Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "ðŸ¾", "🎶"],
"The Nightmare Before Christmas": ["🎃", "👻", "🎄", "🌙", "💀"],
"The Godfather": ["👤", "🔫", "ðŸ", "💵", "🚬"],
"The Matrix": ["💊", "🕶", "🔵", "🔴", "💻"],
"Casablanca": ["ðŸ™", "♥", "☕", "🎶", "🌙"],
"Raiders of the Lost Ark": ["👨", "🗺", "ðŸº", "ðŸ", "🔦"],
"V for Vendetta": ["ðŸŽ", "💣", "🚬", "🔥", "🗳"],
"The Princess Bride": ["👸", "🤴", "⚔", "♥", "😂"],
"Back to the Future": ["â°", "🚗", "âš¡", "💡", "🕰"],
"Dune": ["ðŸœ", "🪱", "âš”", "💫", "🌌"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "ðŸ¾", "🎶"],
"The Nightmare Before Christmas": ["🎃", "👻", "🎄", "🌙", "💀"],
"The Godfather": ["👤", "🔫", "ðŸ", "💵", "🚬"],
"The Matrix": ["💊", "🕶", "🔵", "🔴", "💻"],
"Casablanca": ["ðŸ™", "♥", "☕", "🎶", "🌙"],
"Raiders of the Lost Ark": ["👨", "🗺", "ðŸº", "ðŸ", "🔦"],
"V for Vendetta": ["ðŸŽ", "💣", "🚬", "🔥", "🗳"],
"The Princess Bride": ["👸", "🤴", "⚔", "♥", "😂"],
"Back to the Future": ["â°", "🚗", "âš¡", "💡", "🕰"],
"Dune": ["ðŸœ", "🪱", "âš”", "💫", "🌌"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '👑', '🌅', 'ðŸ¾', '🎶'],
['🎃', '👻', '🎄', '🌙', '💀'],
['👤', '🔫', 'ðŸ', '💵', '🚬'],
['💊', '🕶', '🔵', '🔴', '💻'],
['ðŸ™', '♥', '☕', '🎶', '🌙'],
['👨', '🗺', 'ðŸº', 'ðŸ', '🔦'],
['ðŸŽ', '💣', '🚬', '🔥', '🗳'],
['👸', '🤴', '⚔', '♥', '😂'],
['â°', '🚗', 'âš¡', '💡', '🕰'],
['ðŸœ', '🪱', 'âš”', '💫', '🌌']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '🎄', '🌙', '💀'],
['👤', '🔫', 'ðŸ', '💵', '🚬'],
['💊', '🕶', '🔵', '🔴', '💻'],
['ðŸ™', '♥', '☕', '🎶', '🌙'],
['👨', '🗺', 'ðŸº', 'ðŸ', '🔦'],
['ðŸŽ', '💣', '🚬', '🔥', '🗳'],
['👸', '🤴', '⚔', '♥', '😂'],
['â°', '🚗', 'âš¡', '💡', '🕰'],
['ðŸœ', '🪱', 'âš”', '💫', '🌌']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"La La Land",
"Raiders of the Lost Ark",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"La La Land",
"Raiders of the Lost Ark",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "🌿"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🕸", "🕷"],
"The Godfather": ["🔫", "💼", "ðŸ", "👔"],
"The Matrix": ["💊", "🔵", "🕶", "💻"],
"Casablanca": ["✈", "â¤ï¸", "☕", "🌃"],
"Raiders of the Lost Ark": ["🗺", "ðŸº", "👣", "🔦", "ðŸœ"],
"V for Vendetta": ["ðŸŽ", "🔥", "💣", "🗡"],
"The Princess Bride": ["🤺", "â¤ï¸", "âš”", "👑", "ðŸ°"],
"Back to the Future": ["⌚", "âš¡", "🚗", "â³"],
"Dune": ["ðŸœ", "ðŸ›", "âš”", "🌌"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "🌿"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🕸", "🕷"],
"The Godfather": ["🔫", "💼", "ðŸ", "👔"],
"The Matrix": ["💊", "🔵", "🕶", "💻"],
"Casablanca": ["✈", "â¤ï¸", "☕", "🌃"],
"Raiders of the Lost Ark": ["🗺", "ðŸº", "👣", "🔦", "ðŸœ"],
"V for Vendetta": ["ðŸŽ", "🔥", "💣", "🗡"],
"The Princess Bride": ["🤺", "â¤ï¸", "âš”", "👑", "ðŸ°"],
"Back to the Future": ["⌚", "âš¡", "🚗", "â³"],
"Dune": ["ðŸœ", "ðŸ›", "âš”", "🌌"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '👑', '🌅', '🌿'],
['🎃', '👻', '💀', '🕸', '🕷'],
['🔫', '💼', 'ðŸ', '👔'],
['💊', '🔵', '🕶', '💻'],
['✈', 'â¤ï¸', '☕', '🌃'],
['🗺', 'ðŸº', '👣', '🔦', 'ðŸœ'],
['ðŸŽ', '🔥', '💣', '🗡'],
['🤺', 'â¤ï¸', 'âš”', '👑', 'ðŸ°'],
['⌚', 'âš¡', '🚗', 'â³'],
['ðŸœ', 'ðŸ›', 'âš”', '🌌']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '💀', '🕸', '🕷'],
['🔫', '💼', 'ðŸ', '👔'],
['💊', '🔵', '🕶', '💻'],
['✈', 'â¤ï¸', '☕', '🌃'],
['🗺', 'ðŸº', '👣', '🔦', 'ðŸœ'],
['ðŸŽ', '🔥', '💣', '🗡'],
['🤺', 'â¤ï¸', 'âš”', '👑', 'ðŸ°'],
['⌚', 'âš¡', '🚗', 'â³'],
['ðŸœ', 'ðŸ›', 'âš”', '🌌']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Halloween",
"The Godfather",
"The Matrix",
"Up in the Air",
"Raiders of the Lost Ark",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Halloween",
"The Godfather",
"The Matrix",
"Up in the Air",
"Raiders of the Lost Ark",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True