# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.
# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.
After analyzing the equations provided, here are the ones that seem incorrect according to the specification: 1. $f_1(x') = -\loss_{F,t}(x') + 1$: This equation appears to be incorrect because the specification states that $f(x+\delta) \le 0$ if and only if $C(x+\delta) = t$. However, this equation does not seem to ensure that condition. 2. $f_2(x') = (\max_{i \ne t}(F(x')_i) - F(x')_t)^+$: This equation seems correct as it ensures that $f(x+\delta) \le 0$ if and only if the probability of the target class $t$ is greater than or equal to the maximum probability of all other classes. 3. $f_3(x') = \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)$: This equation appears to be correct as it is a smooth approximation of $f_2$ with an additional constant term. 4. $f_4(x') = (0.5 - F(x')_t)^+$: This equation seems incorrect because it does not consider the probabilities of other classes and only checks if the probability of the target class is greater than 0.5. 5. $f_5(x') = -\log(2 F(x')_t - 2)$: This equation appears to be incorrect because it does not seem to satisfy the condition $f(x+\delta) \le 0$ if and only if $C(x+\delta) = t$. 6. $f_6(x') = (\max_{i \ne t}(Z(x')_i) - Z(x')_t)^+$: This equation seems correct as it is similar to $f_2$, but it operates on the logits $Z(x)$ instead of the output probabilities $F(x)$. 7. $f_7(x') = \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2)$: This equation appears to be correct as it is a smooth approximation of $f_6$ with an additional constant term. Therefore, the Python list of incorrect equation numbers is: [1, 4, 5].
Resulting in output: False
# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.
# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.
To determine which equations are incorrect, I will analyze each equation individually and check if it satisfies the condition $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. 1. $f_{1}(x') = -\loss_{F,t}(x') + 1$: - This equation is correct. For the condition to hold, we want $f(x+\delta) \le 0$ when $C(x+\delta) = t$, which means $-\loss_{F,t}(x+\delta) \le -1$. This is true because the cross-entropy loss is non-negative, and it is 0 when the prediction is correct. 2. $f_{2}(x') = (\max_{i \ne t}( F(x')_i) - F(x')_t)^+$: - This equation is correct. When $C(x+\delta) = t$, it means $F(x+\delta)_t \ge F(x+\delta)_i$ for all $i \ne t$. Therefore, $\max_{i \ne t}( F(x+\delta)_i) - F(x+\delta)_t \le 0$, which satisfies the condition. 3. $f_{3}(x') = \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)$: - This equation is correct. The softplus function is always non-negative, and when $C(x+\delta) = t$, the argument $\max_{i \ne t}(F(x+\delta)_i) - F(x+\delta)_t \le 0$. Subtracting $\log(2)$ from a non-negative value ensures that the condition is satisfied. 4. $f_{4}(x') = (0.5 - F(x')_t)^+$: - This equation is incorrect. When $C(x+\delta) = t$, we want $F(x+\delta)_t$ to be close to 1, not 0.5. Therefore, the condition $f(x+\delta) \le 0$ will not be satisfied. 5. $f_{5}(x') = -\log(2 F(x')_t - 2)$: - This equation is incorrect. The argument $(2 F(x')_t - 2)$ can be negative when $F(x')_t < 1$, which violates the logarithm's domain. Additionally, even when the argument is positive, the logarithm will be negative, which does not satisfy the condition $f(x+\delta) \le 0$ when $C(x+\delta) = t$. 6. $f_{6}(x') = (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+$: - This equation is correct. It is similar to $f_{2}$, but it operates on the logits $Z(x')$ instead of the softmax output $F(x')$. When $C(x+\delta) = t$, it means $Z(x+\delta)_t \ge Z(x+\delta)_i$ for all $i \ne t$, which satisfies the condition. 7. $f_{7}(x') = \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2)$: - This equation is correct. It is similar to $f_{3}$, but it operates on the logits $Z(x')$ instead of the softmax output $F(x')$. The analysis is the same as for $f_{3}$. Therefore, the incorrect equations are $f_{4}$ and $f_{5}$, represented by the list [4, 5].
Resulting in output: False
# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.
# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.
