Initial Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

LLM Generation

Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
{
  "The Lion King": ["🦁", "🌅", "👑", "🐾", "🌍"],
  "The Nightmare Before Christmas": ["🎃", "🎄", "🌙", "👻", "🕸️"],
  "The Godfather": ["👔", "🍝", "🕶️", "🔫", "🎩"],
  "The Matrix": ["🕶️", "💊", "🔫", "🖥️", "🕳️"],
  "Casablanca": ["✈️", "❤️", "🌆", "🎷", "☕"],
  "Raiders of the Lost Ark": ["🏺", "🧭", "🗺️", "⚔️", "🗡️"],
  "V for Vendetta": ["🎭", "💣", "🌹", "🇬🇧", "🗡️"],
  "The Princess Bride": ["⚔️", "👸", "💖", "🐴", "🌹"],
  "Back to the Future": ["🚗", "⏰", "⚡", "🕰️", "🕶️"],
  "Dune": ["🏜️", "🐛", "✨", "👑", "🌌"]
}

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
{
  "The Lion King": ["🦁", "🌅", "👑", "🐾", "🌍"],
  "The Nightmare Before Christmas": ["🎃", "🎄", "🌙", "👻", "🕸️"],
  "The Godfather": ["👔", "🍝", "🕶️", "🔫", "🎩"],
  "The Matrix": ["🕶️", "💊", "🔫", "🖥️", "🕳️"],
  "Casablanca": ["✈️", "❤️", "🌆", "🎷", "☕"],
  "Raiders of the Lost Ark": ["🏺", "🧭", "🗺️", "⚔️", "🗡️"],
  "V for Vendetta": ["🎭", "💣", "🌹", "🇬🇧", "🗡️"],
  "The Princess Bride": ["⚔️", "👸", "💖", "🐴", "🌹"],
  "Back to the Future": ["🚗", "⏰", "⚡", "🕰️", "🕶️"],
  "Dune": ["🏜️", "🐛", "✨", "👑", "🌌"]
}

PyFunc

Resulting in output: [['🦁', '🌅', '👑', '🐾', '🌍'], ['🎃', '🎄', '🌙', '👻', '🕸️'], ['👔', '🍝', '🕶️', '🔫', '🎩'], ['🕶️', '💊', '🔫', '🖥️', '🕳️'], ['✈️', '❤️', '🌆', '🎷', '☕'], ['🏺', '🧭', '🗺️', '⚔️', '🗡️'], ['🎭', '💣', '🌹', '🇬🇧', '🗡️'], ['⚔️', '👸', '💖', '🐴', '🌹'], ['🚗', '⏰', '⚡', '🕰️', '🕶️'], ['🏜️', '🐛', '✨', '👑', '🌌']]

LLM Generation

Query

For each of the following ten movies described by 5 emoji, give the movie title that best matches. Give your answer as a JSON list. So If I asked for

1

You might answer
1
["Finding Nemo", "Toy Story"]]
. Now give me answers for these movies:
1
2
3
4
5
6
7
8
9
['🎃', '🎄', '🌙', '👻', '🕸️'],
['👔', '🍝', '🕶️', '🔫', '🎩'],
['🕶️', '💊', '🔫', '🖥️', '🕳️'],
['✈️', '❤️', '🌆', '🎷', '☕'],
['🏺', '🧭', '🗺️', '⚔️', '🗡️'],
['🎭', '💣', '🌹', '🇬🇧', '🗡️'],
['⚔️', '👸', '💖', '🐴', '🌹'],
['🚗', '⏰', '⚡', '🕰️', '🕶️'],
['🏜️', '🐛', '✨', '👑', '🌌']]
What are the names of the movie titles?

