Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "🌅", "👑", "ðŸ¾", "ðŸŒ"],
"The Nightmare Before Christmas": ["🎃", "🎄", "🌙", "👻", "🕸ï¸"],
"The Godfather": ["👔", "ðŸ", "🕶ï¸", "🔫", "🎩"],
"The Matrix": ["🕶ï¸", "💊", "🔫", "🖥ï¸", "🕳ï¸"],
"Casablanca": ["✈ï¸", "â¤ï¸", "🌆", "🎷", "☕"],
"Raiders of the Lost Ark": ["ðŸº", "ðŸ§", "🗺ï¸", "âš”ï¸", "🗡ï¸"],
"V for Vendetta": ["ðŸŽ", "💣", "🌹", "🇬🇧", "🗡ï¸"],
"The Princess Bride": ["âš”ï¸", "👸", "💖", "ðŸ´", "🌹"],
"Back to the Future": ["🚗", "â°", "âš¡", "🕰ï¸", "🕶ï¸"],
"Dune": ["ðŸœï¸", "ðŸ›", "✨", "👑", "🌌"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "🌅", "👑", "ðŸ¾", "ðŸŒ"],
"The Nightmare Before Christmas": ["🎃", "🎄", "🌙", "👻", "🕸ï¸"],
"The Godfather": ["👔", "ðŸ", "🕶ï¸", "🔫", "🎩"],
"The Matrix": ["🕶ï¸", "💊", "🔫", "🖥ï¸", "🕳ï¸"],
"Casablanca": ["✈ï¸", "â¤ï¸", "🌆", "🎷", "☕"],
"Raiders of the Lost Ark": ["ðŸº", "ðŸ§", "🗺ï¸", "âš”ï¸", "🗡ï¸"],
"V for Vendetta": ["ðŸŽ", "💣", "🌹", "🇬🇧", "🗡ï¸"],
"The Princess Bride": ["âš”ï¸", "👸", "💖", "ðŸ´", "🌹"],
"Back to the Future": ["🚗", "â°", "âš¡", "🕰ï¸", "🕶ï¸"],
"Dune": ["ðŸœï¸", "ðŸ›", "✨", "👑", "🌌"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '🌅', '👑', 'ðŸ¾', 'ðŸŒ'],
['🎃', '🎄', '🌙', '👻', '🕸ï¸'],
['👔', 'ðŸ', '🕶ï¸', '🔫', '🎩'],
['🕶ï¸', '💊', '🔫', '🖥ï¸', '🕳ï¸'],
['✈ï¸', 'â¤ï¸', '🌆', '🎷', '☕'],
['ðŸº', 'ðŸ§', '🗺ï¸', 'âš”ï¸', '🗡ï¸'],
['ðŸŽ', '💣', '🌹', '🇬🇧', '🗡ï¸'],
['âš”ï¸', '👸', '💖', 'ðŸ´', '🌹'],
['🚗', 'â°', 'âš¡', '🕰ï¸', '🕶ï¸'],
['ðŸœï¸', 'ðŸ›', '✨', '👑', '🌌']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '🎄', '🌙', '👻', '🕸ï¸'],
['👔', 'ðŸ', '🕶ï¸', '🔫', '🎩'],
['🕶ï¸', '💊', '🔫', '🖥ï¸', '🕳ï¸'],
['✈ï¸', 'â¤ï¸', '🌆', '🎷', '☕'],
['ðŸº', 'ðŸ§', '🗺ï¸', 'âš”ï¸', '🗡ï¸'],
['ðŸŽ', '💣', '🌹', '🇬🇧', '🗡ï¸'],
['âš”ï¸', '👸', '💖', 'ðŸ´', '🌹'],
['🚗', 'â°', 'âš¡', '🕰ï¸', '🕶ï¸'],
['ðŸœï¸', 'ðŸ›', '✨', '👑', '🌌']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Sleepless in Seattle",
"Indiana Jones",
"Shakespeare in Love",
"Beauty and the Beast",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Sleepless in Seattle",
"Indiana Jones",
"Shakespeare in Love",