After analyzing the equations provided, I can identify the following incorrect equations based on the given specification: 1. $f_5(x') = -\log(2 F(x')_t - 2)$: This equation is incorrect because $F(x')_t$ represents the probability of the target class $t$, which should be a value between 0 and 1. Subtracting 2 from $2 F(x')_t$ can result in negative values, making the logarithm undefined. 2. $f_6(x') = (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+$: This equation is incorrect because it operates on the logits $Z(x')$ instead of the output probabilities $F(x')$. The objective function should be defined in terms of the output probabilities to align with the specification. Therefore, the list of incorrect equation numbers is: [5, 6].
Resulting in output: False
# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.
# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.
To determine which equations are incorrect, I will go through them one by one and check if they satisfy the condition "C(x+δ) = t if and only if f(x+δ) ≤ 0". f₁(x') = -loss_{F,t}(x') + 1 This equation is correct. If f₁(x+δ) ≤ 0, then -loss_{F,t}(x+δ) ≤ -1, which means loss_{F,t}(x+δ) ≥ 1. Since the cross-entropy loss is non-negative and is 0 only when the prediction is correct, this implies that C(x+δ) = t. f₂(x') = (max_{i ≠ t}(F(x')_i) - F(x')_t)^+ This equation is correct. If f₂(x+δ) ≤ 0, then max_{i ≠ t}(F(x+δ)_i) ≤ F(x+δ)_t, which means that the probability assigned to the target class t is the highest, implying that C(x+δ) = t. f₃(x') = softplus(max_{i ≠ t}(F(x')_i) - F(x')_t) - log(2) This equation is incorrect. The softplus function is always non-negative, so f₃(x+δ) ≤ 0 is never satisfied. f₄(x') = (0.5 - F(x')_t)^+ This equation is incorrect. For f₄(x+δ) ≤ 0, we need F(x+δ)_t ≥ 0.5. However, this does not guarantee that the predicted class C(x+δ) is t, since there could be another class with a higher probability. f₅(x') = -log(2 F(x')_t - 2) This equation is incorrect. The argument of the log function is always negative, so f₅(x') is undefined. f₆(x') = (max_{i ≠ t}(Z(x')_i) - Z(x')_t)^+ This equation is correct. It is similar to f₂, but operates on the logits Z(x') instead of the softmax output F(x'). f₇(x') = softplus(max_{i ≠ t}(Z(x')_i) - Z(x')_t) - log(2) This equation is incorrect, for the same reason as f₃. Therefore, the incorrect equations are [3, 4, 5, 7].
Resulting in output: False
# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.
# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.
I will analyze each equation and determine if it is correct or incorrect according to the given specification. 1. $f_{1}(x') = -\loss_{F,t}(x') + 1$ This equation is correct according to the specification. The objective function $f$ is defined such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. By negating the cross-entropy loss and adding 1, this equation ensures that $f(x') \le 0$ when the model correctly classifies the input as class $t$. 2. $f_{2}(x') = (\max_{i \ne t}( F(x')_i) - F(x')_t)^+$ This equation is correct. It calculates the difference between the maximum probability of the incorrect classes and the probability of the target class $t$. If this difference is positive, it means that there exists an incorrect class with a higher probability than the target class, and therefore, the input is misclassified. 3. $f_{3}(x') = \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)$ This equation is incorrect. The subtraction of $\log(2)$ is not present in the specification, and it is unclear why this term is included. 4. $f_{4}(x') = (0.5 - F(x')_t)^+$ This equation is incorrect. It is not clear how this equation relates to the objective of ensuring that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. The use of the constant 0.5 is not explained, and it does not seem to follow the specification. 5. $f_{5}(x') = -\log(2 F(x')_t - 2)$ This equation is incorrect. It is not clear how this equation relates to the objective of ensuring that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. The use of the constant 2 and the logarithm function is not explained, and it does not seem to follow the specification. 6. $f_{6}(x') = (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+$ This equation is correct. It is similar to $f_{2}$, but it operates on the logits $Z(x')$ instead of the output probabilities $F(x')$. This equation ensures that the logit of the target class is greater than the logits of all other classes, which is a valid objective for ensuring correct classification. 7. $f_{7}(x') = \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2)$ This equation is incorrect for the same reason as $f_{3}$. The subtraction of $\log(2)$ is not present in the specification, and it is unclear why this term is included. Therefore, the incorrect equations are [3, 4, 5, 7].
Resulting in output: False