

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

LLM Generation

Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

Output

Here's the Python code to convert the Run Length Encoded (RLE) pattern of the Game of Life into a NumPy array:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import numpy as np

def rle_to_arr(rle_string, h, w):
    arr = np.zeros((h, w), dtype=int)
    x, y = 0, 0
    count = 0

    for char in rle_string:
        if char.isdigit():
            count = count * 10 + int(char)
        elif char == 'b':
            x += count if count > 0 else 1
            count = 0
        elif char == 'o':
            for i in range(count if count > 0 else 1):
                arr[y, x] = 1
                x += 1
            count = 0
        elif char == '$':
            y += count if count > 0 else 1
            x = 0
            count = 0
        elif char == '!':
            break

    return arr
Explanation: 1. We define the function `rle_to_arr` that takes three parameters: `rle_string` (the RLE pattern string), `h` (the desired height of the array), and `w` (the desired width of the array). 2. We create a NumPy array `arr` with shape `(h, w)` initialized with zeros using `np.zeros((h, w), dtype=int)`. 3. We initialize variables `x` and `y` to keep track of the current position in the array, and `count` to store the count of consecutive cells. 4. We iterate over each character `char` in the `rle_string`: - If `char` is a digit, we update the `count` by multiplying it by 10 and adding the digit. - If `char` is 'b' (representing a dead cell), we increment `x` by `count` if `count` is greater than 0, otherwise by 1. We reset `count` to 0. - If `char` is 'o' (representing a live cell), we iterate `count` times (or once if `count` is 0) and set the corresponding positions in `arr` to 1. We increment `x` accordingly and reset `count` to 0. - If `char` is '$' (representing the end of a row), we increment `y` by `count` if `count` is greater than 0, otherwise by 1. We reset `x` to 0 and `count` to 0. - If `char` is '!' (representing the end of the pattern), we break out of the loop. 5. Finally, we return the resulting NumPy array `arr`. To use the function, you can call it with the RLE pattern string and the desired dimensions of the array:
1
2
3
4
rle_string = "26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5bo15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2bo$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o!"
h, w = 80, 80
arr = rle_to_arr(rle_string, h, w)
print(arr)
The function will convert the RLE pattern string into a NumPy array of the specified dimensions, with live cells represented by 1 and dead cells represented by 0.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import numpy as np

def rle_to_arr(rle_string, h, w):
    arr = np.zeros((h, w), dtype=int)
    x, y = 0, 0
    count = 0

    for char in rle_string:
        if char.isdigit():
            count = count * 10 + int(char)
        elif char == 'b':
            x += count if count > 0 else 1
            count = 0
        elif char == 'o':
            for i in range(count if count > 0 else 1):
                arr[y, x] = 1
                x += 1
            count = 0
        elif char == '$':
            y += count if count > 0 else 1
            x = 0
            count = 0
        elif char == '!':
            break

    return arr

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np

def rle_to_arr(rle_string, h, w):
    arr = np.zeros((h, w), dtype=int)
    x, y = 0, 0
    count = 0

    for char in rle_string:
        if char.isdigit():
            count = count * 10 + int(char)
        elif char == 'b':
            x += count if count > 0 else 1
            count = 0
        elif char == 'o':
            for i in range(count if count > 0 else 1):
                arr[y, x] = 1
                x += 1
            count = 0
        elif char == '$':
            y += count if count > 0 else 1
            x = 0
            count = 0
        elif char == '!':
            break

