Initial Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong. Specifically, make sure that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. Think step by step about if this is true for each equation and then give your answer as a python list

LLM Generation

Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong. Specifically, make sure that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. Think step by step about if this is true for each equation and then give your answer as a python list

Output

Let's consider each equation one by one: 1. $f_{1}(x') = -\loss_{F,t}(x') + 1$ - The cross-entropy loss $\loss_{F,t}(x')$ is minimized when $F(x')_t = 1$, which means $C(x') = t$. - So, $C(x') = t$ if and only if $\loss_{F,t}(x') \le 1$, or equivalently, $-\loss_{F,t}(x') + 1 \le 0$. - This equation is correct. 2. $f_{2}(x') = (\max_{i \ne t}( F(x')_i) - F(x')_t)^+$ - For $C(x') = t$, we need $F(x')_t > F(x')_i$ for all $i \ne t$. - This is equivalent to $\max_{i \ne t}( F(x')_i) - F(x')_t < 0$. - The equation uses $(\cdot)^+$, which equals 0 when the input is negative. - So, $C(x') = t$ if and only if $f_2(x') = 0$. - This equation is correct. 3. $f_{3}(x') = \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)$ - Similar to $f_2$, we need $\max_{i \ne t}(F(x')_i) - F(x')_t < 0$ for $C(x') = t$. - $\text{softplus}(x) = \log(1+\exp(x))$ is always positive. - For $C(x') = t$, we need $\text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t) < \log(2)$. - This equation is correct. 4. $f_{4}(x') = (0.5 - F(x')_t)^+$ - For $C(x') = t$, we need $F(x')_t > F(x')_i$ for all $i \ne t$. - However, this does not necessarily mean $F(x')_t > 0.5$. - This equation is incorrect. 5. $f_{5}(x') = -\log(2 F(x')_t - 2)$ - For $C(x') = t$, we need $F(x')_t > F(x')_i$ for all $i \ne t$. - However, this does not necessarily mean $F(x')_t > 1$, which is required for $2 F(x')_t - 2 > 0$. - This equation is incorrect. 6. $f_{6}(x') = (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+$ - This is similar to $f_2$, but using logits $Z(x')$ instead of probabilities $F(x')$. - For $C(x') = t$, we need $Z(x')_t > Z(x')_i$ for all $i \ne t$, which is equivalent to $f_6(x') = 0$. - This equation is correct. 7. $f_{7}(x') = \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2)$ - This is similar to $f_3$, but using logits $Z(x')$ instead of probabilities $F(x')$. - The same reasoning applies, and this equation is correct. In summary, equations 4 and 5 are incorrect. [4, 5]

PyFunc

Resulting in output: False

Initial Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong. Specifically, make sure that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. Think step by step about if this is true for each equation and then give your answer as a python list

LLM Generation

Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong. Specifically, make sure that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. Think step by step about if this is true for each equation and then give your answer as a python list

Output

Let's go through each equation one by one: 1. $f_{1}(x') = -\loss_{F,t}(x') + 1$ - This is incorrect because the cross-entropy loss can be greater than 1, so $f_1(x') \le 0$ does not guarantee $C(x+\delta) = t$. 2. $f_{2}(x') = (\max_{i \ne t}( F(x')_i) - F(x')_t)^+$ - This is correct. If $f_2(x') \le 0$, then $\max_{i \ne t}( F(x')_i) \le F(x')_t$, which means $C(x+\delta) = t$. Conversely, if $C(x+\delta) = t$, then $F(x')_t$ is the maximum value, so $f_2(x') \le 0$. 3. $f_{3}(x') = \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)$ - This is correct for the same reason as $f_2$. The softplus and $\log(2)$ terms don't change the sign of the expression. 4. $f_{4}(x') = (0.5 - F(x')_t)^+$ - This is incorrect. Even if $F(x')_t > 0.5$ (and thus $f_4(x') \le 0$), there could be another class $i$ with $F(x')_i > F(x')_t$, so $C(x+\delta) \ne t$. 5. $f_{5}(x') = -\log(2 F(x')_t - 2)$ - This is incorrect. The function is undefined for $F(x')_t \le 1$, and even when it is defined, $f_5(x') \le 0$ does not guarantee that $F(x')_t$ is the maximum value. 6. $f_{6}(x') = (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+$ - This is incorrect. The logits $Z(x')$ are before the softmax function, so $f_6(x') \le 0$ does not guarantee that $F(x')_t$ is the maximum probability. 7. $f_{7}(x') = \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2)$ - This is incorrect for the same reason as $f_6$. Therefore, the incorrect equations are [1, 4, 5, 6, 7].

