Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "👑", "🌅", "🐗", "🐒"],
"The Nightmare Before Christmas": ["🎃", "🎄", "👻", "🕸️", "💀"],
"The Godfather": ["💼", "🔫", "🍝", "🕴️", "🇮🇹"],
"The Matrix": ["🕶️", "💻", "🔋", "🤖", "🎆"],
"Casablanca": ["❤️", "✈️", "🎹", "🌍", "🎭"],
"Raiders of the Lost Ark": ["🗺️", "🕵️", "🏺", "🐍", "🚪"],
"V for Vendetta": ["🎭", "🔥", "🎇", "📰", "⚔️"],
"The Princess Bride": ["👸", "🤴", "⚔️", "🛡️", "💘"],
"Back to the Future": ["⏰", "🚗", "⚡", "👟", "📅"],
"Dune": ["🏜️", "🌠", "👑", "🪐", "🦂"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "👑", "🌅", "🐗", "🐒"],
"The Nightmare Before Christmas": ["🎃", "🎄", "👻", "🕸️", "💀"],
"The Godfather": ["💼", "🔫", "🍝", "🕴️", "🇮🇹"],
"The Matrix": ["🕶️", "💻", "🔋", "🤖", "🎆"],
"Casablanca": ["❤️", "✈️", "🎹", "🌍", "🎭"],
"Raiders of the Lost Ark": ["🗺️", "🕵️", "🏺", "🐍", "🚪"],
"V for Vendetta": ["🎭", "🔥", "🎇", "📰", "⚔️"],
"The Princess Bride": ["👸", "🤴", "⚔️", "🛡️", "💘"],
"Back to the Future": ["⏰", "🚗", "⚡", "👟", "📅"],
"Dune": ["🏜️", "🌠", "👑", "🪐", "🦂"]
}
|
PyFunc
Resulting in output:
[['🦁', '👑', '🌅', '🐗', '🐒'],
['🎃', '🎄', '👻', '🕸️', '💀'],
['💼', '🔫', '🍝', '🕴️', '🇮🇹'],
['🕶️', '💻', '🔋', '🤖', '🎆'],
['❤️', '✈️', '🎹', '🌍', '🎭'],
['🗺️', '🕵️', '🏺', '🐍', '🚪'],
['🎭', '🔥', '🎇', '📰', '⚔️'],
['👸', '🤴', '⚔️', '🛡️', '💘'],
['⏰', '🚗', '⚡', '👟', '📅'],
['🏜️', '🌠', '👑', '🪐', '🦂']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '🎄', '👻', '🕸️', '💀'],
['💼', '🔫', '🍝', '🕴️', '🇮🇹'],
['🕶️', '💻', '🔋', '🤖', '🎆'],
['❤️', '✈️', '🎹', '🌍', '🎭'],
['🗺️', '🕵️', '🏺', '🐍', '🚪'],
['🎭', '🔥', '🎇', '📰', '⚔️'],
['👸', '🤴', '⚔️', '🛡️', '💘'],
['⏰', '🚗', '⚡', '👟', '📅'],
['🏜️', '🌠', '👑', '🪐', '🦂']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Moulin Rouge!",
"Indiana Jones",
"The Greatest Showman",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Moulin Rouge!",
"Indiana Jones",
"The Greatest Showman",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
False
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🌅", "👑", "🐗", "🐒"],
"The Nightmare Before Christmas": ["🎃", "💀", "🎄", "👻", "🕸️"],
"The Godfather": ["👔", "🔫", "🍝", "💼", "🕴️"],
"The Matrix": ["💊", "💻", "🕶️", "🤖", "🚪"],
"Casablanca": ["🗺️", "❤️", "✈️", "🎶", "☕"],
"Raiders of the Lost Ark": ["🗿", "🌍", "🏺", "🧭", "🐍"],
"V for Vendetta": ["🎭", "💣", "🏙️", "📺", "⚔️"],
"The Princess Bride": ["👸", "🤴", "⚔️", "🧙", "❤️"],
