Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "ðŸ¯", "🌄", "🎶"],
"The Nightmare Before Christmas": ["🎃", "🕷ï¸", "👻", "🕸ï¸", "â„ï¸"],
"The Godfather": ["🔫", "👊", "🕴ï¸", "💼", "👑"],
"The Matrix": ["🤖", "🔴", "🕶ï¸", "💻", "🔫"],
"Casablanca": ["ðŸ¸", "🕺", "🎤", "💔", "🚫"],
"Raiders of the Lost Ark": ["ðŸœï¸", "🔪", "ðŸ¹", "🚣", "ðŸº"],
"V for Vendetta": ["🔥", "🕷ï¸", "👊", "🕴ï¸", "📰"],
"The Princess Bride": ["ðŸ¹", "💕", "👸", "ðŸŽ", "ðŸ’"],
"Back to the Future": ["🚗", "â°", "🔙", "👴", "âš¡ï¸"],
"Dune": ["ðŸ«", "🌌", "🔪", "👑", "🌀"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "ðŸ¯", "🌄", "🎶"],
"The Nightmare Before Christmas": ["🎃", "🕷ï¸", "👻", "🕸ï¸", "â„ï¸"],
"The Godfather": ["🔫", "👊", "🕴ï¸", "💼", "👑"],
"The Matrix": ["🤖", "🔴", "🕶ï¸", "💻", "🔫"],
"Casablanca": ["ðŸ¸", "🕺", "🎤", "💔", "🚫"],
"Raiders of the Lost Ark": ["ðŸœï¸", "🔪", "ðŸ¹", "🚣", "ðŸº"],
"V for Vendetta": ["🔥", "🕷ï¸", "👊", "🕴ï¸", "📰"],
"The Princess Bride": ["ðŸ¹", "💕", "👸", "ðŸŽ", "ðŸ’"],
"Back to the Future": ["🚗", "â°", "🔙", "👴", "âš¡ï¸"],
"Dune": ["ðŸ«", "🌌", "🔪", "👑", "🌀"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '👑', 'ðŸ¯', '🌄', '🎶'],
['🎃', '🕷ï¸', '👻', '🕸ï¸', 'â„ï¸'],
['🔫', '👊', '🕴ï¸', '💼', '👑'],
['🤖', '🔴', '🕶ï¸', '💻', '🔫'],
['ðŸ¸', '🕺', '🎤', '💔', '🚫'],
['ðŸœï¸', '🔪', 'ðŸ¹', '🚣', 'ðŸº'],
['🔥', '🕷ï¸', '👊', '🕴ï¸', '📰'],
['ðŸ¹', '💕', '👸', 'ðŸŽ', 'ðŸ’'],
['🚗', 'â°', '🔙', '👴', 'âš¡ï¸'],
['ðŸ«', '🌌', '🔪', '👑', '🌀']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '🕷ï¸', '👻', '🕸ï¸', 'â„ï¸'],
['🔫', '👊', '🕴ï¸', '💼', '👑'],
['🤖', '🔴', '🕶ï¸', '💻', '🔫'],
['ðŸ¸', '🕺', '🎤', '💔', '🚫'],
['ðŸœï¸', '🔪', 'ðŸ¹', '🚣', 'ðŸº'],
['🔥', '🕷ï¸', '👊', '🕴ï¸', '📰'],
['ðŸ¹', '💕', '👸', 'ðŸŽ', 'ðŸ’'],
['🚗', 'â°', '🔙', '👴', 'âš¡ï¸'],
['ðŸ«', '🌌', '🔪', '👑', '🌀']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Frozen",
"James Bond",
"The Terminator",
"Cocktail",
"Apocalypto",
"Spider-Man",
"Romeo and Juliet",
"Back to the Future",
"Guardians of the Galaxy"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Frozen",
"James Bond",
"The Terminator",
"Cocktail",
"Apocalypto",
"Spider-Man",
"Romeo and Juliet",
"Back to the Future",
"Guardians of the Galaxy"
]
|
PyFunc
OK
Resulting in output:
False