    return arr





answer = (np.array(rle_to_arr('''
16b2o3b2o$2o$2o$19b2o$17b5o$21bo$17b3o$o16bo$o17b2o$bo16b2o$b2o$3bo$o
17b2o3b2o$2b2o14bobobobo$11bobo5b5o$11b2o7b3o$2o10bo8bo$b2o$b2o2$2o$bo
2$6bobo$2o3bo$bo3bo$o4bo2bo7bo$5b3o7b2o7bo$15bobo5b3o$22b5o$21b2o3b2o$
22b5o$22b5o$14b2o6bo2bo$14bobo4bo3bo$11b2obobo4bo$11bobobo5bob2o$13bo
8bo$4bobo6b2o$7bo5b3o50bo$7bo5b3o3b2o3b2o40b4o$4bo2bo5b3o3bo5bo41b4o$
5b3o5b2o35bo16bo2bo$13bo6bo3bo24bobo15b4o4b2o$11bobobo5b3o15b2o7bob2o
14b4o5b2o$11b2obobo21bobo6b2ob2o14bo8b2o$14bobo20bo6b3obob2o$14b2o12b
2o7bo2bo2bo2bo2bobo$28b2o7bo6b2o4bo16bobo$38bobo26b2o$39b2o27bo4b2o$
21b2o49bo2bo$21b2o28bobo18b3o$52b2o21b2o$52bo21bo$74b2o$59bo$62bo$59bo
14bo$62bo$61bob3o8bo$59b4o2bo9b2o$64bo$52bo$51b2o$40b2o8b2o4b2o5bo$40b
2o7b3o4b2o3bobo$50b2o4b2o2bobo11b2o$4bobo44b2o6bo2bo11b2o$7bo44bo7bobo
$o6bo53bobo$o3bo2bo55bo$5b3o5$4b4o$3bo3bo$7bo$3bo2bo3$o2b3o2b2o$2b5o2b
o64b3o$9o67bo$9b3o63bo$o7bo2bo$9b2o3$4b2o$o3b3o$o5b2obo5b2o$bo4bo2bo5b
2o$2o4b2obo$o3b3o$4b2o2$59b3o12b2o$61bo12b2o!
''', 101, 77),dtype=np.uint32).flatten() * np.arange(77*101)).sum()
expected = 1563304
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

LLM Generation

Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

Output

Here's the Python code that defines the `rle_to_arr(string, h, w)` function to convert the Run Length Encoded (RLE) string representation of the Game of Life pattern into a NumPy array:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np

def rle_to_arr(string, h, w):
    pattern = np.zeros((h, w), dtype=int)
    x, y = 0, 0
    run_count = 0
    
    for char in string:
        if char.isdigit():
            run_count = run_count * 10 + int(char)
        elif char == '$':
            y += run_count if run_count > 0 else 1
            x = 0
            run_count = 0
        elif char == 'b':
            x += run_count if run_count > 0 else 1
            run_count = 0
        elif char == 'o':
            pattern[y, x:x + (run_count if run_count > 0 else 1)] = 1
            x += run_count if run_count > 0 else 1
            run_count = 0
        elif char == '!':
            break
    
    return pattern
Here's how the `rle_to_arr` function works: 1. It takes three parameters: - `string`: The RLE string representation of the Game of Life pattern. - `h`: The desired height of the resulting NumPy array. - `w`: The desired width of the resulting NumPy array. 2. It initializes a NumPy array called `pattern` with the specified height `h` and width `w`, filled with zeros (representing empty cells). 3. It initializes variables `x` and `y` to keep track of the current position in the pattern array, and `run_count` to store the count of consecutive cells. 4. It iterates over each character in the RLE string: - If the character is a digit, it updates the `run_count` by multiplying the previous value by 10 and adding the current digit. - If the character is '$', it moves to the next row by incrementing `y` by `run_count` (if `run_count` is greater than 0) or by 1 (if `run_count` is 0). It also resets `x` to 0 and `run_count` to 0. - If the character is 'b', it moves the current position `x` to the right by `run_count` (if `run_count` is greater than 0) or by 1 (if `run_count` is 0), and resets `run_count` to 0. - If the character is 'o', it fills the cells in the `pattern` array from the current position `x` to `x + run_count` (if `run_count` is greater than 0) or `x + 1` (if `run_count` is 0) with 1 (representing live cells). It then updates `x` accordingly and resets `run_count` to 0. - If the character is '!', it breaks out of the loop since it marks the end of the RLE string. 5. Finally, it returns the `pattern` array containing the converted Game of Life pattern. You can call the `rle_to_arr` function with the provided RLE string and the desired height and width to obtain the corresponding NumPy array representation of the Game of Life pattern.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np

def rle_to_arr(string, h, w):
    pattern = np.zeros((h, w), dtype=int)
    x, y = 0, 0
    run_count = 0
    