"Back to the Future": ["🚗", "⏰", "⚡", "👟", "📅"],
"Dune": ["🏜️", "🌠", "👑", "🪐", "🐛"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🌅", "👑", "🐗", "🐒"],
"The Nightmare Before Christmas": ["🎃", "💀", "🎄", "👻", "🕸️"],
"The Godfather": ["👔", "🔫", "🍝", "💼", "🕴️"],
"The Matrix": ["💊", "💻", "🕶️", "🤖", "🚪"],
"Casablanca": ["🗺️", "❤️", "✈️", "🎶", "☕"],
"Raiders of the Lost Ark": ["🗿", "🌍", "🏺", "🧭", "🐍"],
"V for Vendetta": ["🎭", "💣", "🏙️", "📺", "⚔️"],
"The Princess Bride": ["👸", "🤴", "⚔️", "🧙", "❤️"],
"Back to the Future": ["🚗", "⏰", "⚡", "👟", "📅"],
"Dune": ["🏜️", "🌠", "👑", "🪐", "🐛"]
}
|
PyFunc
Resulting in output:
[['🦁', '🌅', '👑', '🐗', '🐒'],
['🎃', '💀', '🎄', '👻', '🕸️'],
['👔', '🔫', '🍝', '💼', '🕴️'],
['💊', '💻', '🕶️', '🤖', '🚪'],
['🗺️', '❤️', '✈️', '🎶', '☕'],
['🗿', '🌍', '🏺', '🧭', '🐍'],
['🎭', '💣', '🏙️', '📺', '⚔️'],
['👸', '🤴', '⚔️', '🧙', '❤️'],
['🚗', '⏰', '⚡', '👟', '📅'],
['🏜️', '🌠', '👑', '🪐', '🐛']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '💀', '🎄', '👻', '🕸️'],
['👔', '🔫', '🍝', '💼', '🕴️'],
['💊', '💻', '🕶️', '🤖', '🚪'],
['🗺️', '❤️', '✈️', '🎶', '☕'],
['🗿', '🌍', '🏺', '🧭', '🐍'],
['🎭', '💣', '🏙️', '📺', '⚔️'],
['👸', '🤴', '⚔️', '🧙', '❤️'],
['🚗', '⏰', '⚡', '👟', '📅'],
['🏜️', '🌠', '👑', '🪐', '🐛']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Up",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Up",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🌅", "👑", "🐗", "🐒"],
"The Nightmare Before Christmas": ["🎃", "👻", "🎄", "💀", "🕷️"],
"The Godfather": ["👨👩👧👦", "🔫", "🍝", "💼", "🚬"],
"The Matrix": ["💊", "🕶️", "💻", "🤖", "🔫"],
"Casablanca": ["❤️", "✈️", "🎹", "🇲🇦", "🕶️"],
"Raiders of the Lost Ark": ["🗿", "🏺", "🦟", "🔫", "🌴"],
"V for Vendetta": ["🎭", "🔥", "🗡️", "📺", "🇬🇧"],
"The Princess Bride": ["👸", "🤴", "🗡️", "❤️", "👹"],
"Back to the Future": ["🚗", "⏰", "⚡", "👟", "📖"],
"Dune": ["🏜️", "🌾", "🐛", "👑", "🚀"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🌅", "👑", "🐗", "🐒"],
"The Nightmare Before Christmas": ["🎃", "👻", "🎄", "💀", "🕷️"],
"The Godfather": ["👨👩👧👦", "🔫", "🍝", "💼", "🚬"],
"The Matrix": ["💊", "🕶️", "💻", "🤖", "🔫"],
"Casablanca": ["❤️", "✈️", "🎹", "🇲🇦", "🕶️"],
"Raiders of the Lost Ark": ["🗿", "🏺", "🦟", "🔫", "🌴"],
"V for Vendetta": ["🎭", "🔥", "🗡️", "📺", "🇬🇧"],
"The Princess Bride": ["👸", "🤴", "🗡️", "❤️", "👹"],
"Back to the Future": ["🚗", "⏰", "⚡", "👟", "📖"],