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
[
  "The Lion King",
  "The Nightmare Before Christmas",
  "The Godfather",
  "The Matrix",
  "Sleepless in Seattle",
  "Indiana Jones",
  "Shakespeare in Love",
  "Beauty and the Beast",
  "Back to the Future",
  "Dune"
]

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
[
  "The Lion King",
  "The Nightmare Before Christmas",
  "The Godfather",
  "The Matrix",
  "Sleepless in Seattle",
  "Indiana Jones",
  "Shakespeare in Love",
  "Beauty and the Beast",
  "Back to the Future",
  "Dune"
]

PyFunc

OK Resulting in output: False

Initial Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

LLM Generation

Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
{
  "The Lion King": ["🦁", "👑", "🌅", "🐘", "🦓"],
  "The Nightmare Before Christmas": ["🎃", "🎄", "🕷", "👻", "🦇"],
  "The Godfather": ["🍝", "🔫", "💼", "🕶", "👔"],
  "The Matrix": ["🕶", "💊", "🌐", "🤖", "🕳"],
  "Casablanca": ["🎥", "🌴", "✈", "💔", "🕊"],
  "Raiders of the Lost Ark": ["🗺", "🏺", "🏹", "🛡", "🏜"],
  "V for Vendetta": ["🎭", "🕶", "🗡", "🔥", "🇬🇧"],
  "The Princess Bride": ["⚔", "👸", "🐉", "🏰", "🌹"],
  "Back to the Future": ["🚗", "⏳", "⚡", "🚲", "🕰"],
  "Dune": ["🏜", "🐛", "👽", "👑", "🌀"]
}

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
{
  "The Lion King": ["🦁", "👑", "🌅", "🐘", "🦓"],
  "The Nightmare Before Christmas": ["🎃", "🎄", "🕷", "👻", "🦇"],
  "The Godfather": ["🍝", "🔫", "💼", "🕶", "👔"],
  "The Matrix": ["🕶", "💊", "🌐", "🤖", "🕳"],
  "Casablanca": ["🎥", "🌴", "✈", "💔", "🕊"],
  "Raiders of the Lost Ark": ["🗺", "🏺", "🏹", "🛡", "🏜"],
  "V for Vendetta": ["🎭", "🕶", "🗡", "🔥", "🇬🇧"],
  "The Princess Bride": ["⚔", "👸", "🐉", "🏰", "🌹"],
  "Back to the Future": ["🚗", "⏳", "⚡", "🚲", "🕰"],
  "Dune": ["🏜", "🐛", "👽", "👑", "🌀"]
}

PyFunc

Resulting in output: [['🦁', '👑', '🌅', '🐘', '🦓'], ['🎃', '🎄', '🕷', '👻', '🦇'], ['🍝', '🔫', '💼', '🕶', '👔'], ['🕶', '💊', '🌐', '🤖', '🕳'], ['🎥', '🌴', '✈', '💔', '🕊'], ['🗺', '🏺', '🏹', '🛡', '🏜'], ['🎭', '🕶', '🗡', '🔥', '🇬🇧'], ['⚔', '👸', '🐉', '🏰', '🌹'], ['🚗', '⏳', '⚡', '🚲', '🕰'], ['🏜', '🐛', '👽', '👑', '🌀']]

LLM Generation

Query

For each of the following ten movies described by 5 emoji, give the movie title that best matches. Give your answer as a JSON list. So If I asked for

1

You might answer
1
["Finding Nemo", "Toy Story"]]
. Now give me answers for these movies:
1
2
3
4
5
6
7
8
9
['🎃', '🎄', '🕷', '👻', '🦇'],
['🍝', '🔫', '💼', '🕶', '👔'],
['🕶', '💊', '🌐', '🤖', '🕳'],
['🎥', '🌴', '✈', '💔', '🕊'],
['🗺', '🏺', '🏹', '🛡', '🏜'],
['🎭', '🕶', '🗡', '🔥', '🇬🇧'],
['⚔', '👸', '🐉', '🏰', '🌹'],
['🚗', '⏳', '⚡', '🚲', '🕰'],
['🏜', '🐛', '👽', '👑', '🌀']]
What are the names of the movie titles?

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
[
  "The Lion King",
  "The Nightmare Before Christmas",
  "The Godfather",
  "The Matrix",
  "Up",
  "Indiana Jones: Raiders of the Lost Ark",
  "James Bond",
  "Frozen",
  "Back to the Future",
  "Star Wars"
]

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
[
  "The Lion King",
  "The Nightmare Before Christmas",
  "The Godfather",
  "The Matrix",
  "Up",
  "Indiana Jones: Raiders of the Lost Ark",
  "James Bond",
  "Frozen",
  "Back to the Future",
  "Star Wars"
]

PyFunc

OK Resulting in output: False