Initial Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.

LLM Generation

Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.

Output

Let's examine each equation: 1. f₁(x'): This equation looks correct. It uses the cross-entropy loss and subtracts it from 1. 2. f₂(x'): This equation is correct. It compares the maximum probability of other classes to the target class probability. 3. f₃(x'): This equation is correct. It uses the softplus function on the difference between the maximum non-target probability and the target probability, then subtracts log(2). 4. f₄(x'): This equation is correct. It checks if the probability of the target class is less than 0.5. 5. f₅(x'): This equation is incorrect. The log term can become undefined if F(x')_t ≤ 0.5, which is possible for softmax outputs. 6. f₆(x'): This equation is correct. It's similar to f₂ but uses logits (Z) instead of probabilities (F). 7. f₇(x'): This equation is correct. It's similar to f₃ but uses logits (Z) instead of probabilities (F). The list of incorrect equations is: [5]

PyFunc

Resulting in output: False

Initial Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.

LLM Generation

Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.

Output

Let's examine each equation: 1. f₁(x') = -loss_{F,t}(x') + 1 This equation looks correct. It uses the cross-entropy loss for the target class t. 2. f₂(x') = (max_{i ≠ t}(F(x')_i) - F(x')_t)⁺ This equation is correct. It compares the highest non-target class probability with the target class probability. 3. f₃(x') = softplus(max_{i ≠ t}(F(x')_i) - F(x')_t) - log(2) This equation is correct. It applies softplus to the difference between the highest non-target class probability and the target class probability, then subtracts log(2). 4. f₄(x') = (0.5 - F(x')_t)⁺ This equation is correct. It checks if the probability of the target class is less than 0.5. 5. f₅(x') = -log(2F(x')_t - 2) This equation is incorrect. The term inside the logarithm (2F(x')_t - 2) will always be negative or zero since F(x')_t ≤ 1, making the logarithm undefined for real numbers. 6. f₆(x') = (max_{i ≠ t}(Z(x')_i) - Z(x')_t)⁺ This equation is correct. It uses logits (Z) instead of probabilities (F), which is a valid alternative. 7. f₇(x') = softplus(max_{i ≠ t}(Z(x')_i) - Z(x')_t) - log(2) This equation is correct. It's similar to f₃ but uses logits instead of probabilities. The incorrect equation is number 5. [5]

PyFunc

Resulting in output: False

Initial Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.

LLM Generation

Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.

Output

Let's examine each equation: 1. f₁(x') = -loss_{F,t}(x') + 1 This equation is correct. It uses the cross-entropy loss for the target class t. 2. f₂(x') = (max_{i ≠ t}(F(x')_i) - F(x')_t)^+ This equation is correct. It compares the highest non-target class probability with the target class probability. 3. f₃(x') = softplus(max_{i ≠ t}(F(x')_i) - F(x')_t) - log(2) This equation is correct. It's a smoothed version of f₂ using the softplus function. 4. f₄(x') = (0.5 - F(x')_t)^+ This equation is correct. It checks if the probability of the target class is above 0.5. 5. f₅(x') = -log(2F(x')_t - 2) This equation is incorrect. The term inside the log can be negative when F(x')_t < 1, which is undefined for real logarithms. 6. f₆(x') = (max_{i ≠ t}(Z(x')_i) - Z(x')_t)^+ This equation is correct. It's similar to f₂ but uses logits (Z) instead of probabilities (F). 7. f₇(x') = softplus(max_{i ≠ t}(Z(x')_i) - Z(x')_t) - log(2) This equation is correct. It's a smoothed version of f₆ using the softplus function. The incorrect equation is number 5. [5]

PyFunc

Resulting in output: False

Initial Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.

LLM Generation

Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.

Output

Let's examine each equation: 1. f₁(x') = -lossF,t(x') + 1 This equation is correct. It uses the cross-entropy loss function, which is a valid objective function for classification tasks. 2. f₂(x') = (maxi≠t(F(x')i) - F(x')t)⁺ This equation is correct. It measures the difference between the highest non-target class probability and the target class probability. 3. f₃(x') = softplus(maxi≠t(F(x')i) - F(x')t) - log(2) This equation is correct. It's a smoothed version of f₂ using the softplus function. 4. f₄(x') = (0.5 - F(x')t)⁺ This equation is correct. It checks if the probability of the target class is less than 0.5. 5. f₅(x') = -log(2F(x')t - 2) This equation is incorrect. The term inside the log can be negative when F(x')t < 1, which is undefined for real logarithms. 6. f₆(x') = (maxi≠t(Z(x')i) - Z(x')t)⁺ This equation is correct. It's similar to f₂ but uses logits (Z) instead of probabilities (F). 7. f₇(x') = softplus(maxi≠t(Z(x')i) - Z(x')t) - log(2) This equation is correct. It's a smoothed version of f₆ using the softplus function. The incorrect equation is [5].

PyFunc

Resulting in output: False

Initial Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.

LLM Generation

Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong.

Output

Let's examine each equation: 1. f₁(x'): This equation is correct. It uses the cross-entropy loss and subtracts it from 1. 2. f₂(x'): This equation is correct. It compares the maximum probability of incorrect classes with the probability of the target class. 3. f₃(x'): This equation is correct. It's a smoothed version of f₂ using the softplus function. 4. f₄(x'): This equation is correct. It checks if the probability of the target class is less than 0.5. 5. f₅(x'): This equation is incorrect. The log term can be undefined if F(x')_t ≤ 0.5, which is possible for softmax outputs. 6. f₆(x'): This equation is correct. It's similar to f₂ but uses logits (Z) instead of probabilities (F). 7. f₇(x'): This equation is correct. It's a smoothed version of f₆ using the softplus function. The list of incorrect equations is: [5]

PyFunc

Resulting in output: False