"Dune": ["🏜️", "🌾", "🐛", "👑", "🚀"]
}
|
PyFunc
Resulting in output:
[['🦁', '🌅', '👑', '🐗', '🐒'],
['🎃', '👻', '🎄', '💀', '🕷️'],
['🔫', '🍝', '💼', '🚬'],
['💊', '🕶️', '💻', '🤖', '🔫'],
['❤️', '✈️', '🎹', '🇲🇦', '🕶️'],
['🗿', '🏺', '🦟', '🔫', '🌴'],
['🎭', '🔥', '🗡️', '📺', '🇬🇧'],
['👸', '🤴', '🗡️', '❤️', '👹'],
['🚗', '⏰', '⚡', '👟', '📖'],
['🏜️', '🌾', '🐛', '👑', '🚀']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '🎄', '💀', '🕷️'],
['🔫', '🍝', '💼', '🚬'],
['💊', '🕶️', '💻', '🤖', '🔫'],
['❤️', '✈️', '🎹', '🇲🇦', '🕶️'],
['🗿', '🏺', '🦟', '🔫', '🌴'],
['🎭', '🔥', '🗡️', '📺', '🇬🇧'],
['👸', '🤴', '🗡️', '❤️', '👹'],
['🚗', '⏰', '⚡', '👟', '📖'],
['🏜️', '🌾', '🐛', '👑', '🚀']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"Pulp Fiction",
"The Matrix",
"Casablanca",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"Pulp Fiction",
"The Matrix",
"Casablanca",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "👑", "🌅", "🌿", "🐗"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🕸"],
"The Godfather": ["🤵", "🍝", "🔫", "🕴️", "🇮🇹"],
"The Matrix": ["🕶️", "💊", "💻", "🕴️", "🔫"],
"Casablanca": ["🕌", "🎶", "💔", "✈️", "🌆"],
"Raiders of the Lost Ark": ["🧑🏫", "🗺️", "🏺", "🐍", "✈️"],
"V for Vendetta": ["🎭", "💣", "🔥", "🇬🇧", "⚔️"],
"The Princess Bride": ["👸", "🤴", "⚔️", "🧙", "🌄"],
"Back to the Future": ["🚗", "⏰", "⚡", "👟", "📅"],
"Dune": ["🏜️", "🪐", "👑", "🐛", "🗡️"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "👑", "🌅", "🌿", "🐗"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🕸"],
"The Godfather": ["🤵", "🍝", "🔫", "🕴️", "🇮🇹"],
"The Matrix": ["🕶️", "💊", "💻", "🕴️", "🔫"],
"Casablanca": ["🕌", "🎶", "💔", "✈️", "🌆"],
"Raiders of the Lost Ark": ["🧑🏫", "🗺️", "🏺", "🐍", "✈️"],
"V for Vendetta": ["🎭", "💣", "🔥", "🇬🇧", "⚔️"],
"The Princess Bride": ["👸", "🤴", "⚔️", "🧙", "🌄"],
"Back to the Future": ["🚗", "⏰", "⚡", "👟", "📅"],
"Dune": ["🏜️", "🪐", "👑", "🐛", "🗡️"]
}
|
PyFunc
Resulting in output:
[['🦁', '👑', '🌅', '🌿', '🐗'],
['🎃', '👻', '💀', '🎄', '🕸'],
['🤵', '🍝', '🔫', '🕴️', '🇮🇹'],
['🕶️', '💊', '💻', '🕴️', '🔫'],
['🕌', '🎶', '💔', '✈️', '🌆'],
['🗺️', '🏺', '🐍', '✈️'],
['🎭', '💣', '🔥', '🇬🇧', '⚔️'],
['👸', '🤴', '⚔️', '🧙', '🌄'],
['🚗', '⏰', '⚡', '👟', '📅'],
['🏜️', '🪐', '👑', '🐛', '🗡️']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '💀', '🎄', '🕸'],
['🤵', '🍝', '🔫', '🕴️', '🇮🇹'],
['🕶️', '💊', '💻', '🕴️', '🔫'],
['🕌', '🎶', '💔', '✈️', '🌆'],