"Beauty and the Beast",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
False
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "ðŸ˜", "🦓"],
"The Nightmare Before Christmas": ["🎃", "🎄", "🕷", "👻", "🦇"],
"The Godfather": ["ðŸ", "🔫", "💼", "🕶", "👔"],
"The Matrix": ["🕶", "💊", "ðŸŒ", "🤖", "🕳"],
"Casablanca": ["🎥", "🌴", "✈", "💔", "🕊"],
"Raiders of the Lost Ark": ["🗺", "ðŸº", "ðŸ¹", "🛡", "ðŸœ"],
"V for Vendetta": ["ðŸŽ", "🕶", "🗡", "🔥", "🇬🇧"],
"The Princess Bride": ["âš”", "👸", "ðŸ‰", "ðŸ°", "🌹"],
"Back to the Future": ["🚗", "â³", "âš¡", "🚲", "🕰"],
"Dune": ["ðŸœ", "ðŸ›", "👽", "👑", "🌀"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "ðŸ˜", "🦓"],
"The Nightmare Before Christmas": ["🎃", "🎄", "🕷", "👻", "🦇"],
"The Godfather": ["ðŸ", "🔫", "💼", "🕶", "👔"],
"The Matrix": ["🕶", "💊", "ðŸŒ", "🤖", "🕳"],
"Casablanca": ["🎥", "🌴", "✈", "💔", "🕊"],
"Raiders of the Lost Ark": ["🗺", "ðŸº", "ðŸ¹", "🛡", "ðŸœ"],
"V for Vendetta": ["ðŸŽ", "🕶", "🗡", "🔥", "🇬🇧"],
"The Princess Bride": ["âš”", "👸", "ðŸ‰", "ðŸ°", "🌹"],
"Back to the Future": ["🚗", "â³", "âš¡", "🚲", "🕰"],
"Dune": ["ðŸœ", "ðŸ›", "👽", "👑", "🌀"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '👑', '🌅', 'ðŸ˜', '🦓'],
['🎃', '🎄', '🕷', '👻', '🦇'],
['ðŸ', '🔫', '💼', '🕶', '👔'],
['🕶', '💊', 'ðŸŒ', '🤖', '🕳'],
['🎥', '🌴', '✈', '💔', '🕊'],
['🗺', 'ðŸº', 'ðŸ¹', '🛡', 'ðŸœ'],
['ðŸŽ', '🕶', '🗡', '🔥', '🇬🇧'],
['âš”', '👸', 'ðŸ‰', 'ðŸ°', '🌹'],
['🚗', 'â³', 'âš¡', '🚲', '🕰'],
['ðŸœ', 'ðŸ›', '👽', '👑', '🌀']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '🎄', '🕷', '👻', '🦇'],
['ðŸ', '🔫', '💼', '🕶', '👔'],
['🕶', '💊', 'ðŸŒ', '🤖', '🕳'],
['🎥', '🌴', '✈', '💔', '🕊'],
['🗺', 'ðŸº', 'ðŸ¹', '🛡', 'ðŸœ'],
['ðŸŽ', '🕶', '🗡', '🔥', '🇬🇧'],
['âš”', '👸', 'ðŸ‰', 'ðŸ°', '🌹'],
['🚗', 'â³', 'âš¡', '🚲', '🕰'],
['ðŸœ', 'ðŸ›', '👽', '👑', '🌀']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Up",
"Indiana Jones: Raiders of the Lost Ark",
"James Bond",
"Frozen",
"Back to the Future",
"Star Wars"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Up",
"Indiana Jones: Raiders of the Lost Ark",
"James Bond",
"Frozen",
"Back to the Future",
"Star Wars"
]
|
PyFunc
OK
Resulting in output:
False