Initial Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

LLM Generation

Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
{
  "The Lion King": ["🦁", "👑", "🐯", "🌄", "🎶"],
  "The Nightmare Before Christmas": ["🎃", "🕷️", "👻", "🕸️", "❄️"],
  "The Godfather": ["🔫", "👊", "🕴️", "💼", "👑"],
  "The Matrix": ["🤖", "🔴", "🕶️", "💻", "🔫"],
  "Casablanca": ["🍸", "🕺", "🎤", "💔", "🚫"],
  "Raiders of the Lost Ark": ["🏜️", "🔪", "🏹", "🚣", "🏺"],
  "V for Vendetta": ["🔥", "🕷️", "👊", "🕴️", "📰"],
  "The Princess Bride": ["🏹", "💕", "👸", "🐎", "💏"],
  "Back to the Future": ["🚗", "⏰", "🔙", "👴", "⚡️"],
  "Dune": ["🐫", "🌌", "🔪", "👑", "🌀"]
}

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
{
  "The Lion King": ["🦁", "👑", "🐯", "🌄", "🎶"],
  "The Nightmare Before Christmas": ["🎃", "🕷️", "👻", "🕸️", "❄️"],
  "The Godfather": ["🔫", "👊", "🕴️", "💼", "👑"],
  "The Matrix": ["🤖", "🔴", "🕶️", "💻", "🔫"],
  "Casablanca": ["🍸", "🕺", "🎤", "💔", "🚫"],
  "Raiders of the Lost Ark": ["🏜️", "🔪", "🏹", "🚣", "🏺"],
  "V for Vendetta": ["🔥", "🕷️", "👊", "🕴️", "📰"],
  "The Princess Bride": ["🏹", "💕", "👸", "🐎", "💏"],
  "Back to the Future": ["🚗", "⏰", "🔙", "👴", "⚡️"],
  "Dune": ["🐫", "🌌", "🔪", "👑", "🌀"]
}

PyFunc

Resulting in output: [['🦁', '👑', '🐯', '🌄', '🎶'], ['🎃', '🕷️', '👻', '🕸️', '❄️'], ['🔫', '👊', '🕴️', '💼', '👑'], ['🤖', '🔴', '🕶️', '💻', '🔫'], ['🍸', '🕺', '🎤', '💔', '🚫'], ['🏜️', '🔪', '🏹', '🚣', '🏺'], ['🔥', '🕷️', '👊', '🕴️', '📰'], ['🏹', '💕', '👸', '🐎', '💏'], ['🚗', '⏰', '🔙', '👴', '⚡️'], ['🐫', '🌌', '🔪', '👑', '🌀']]

LLM Generation

Query

For each of the following ten movies described by 5 emoji, give the movie title that best matches. Give your answer as a JSON list. So If I asked for

1

You might answer
1
["Finding Nemo", "Toy Story"]]
. Now give me answers for these movies:
1
2
3
4
5
6
7
8
9
['🎃', '🕷️', '👻', '🕸️', '❄️'],
['🔫', '👊', '🕴️', '💼', '👑'],
['🤖', '🔴', '🕶️', '💻', '🔫'],
['🍸', '🕺', '🎤', '💔', '🚫'],
['🏜️', '🔪', '🏹', '🚣', '🏺'],
['🔥', '🕷️', '👊', '🕴️', '📰'],
['🏹', '💕', '👸', '🐎', '💏'],
['🚗', '⏰', '🔙', '👴', '⚡️'],
['🐫', '🌌', '🔪', '👑', '🌀']]
What are the names of the movie titles?

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
[
  "The Lion King",
  "Frozen",
  "James Bond",
  "The Terminator",
  "Cocktail",
  "Apocalypto",
  "Spider-Man",
  "Romeo and Juliet",
  "Back to the Future",
  "Guardians of the Galaxy"
]

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
[
  "The Lion King",
  "Frozen",
  "James Bond",
  "The Terminator",
  "Cocktail",
  "Apocalypto",
  "Spider-Man",
  "Romeo and Juliet",
  "Back to the Future",
  "Guardians of the Galaxy"
]

PyFunc

OK Resulting in output: False