['🗺️', '🏺', '🐍', '✈️'],
['🎭', '💣', '🔥', '🇬🇧', '⚔️'],
['👸', '🤴', '⚔️', '🧙', '🌄'],
['🚗', '⏰', '⚡', '👟', '📅'],
['🏜️', '🪐', '👑', '🐛', '🗡️']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Aladdin",
"Indiana Jones",
"V for Vendetta",
"The Lord of the Rings",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Aladdin",
"Indiana Jones",
"V for Vendetta",
"The Lord of the Rings",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
False
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🌅", "👑", "🐗", "🐒"],
"The Nightmare Before Christmas": ["🎃", "🎄", "👻", "🕸️", "💀"],
"The Godfather": ["🕴️", "💼", "🔫", "🍝", "🚬"],
"The Matrix": ["🕶️", "💊", "💻", "🤖", "🚪"],
"Casablanca": ["❤️", "✈️", "🎹", "🌆", "🇲🇦"],
"Raiders of the Lost Ark": ["🧳", "⚔️", "🗺️", "🐍", "🏺"],
"V for Vendetta": ["🎭", "💣", "🔪", "🏛️", "📰"],
"The Princess Bride": ["👸", "🤴", "⚔️", "🧙", "❤️"],
"Back to the Future": ["⏰", "🚗", "⚡", "👟", "📅"],
"Dune": ["🏜️", "🐛", "👑", "🌠", "🪐"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🌅", "👑", "🐗", "🐒"],
"The Nightmare Before Christmas": ["🎃", "🎄", "👻", "🕸️", "💀"],
"The Godfather": ["🕴️", "💼", "🔫", "🍝", "🚬"],
"The Matrix": ["🕶️", "💊", "💻", "🤖", "🚪"],
"Casablanca": ["❤️", "✈️", "🎹", "🌆", "🇲🇦"],
"Raiders of the Lost Ark": ["🧳", "⚔️", "🗺️", "🐍", "🏺"],
"V for Vendetta": ["🎭", "💣", "🔪", "🏛️", "📰"],
"The Princess Bride": ["👸", "🤴", "⚔️", "🧙", "❤️"],
"Back to the Future": ["⏰", "🚗", "⚡", "👟", "📅"],
"Dune": ["🏜️", "🐛", "👑", "🌠", "🪐"]
}
|
PyFunc
Resulting in output:
[['🦁', '🌅', '👑', '🐗', '🐒'],
['🎃', '🎄', '👻', '🕸️', '💀'],
['🕴️', '💼', '🔫', '🍝', '🚬'],
['🕶️', '💊', '💻', '🤖', '🚪'],
['❤️', '✈️', '🎹', '🌆', '🇲🇦'],
['🧳', '⚔️', '🗺️', '🐍', '🏺'],
['🎭', '💣', '🔪', '🏛️', '📰'],
['👸', '🤴', '⚔️', '🧙', '❤️'],
['⏰', '🚗', '⚡', '👟', '📅'],
['🏜️', '🐛', '👑', '🌠', '🪐']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '🎄', '👻', '🕸️', '💀'],
['🕴️', '💼', '🔫', '🍝', '🚬'],
['🕶️', '💊', '💻', '🤖', '🚪'],
['❤️', '✈️', '🎹', '🌆', '🇲🇦'],
['🧳', '⚔️', '🗺️', '🐍', '🏺'],
['🎭', '💣', '🔪', '🏛️', '📰'],
['👸', '🤴', '⚔️', '🧙', '❤️'],
['⏰', '🚗', '⚡', '👟', '📅'],
['🏜️', '🐛', '👑', '🌠', '🪐']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"Pulp Fiction",
"The Matrix",
"Casablanca",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"Pulp Fiction",
"The Matrix",
"Casablanca",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True