Fix the bug in this code. Rewrite the entire code exactly as-is but just fix any bugs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Fix the bug in this code. Rewrite the entire code exactly as-is but just fix any bugs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Here's the fixed code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) model.zero_grad() # Add this line to clear the gradients of the model parameters loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) model.zero_grad() # Add this line to clear the gradients of the model parameters loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) model.zero_grad() # Add this line to clear the gradients of the model parameters loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Resulting advex tensor([[1.0200]], grad_fn=<AddBackward0>)
Testing if the previous output contains the string grad_fn=<Add
: True
Testing if the previous output contains the string tensor
: True
Fix the bug in this code. Rewrite the entire code exactly as-is but just fix any bugs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Fix the bug in this code. Rewrite the entire code exactly as-is but just fix any bugs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Here's the fixed code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): input_perturbed = input.clone().detach() input_perturbed.requires_grad = True for i in range(num_iter): output = model(input_perturbed) loss = loss_fn(output, target) model.zero_grad() loss.backward() # Update perturbation perturbation = alpha * input_perturbed.grad.sign() input_perturbed.data = torch.clamp(input_perturbed.data + perturbation, input.data - epsilon, input.data + epsilon) input_perturbed.grad.data.zero_() return input_perturbed.detach() model = SimpleNet() input = torch.tensor([[1.0]]) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): input_perturbed = input.clone().detach() input_perturbed.requires_grad = True for i in range(num_iter): output = model(input_perturbed) loss = loss_fn(output, target) model.zero_grad() loss.backward() # Update perturbation perturbation = alpha * input_perturbed.grad.sign() input_perturbed.data = torch.clamp(input_perturbed.data + perturbation, input.data - epsilon, input.data + epsilon) input_perturbed.grad.data.zero_() return input_perturbed.detach() model = SimpleNet() input = torch.tensor([[1.0]]) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): input_perturbed = input.clone().detach() input_perturbed.requires_grad = True for i in range(num_iter): output = model(input_perturbed) loss = loss_fn(output, target) model.zero_grad() loss.backward() # Update perturbation perturbation = alpha * input_perturbed.grad.sign() input_perturbed.data = torch.clamp(input_perturbed.data + perturbation, input.data - epsilon, input.data + epsilon) input_perturbed.grad.data.zero_() return input_perturbed.detach() model = SimpleNet() input = torch.tensor([[1.0]]) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Resulting advex tensor([[0.9800]])
Testing if the previous output contains the string grad_fn=<Add
: False
Testing if the previous output contains the string tensor
: True
Fix the bug in this code. Rewrite the entire code exactly as-is but just fix any bugs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Fix the bug in this code. Rewrite the entire code exactly as-is but just fix any bugs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Here's the corrected code with the bug fixed:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation.data # Change: Use perturbation.data instead of perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation.data # Change: Use perturbation.data instead of perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation.data # Change: Use perturbation.data instead of perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Resulting advex tensor([[0.9800]], grad_fn=<AddBackward0>)
Testing if the previous output contains the string grad_fn=<Add
: True
Testing if the previous output contains the string tensor
: True
Fix the bug in this code. Rewrite the entire code exactly as-is but just fix any bugs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Fix the bug in this code. Rewrite the entire code exactly as-is but just fix any bugs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Here's the fixed code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): input_adv = input.clone().detach().requires_grad_(True) perturbation = torch.zeros_like(input_adv) for i in range(num_iter): output = model(input_adv) loss = loss_fn(output, target) model.zero_grad() loss.backward() # Update perturbation perturbation_grad = input_adv.grad.data perturbation = perturbation + alpha * perturbation_grad.sign() perturbation = torch.clamp(perturbation, -epsilon, epsilon) input_adv.data = input.data + perturbation input_adv.grad.data.zero_() return input_adv model = SimpleNet() input = torch.tensor([[1.0]]) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): input_adv = input.clone().detach().requires_grad_(True) perturbation = torch.zeros_like(input_adv) for i in range(num_iter): output = model(input_adv) loss = loss_fn(output, target) model.zero_grad() loss.backward() # Update perturbation perturbation_grad = input_adv.grad.data perturbation = perturbation + alpha * perturbation_grad.sign() perturbation = torch.clamp(perturbation, -epsilon, epsilon) input_adv.data = input.data + perturbation input_adv.grad.data.zero_() return input_adv model = SimpleNet() input = torch.tensor([[1.0]]) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): input_adv = input.clone().detach().requires_grad_(True) perturbation = torch.zeros_like(input_adv) for i in range(num_iter): output = model(input_adv) loss = loss_fn(output, target) model.zero_grad() loss.backward() # Update perturbation perturbation_grad = input_adv.grad.data perturbation = perturbation + alpha * perturbation_grad.sign() perturbation = torch.clamp(perturbation, -epsilon, epsilon) input_adv.data = input.data + perturbation input_adv.grad.data.zero_() return input_adv model = SimpleNet() input = torch.tensor([[1.0]]) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Resulting advex tensor([[1.0200]], requires_grad=True)
Testing if the previous output contains the string grad_fn=<Add
: False
Testing if the previous output contains the string tensor
: True
Fix the bug in this code. Rewrite the entire code exactly as-is but just fix any bugs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Fix the bug in this code. Rewrite the entire code exactly as-is but just fix any bugs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Here's the code with the bug fixed:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 model.zero_grad() # Add this line to clear the gradients before calling PGD adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 model.zero_grad() # Add this line to clear the gradients before calling PGD adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import torch import torch.nn as nn import torch.optim as optim class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(1, 1) def forward(self, x): return self.fc(x) def PGD(model, input, target, loss_fn, epsilon, alpha, num_iter): perturbation = torch.zeros_like(input, requires_grad=True) for i in range(num_iter): output = model(input + perturbation) loss = loss_fn(output, target) loss.backward() # Update perturbation perturbation_grad = perturbation.grad.data perturbation.data = perturbation.data + alpha * perturbation_grad.sign() perturbation.data = torch.clamp(perturbation.data, -epsilon, epsilon) perturbation.grad.data.zero_() return input + perturbation model = SimpleNet() input = torch.tensor([[1.0]], requires_grad=True) target = torch.tensor([[2.0]]) loss_fn = nn.MSELoss() epsilon = 0.1 alpha = 0.01 num_iter = 2 model.zero_grad() # Add this line to clear the gradients before calling PGD adversarial_input = PGD(model, input, target, loss_fn, epsilon, alpha, num_iter) print("Resulting advex", adversarial_input) |
Resulting advex tensor([[1.0200]], grad_fn=<AddBackward0>)
Testing if the previous output contains the string grad_fn=<Add
: True
Testing if the previous output contains the string tensor
: True