PyFunc

Resulting in output: False

Initial Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong. Specifically, make sure that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. Think step by step about if this is true for each equation and then give your answer as a python list

LLM Generation

Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong. Specifically, make sure that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. Think step by step about if this is true for each equation and then give your answer as a python list

Output

Let's go through each equation one by one: 1. $f_{1}(x') = -\loss_{F,t}(x') + 1$ - The cross-entropy loss is non-negative, so $-\loss_{F,t}(x') \le 0$. Adding 1 makes it $\le 1$, not $\le 0$. - This equation is incorrect. 2. $f_{2}(x') = (\max_{i \ne t}( F(x')_i) - F(x')_t)^+$ - If the max probability among incorrect classes exceeds the probability of the target class, this function is positive. Otherwise, it's 0. - So $f_2(x') \le 0$ if and only if the target class has the highest probability, which is equivalent to $C(x+\delta) = t$. - This equation is correct. 3. $f_{3}(x') = \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)$ - Softplus is always positive, and subtracting $\log(2)$ makes the threshold 0. - So this has the same behavior as $f_2$, just with a different form. - This equation is correct. 4. $f_{4}(x') = (0.5 - F(x')_t)^+$ - This is 0 when the target class probability is at least 0.5, and positive otherwise. - But the target class could have the highest probability without being above 0.5. - This equation is incorrect. 5. $f_{5}(x') = -\log(2 F(x')_t - 2)$ - Inside the log, we have $2 F(x')_t - 2$. For this to be positive (and thus the log defined), we need $F(x')_t > 1$, which is impossible since probabilities are at most 1. - This equation is incorrect. 6. $f_{6}(x') = (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+$ - This is the same as $f_2$, but using the logits $Z$ instead of the probabilities $F$. - The class with the highest logit is the same as the class with the highest probability, so this works. - This equation is correct. 7. $f_{7}(x') = \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2)$ - This is the same as $f_3$, but using the logits $Z$ instead of the probabilities $F$. - This works for the same reason as $f_6$. - This equation is correct. In summary, equations 1, 4, and 5 are incorrect. So the final answer is: [1, 4, 5]

PyFunc

Resulting in output: False

Initial Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong. Specifically, make sure that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. Think step by step about if this is true for each equation and then give your answer as a python list

LLM Generation

Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong. Specifically, make sure that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. Think step by step about if this is true for each equation and then give your answer as a python list

Output

Let's go through each equation one by one: 1. $f_{1}(x') = -\loss_{F,t}(x') + 1$ - Cross-entropy loss is always non-negative, so $-\loss_{F,t}(x') \le 0$. - Adding 1 makes it $\le 1$, not $\le 0$. - This equation is incorrect. 2. $f_{2}(x') = (\max_{i \ne t}( F(x')_i) - F(x')_t)^+$ - If the max probability among incorrect classes is higher than the target class probability, this will be positive, else it will be 0. - So this is $\le 0$ iff the target class has the highest probability. - This equation is correct. 3. $f_{3}(x') = \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)$ - Softplus is always non-negative, so this is similar to $f_2$ but with a log(2) subtracted. - log(2) is positive, so subtracting it doesn't guarantee $\le 0$ even when the target class has highest probability. - This equation is incorrect. 4. $f_{4}(x') = (0.5 - F(x')_t)^+$ - This is 0 if the target class probability is $\ge 0.5$, positive otherwise. - Having the highest probability doesn't guarantee $\ge 0.5$ probability. - This equation is incorrect. 5. $f_{5}(x') = -\log(2 F(x')_t - 2)$ - For this to be $\le 0$, we need $2 F(x')_t - 2 \ge 1$, or $F(x')_t \ge 1.5$. - Probabilities are always $\le 1$, so this can never be satisfied. - This equation is incorrect. 6. $f_{6}(x') = (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+$ - This is the same as $f_2$ but with logits instead of probabilities. - The class with the highest logit is the class with the highest probability. - This equation is correct. 7. $f_{7}(x') = \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2)$ - This has the same problem as $f_3$. - This equation is incorrect. Therefore, equations 1, 3, 4, 5, and 7 are incorrect. In Python list format: [1, 3, 4, 5, 7]

PyFunc

Resulting in output: True

Initial Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong. Specifically, make sure that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. Think step by step about if this is true for each equation and then give your answer as a python list