    for char in string:
        if char.isdigit():
            run_count = run_count * 10 + int(char)
        elif char == '$':
            y += run_count if run_count > 0 else 1
            x = 0
            run_count = 0
        elif char == 'b':
            x += run_count if run_count > 0 else 1
            run_count = 0
        elif char == 'o':
            pattern[y, x:x + (run_count if run_count > 0 else 1)] = 1
            x += run_count if run_count > 0 else 1
            run_count = 0
        elif char == '!':
            break
    
    return pattern

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np

def rle_to_arr(string, h, w):
    pattern = np.zeros((h, w), dtype=int)
    x, y = 0, 0
    run_count = 0
    
    for char in string:
        if char.isdigit():
            run_count = run_count * 10 + int(char)
        elif char == '$':
            y += run_count if run_count > 0 else 1
            x = 0
            run_count = 0
        elif char == 'b':
            x += run_count if run_count > 0 else 1
            run_count = 0
        elif char == 'o':
            pattern[y, x:x + (run_count if run_count > 0 else 1)] = 1
            x += run_count if run_count > 0 else 1
            run_count = 0
        elif char == '!':
            break
    
    return pattern





answer = (np.array(rle_to_arr('''
16b2o3b2o$2o$2o$19b2o$17b5o$21bo$17b3o$o16bo$o17b2o$bo16b2o$b2o$3bo$o
17b2o3b2o$2b2o14bobobobo$11bobo5b5o$11b2o7b3o$2o10bo8bo$b2o$b2o2$2o$bo
2$6bobo$2o3bo$bo3bo$o4bo2bo7bo$5b3o7b2o7bo$15bobo5b3o$22b5o$21b2o3b2o$
22b5o$22b5o$14b2o6bo2bo$14bobo4bo3bo$11b2obobo4bo$11bobobo5bob2o$13bo
8bo$4bobo6b2o$7bo5b3o50bo$7bo5b3o3b2o3b2o40b4o$4bo2bo5b3o3bo5bo41b4o$
5b3o5b2o35bo16bo2bo$13bo6bo3bo24bobo15b4o4b2o$11bobobo5b3o15b2o7bob2o
14b4o5b2o$11b2obobo21bobo6b2ob2o14bo8b2o$14bobo20bo6b3obob2o$14b2o12b
2o7bo2bo2bo2bo2bobo$28b2o7bo6b2o4bo16bobo$38bobo26b2o$39b2o27bo4b2o$
21b2o49bo2bo$21b2o28bobo18b3o$52b2o21b2o$52bo21bo$74b2o$59bo$62bo$59bo
14bo$62bo$61bob3o8bo$59b4o2bo9b2o$64bo$52bo$51b2o$40b2o8b2o4b2o5bo$40b
2o7b3o4b2o3bobo$50b2o4b2o2bobo11b2o$4bobo44b2o6bo2bo11b2o$7bo44bo7bobo
$o6bo53bobo$o3bo2bo55bo$5b3o5$4b4o$3bo3bo$7bo$3bo2bo3$o2b3o2b2o$2b5o2b
o64b3o$9o67bo$9b3o63bo$o7bo2bo$9b2o3$4b2o$o3b3o$o5b2obo5b2o$bo4bo2bo5b
2o$2o4b2obo$o3b3o$4b2o2$59b3o12b2o$61bo12b2o!
''', 101, 77),dtype=np.uint32).flatten() * np.arange(77*101)).sum()
expected = 1563304
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

LLM Generation

Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

Output

Here's the Python code that converts the Run Length Encoded (RLE) string to a NumPy array using the `rle_to_arr(string, h, w)` function:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np

def rle_to_arr(string, h, w):
    arr = np.zeros((h, w), dtype=int)
    lines = string.strip().split("$")
    x, y = 0, 0

    for line in lines:
        nums = line.split("b")
        for num in nums:
            if "o" in num:
                on_count = int(num.split("o")[0] or 1)
                arr[y, x:x+on_count] = 1
                x += on_count
            else:
                off_count = int(num or 1)
                x += off_count
        y += 1
        x = 0

    return arr

# Example usage
rle_string = '''26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b
2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$
60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b
o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b
o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o
3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o!'''

height, width = 100, 100  # Adjust the height and width as needed
pattern_array = rle_to_arr(rle_string, height, width)

print(pattern_array)
The `rle_to_arr` function takes three arguments: - `string`: The RLE-encoded string representing the Game of Life pattern. - `h`: The desired height of the NumPy array. - `w`: The desired width of the NumPy array. The function performs the following steps: 1. It creates a NumPy array of zeros with the specified height and width using `np.zeros((h, w), dtype=int)`. 2. It splits the RLE string into lines using `string.strip().split("$")`. 3. It iterates over each line and processes the run-length encoded data. 4. For each line, it splits the data into "on" and "off" sections using `line.split("b")`. 5. For each section, if it contains "o", it represents an "on" section. It extracts the count of "on" cells using `int(num.split("o")[0] or 1)` and sets the corresponding elements in the array to 1. 6. If a section doesn't contain "o", it represents an "off" section. It extracts the count of "off" cells using `int(num or 1)` and moves the current position accordingly. 7. After processing each line, it moves to the next row (`y += 1`) and resets the column position (`x = 0`). 8. Finally, it returns the resulting NumPy array. In the example usage, you can adjust the `height` and `width` variables to match the desired dimensions of the output array. The function will convert the RLE-encoded string to a NumPy array, where "on" cells are represented by 1 and empty cells are represented by 0. Note: Make sure to have the NumPy library installed (`pip install numpy`) before running the code.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np

def rle_to_arr(string, h, w):
    arr = np.zeros((h, w), dtype=int)
    lines = string.strip().split("$")
    x, y = 0, 0

    for line in lines:
        nums = line.split("b")
        for num in nums:
            if "o" in num:
                on_count = int(num.split("o")[0] or 1)
                arr[y, x:x+on_count] = 1
                x += on_count
            else:
                off_count = int(num or 1)
                x += off_count
        y += 1
        x = 0

    return arr

# Example usage
rle_string = '''26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b
2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$
60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b
o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b
o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o
3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o!'''

height, width = 100, 100  # Adjust the height and width as needed
pattern_array = rle_to_arr(rle_string, height, width)

print(pattern_array)

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np

def rle_to_arr(string, h, w):
    arr = np.zeros((h, w), dtype=int)
    lines = string.strip().split("$")
    x, y = 0, 0

    for line in lines:
        nums = line.split("b")
        for num in nums:
            if "o" in num:
                on_count = int(num.split("o")[0] or 1)
                arr[y, x:x+on_count] = 1
                x += on_count
            else:
                off_count = int(num or 1)
                x += off_count
        y += 1
        x = 0

    return arr

# Example usage
rle_string = '''26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b
2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$
60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b
o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b
o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o
3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o!'''

height, width = 100, 100  # Adjust the height and width as needed
pattern_array = rle_to_arr(rle_string, height, width)

print(pattern_array)