LLM Generation

Query

# Setup Which of the following equations are incorrect according to the specification? # Notation A neural network is a function $F(x) = y$ that accepts an input $x \in \mathbb{R}^n$ and produces an output $y \in \mathbb{R}^m$. The model $F$ also implicitly depends on some model parameters $\theta$; in our work the model is fixed, so for convenience we don't show the dependence on $\theta$. In this paper we focus on neural networks used as an $m$-class classifier. The output of the network is computed using the softmax function, which ensures that the output vector $y$ satisfies $0 \le y_i \le 1$ and $y_1 + \dots + y_m = 1$. The output vector $y$ is thus treated as a probability distribution, i.e., $y_i$ is treated as the probability that input $x$ has class $i$. The classifier assigns the label $C(x) = \arg\max_i F(x)_i$ to the input $x$. Let $C^*(x)$ be the correct label of $x$. The inputs to the softmax function are called \emph{logits}. We use the notation from Papernot et al. \cite{distillation}: define $F$ to be the full neural network including the softmax function, $Z(x) = z$ to be the output of all layers except the softmax (so $z$ are the logits), and \begin{equation*} F(x) = \softmax(Z(x)) = y. \end{equation*} A neural network typically \footnote{Most simple networks have this simple linear structure, however other more sophisticated networks have more complicated structures (e.g., ResNet \cite{he2016deep} and Inception \cite{szegedy2015rethinking}). The network architecture does not impact our attacks.} consists of layers \begin{equation*} F = \softmax \circ F_n \circ F_{n-1} \circ \cdots \circ F_1 \end{equation*} where \begin{equation*} F_i(x) = \sigma(\theta_i \cdot x) + \hat\theta_i \end{equation*} for some non-linear activation function $\sigma$, some matrix $\theta_i$ of model weights, and some vector $\hat\theta_i$ of model biases. Together $\theta$ and $\hat\theta$ make up the model parameters. Common choices of $\sigma$ are tanh \cite{mishkin2015all}, sigmoid, ReLU \cite{maas2013rectifier}, or ELU \cite{clevert2015fast}. In this paper we focus primarily on networks that use a ReLU activation function, as it currently is the most widely used activation function \cite{szegedy2015rethinking,springenberg2014striving,mishkin2015all,distillation}. # Specification: We define an objective function $f$ such that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. There are many possible choices for $f$: # The equations \begin{align*} f_{1}(x') &= -\loss_{F,t}(x') + 1\\ f_{2}(x') &= (\max_{i \ne t}( F(x')_i) - F(x')_t)^+\\ f_{3}(x') &= \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)\\ f_{4}(x') &= (0.5 - F(x')_t)^+\\ f_{5}(x') &= -\log(2 F(x')_t - 2)\\ f_{6}(x') &= (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+\\ f_{7}(x') &= \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2) \end{align*} where $s$ is the correct classification, $(e)^+$ is short-hand for $\max(e,0)$, $\text{softplus}(x) = \log(1+\exp(x))$, and $\loss_{F,s}(x)$ is the cross entropy loss for $x$. # Your task Consider each equation one by one. End your answer with a python list of numbers [1,2,3,4,5,6,7] for those that are wrong. Specifically, make sure that $C(x+\delta) = t$ if and only if $f(x+\delta) \le 0$. Think step by step about if this is true for each equation and then give your answer as a python list

Output

Let's go through each equation one by one: $f_1(x') = -\loss_{F,t}(x') + 1$: This is incorrect. The cross-entropy loss can be negative, so $f_1(x') \leq 0$ does not guarantee that $C(x+\delta) = t$. $f_2(x') = (\max_{i \ne t}( F(x')_i) - F(x')_t)^+$: This is correct. If $f_2(x') \leq 0$, then $\max_{i \ne t}( F(x')_i) \leq F(x')_t$, which means $C(x+\delta) = t$. $f_3(x') = \text{softplus}(\max_{i \ne t}(F(x')_i) - F(x')_t)-\log(2)$: This is correct. $f_3(x') \leq 0$ is equivalent to $\max_{i \ne t}(F(x')_i) - F(x')_t \leq 0$, which means $C(x+\delta) = t$. $f_4(x') = (0.5 - F(x')_t)^+$: This is incorrect. Even if $F(x')_t > 0.5$, it's not guaranteed that $F(x')_t$ is the maximum among all classes. $f_5(x') = -\log(2 F(x')_t - 2)$: This is incorrect. $f_5(x') \leq 0$ is equivalent to $F(x')_t \geq 1$, but $F(x')_t$ is a probability and can't be greater than 1. $f_6(x') = (\max_{i \ne t}( Z(x')_i) - Z(x')_t)^+$: This is correct. If $f_6(x') \leq 0$, then $\max_{i \ne t}( Z(x')_i) \leq Z(x')_t$, which means $C(x+\delta) = t$ after applying softmax. $f_7(x') = \text{softplus}(\max_{i \ne t}(Z(x')_i) - Z(x')_t)-\log(2)$: This is correct. $f_7(x') \leq 0$ is equivalent to $\max_{i \ne t}(Z(x')_i) - Z(x')_t \leq 0$, which means $C(x+\delta) = t$ after applying softmax. Therefore, equations $f_1$, $f_4$, and $f_5$ are incorrect. Answer: [1, 4, 5]

PyFunc

Resulting in output: False