answer = (np.array(rle_to_arr('''
16b2o3b2o$2o$2o$19b2o$17b5o$21bo$17b3o$o16bo$o17b2o$bo16b2o$b2o$3bo$o
17b2o3b2o$2b2o14bobobobo$11bobo5b5o$11b2o7b3o$2o10bo8bo$b2o$b2o2$2o$bo
2$6bobo$2o3bo$bo3bo$o4bo2bo7bo$5b3o7b2o7bo$15bobo5b3o$22b5o$21b2o3b2o$
22b5o$22b5o$14b2o6bo2bo$14bobo4bo3bo$11b2obobo4bo$11bobobo5bob2o$13bo
8bo$4bobo6b2o$7bo5b3o50bo$7bo5b3o3b2o3b2o40b4o$4bo2bo5b3o3bo5bo41b4o$
5b3o5b2o35bo16bo2bo$13bo6bo3bo24bobo15b4o4b2o$11bobobo5b3o15b2o7bob2o
14b4o5b2o$11b2obobo21bobo6b2ob2o14bo8b2o$14bobo20bo6b3obob2o$14b2o12b
2o7bo2bo2bo2bo2bobo$28b2o7bo6b2o4bo16bobo$38bobo26b2o$39b2o27bo4b2o$
21b2o49bo2bo$21b2o28bobo18b3o$52b2o21b2o$52bo21bo$74b2o$59bo$62bo$59bo
14bo$62bo$61bob3o8bo$59b4o2bo9b2o$64bo$52bo$51b2o$40b2o8b2o4b2o5bo$40b
2o7b3o4b2o3bobo$50b2o4b2o2bobo11b2o$4bobo44b2o6bo2bo11b2o$7bo44bo7bobo
$o6bo53bobo$o3bo2bo55bo$5b3o5$4b4o$3bo3bo$7bo$3bo2bo3$o2b3o2b2o$2b5o2b
o64b3o$9o67bo$9b3o63bo$o7bo2bo$9b2o3$4b2o$o3b3o$o5b2obo5b2o$bo4bo2bo5b
2o$2o4b2obo$o3b3o$4b2o2$59b3o12b2o$61bo12b2o!
''', 101, 77),dtype=np.uint32).flatten() * np.arange(77*101)).sum()
expected = 1563304
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 33, in <module> pattern_array = rle_to_arr(rle_string, height, width) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/src/app/main.py", line 13, in rle_to_arr on_count = int(num.split("o")[0] or 1) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ValueError: invalid literal for int() with base 10: '\n'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

LLM Generation

Query

Convert this game of life pattern 26$13b2o$14bo$14bobo$15b2o14$31b2o$30b2o$32bo13$46b2o$45b2o$47bo13$61b 2o$60b2o$62bo4$52b2o$52b2o$71bo$66b2ob3o$66bobobo$68bo$67b2o3$76b2o$ 60b3o12b2o10bobo$52b3o7bo14bo8bo2bo4bo$51bo3bo5bo10b2o11b2o5b2o$50bo5b o15bobo8b2o3bo8b2o$51bo3bo11b2o6bo9b2o10b2o$52b3o8b2obo2bo2bo2bo10bo2b o$52bo2bo7b2o2b2o6bo11bobo$53b3o16bobo$53b2obo15b2o$54bobo$55bo3$52b2o 3b2o$52bobobobo$53b5o$54b3o$55bo7$54b2o$54b2o! to a numpy array. Call the function `rle_to_arr(string, h, w)` which should return a numpy array with .shape (h,w). Fill the array with 1s, and empty with 0.

Output

Here's the implementation of the `rle_to_arr(string, h, w)` function that converts the Run Length Encoded (RLE) pattern of the Game of Life into a NumPy array:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np

def rle_to_arr(string, h, w):
    arr = np.zeros((h, w), dtype=int)
    rows = string.split('$')
    row_index = 0

    for row in rows:
        col_index = 0
        i = 0
        while i < len(row):
            if row[i].isdigit():
                num = int(row[i])
                while i + 1 < len(row) and row[i + 1].isdigit():
                    num = num * 10 + int(row[i + 1])
                    i += 1
                if i + 1 < len(row) and row[i + 1] == 'b':
                    col_index += num
                elif i + 1 < len(row) and row[i + 1] == 'o':
                    arr[row_index, col_index:col_index + num] = 1
                    col_index += num
            i += 1
        row_index += 1

    return arr
Here's how the function works: 1. We create a NumPy array `arr` of shape `(h, w)` filled with zeros using `np.zeros((h, w), dtype=int)`. 2. We split the RLE string by the `'$'` character to separate the rows. 3. We initialize `row_index` to keep track of the current row in the array. 4. We iterate over each row in the `rows` list: - Initialize `col_index` to keep track of the current column in the array. - Initialize `i` to keep track of the current position in the row string. - While `i` is less than the length of the row: - If the character at index `i` is a digit, we extract the complete number by concatenating consecutive digits. - If the next character after the number is `'b'`, it represents empty cells, so we increment `col_index` by the number. - If the next character after the number is `'o'`, it represents live cells, so we fill the corresponding elements in `arr` with 1 and increment `col_index` by the number. - Increment `i` to move to the next character in the row. - Increment `row_index` to move to the next row in the array. 5. Finally, we return the `arr` containing the converted pattern. You can call the function by providing the RLE string, the desired height `h`, and the desired width `w` of the array. The function will return a NumPy array representing the Game of Life pattern. Note: Make sure to replace the `!` character at the end of the RLE string with an empty string before passing it to the function.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import numpy as np

def rle_to_arr(string, h, w):
    arr = np.zeros((h, w), dtype=int)
    rows = string.split('$')
    row_index = 0

    for row in rows:
        col_index = 0
        i = 0
        while i < len(row):
            if row[i].isdigit():
                num = int(row[i])
                while i + 1 < len(row) and row[i + 1].isdigit():
                    num = num * 10 + int(row[i + 1])
                    i += 1
                if i + 1 < len(row) and row[i + 1] == 'b':
                    col_index += num
                elif i + 1 < len(row) and row[i + 1] == 'o':
                    arr[row_index, col_index:col_index + num] = 1
                    col_index += num
            i += 1
        row_index += 1

    return arr

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np

def rle_to_arr(string, h, w):
    arr = np.zeros((h, w), dtype=int)
    rows = string.split('$')
    row_index = 0

    for row in rows:
        col_index = 0
        i = 0
        while i < len(row):
            if row[i].isdigit():
                num = int(row[i])
                while i + 1 < len(row) and row[i + 1].isdigit():
                    num = num * 10 + int(row[i + 1])
                    i += 1
                if i + 1 < len(row) and row[i + 1] == 'b':
                    col_index += num
                elif i + 1 < len(row) and row[i + 1] == 'o':
                    arr[row_index, col_index:col_index + num] = 1
                    col_index += num
            i += 1
        row_index += 1

    return arr





answer = (np.array(rle_to_arr('''
16b2o3b2o$2o$2o$19b2o$17b5o$21bo$17b3o$o16bo$o17b2o$bo16b2o$b2o$3bo$o
17b2o3b2o$2b2o14bobobobo$11bobo5b5o$11b2o7b3o$2o10bo8bo$b2o$b2o2$2o$bo
2$6bobo$2o3bo$bo3bo$o4bo2bo7bo$5b3o7b2o7bo$15bobo5b3o$22b5o$21b2o3b2o$
22b5o$22b5o$14b2o6bo2bo$14bobo4bo3bo$11b2obobo4bo$11bobobo5bob2o$13bo
8bo$4bobo6b2o$7bo5b3o50bo$7bo5b3o3b2o3b2o40b4o$4bo2bo5b3o3bo5bo41b4o$
5b3o5b2o35bo16bo2bo$13bo6bo3bo24bobo15b4o4b2o$11bobobo5b3o15b2o7bob2o
14b4o5b2o$11b2obobo21bobo6b2ob2o14bo8b2o$14bobo20bo6b3obob2o$14b2o12b
2o7bo2bo2bo2bo2bobo$28b2o7bo6b2o4bo16bobo$38bobo26b2o$39b2o27bo4b2o$
21b2o49bo2bo$21b2o28bobo18b3o$52b2o21b2o$52bo21bo$74b2o$59bo$62bo$59bo
14bo$62bo$61bob3o8bo$59b4o2bo9b2o$64bo$52bo$51b2o$40b2o8b2o4b2o5bo$40b
2o7b3o4b2o3bobo$50b2o4b2o2bobo11b2o$4bobo44b2o6bo2bo11b2o$7bo44bo7bobo
$o6bo53bobo$o3bo2bo55bo$5b3o5$4b4o$3bo3bo$7bo$3bo2bo3$o2b3o2b2o$2b5o2b
o64b3o$9o67bo$9b3o63bo$o7bo2bo$9b2o3$4b2o$o3b3o$o5b2obo5b2o$bo4bo2bo5b
2o$2o4b2obo$o3b3o$4b2o2$59b3o12b2o$61bo12b2o!
''', 101, 77),dtype=np.uint32).flatten() * np.arange(77*101)).sum()
expected = 1563304
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 49, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got 945587 instead of 1563304

Substring Evaluation

Testing if the previous output contains the string All tests passed: False