Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "ðŸ—", "ðŸ’"],
"The Nightmare Before Christmas": ["🎃", "🎄", "👻", "🕸ï¸", "💀"],
"The Godfather": ["💼", "🔫", "ðŸ", "🕴ï¸", "🇮🇹"],
"The Matrix": ["🕶ï¸", "💻", "🔋", "🤖", "🎆"],
"Casablanca": ["â¤ï¸", "✈ï¸", "🎹", "ðŸŒ", "ðŸŽ"],
"Raiders of the Lost Ark": ["🗺ï¸", "🕵ï¸", "ðŸº", "ðŸ", "🚪"],
"V for Vendetta": ["ðŸŽ", "🔥", "🎇", "📰", "âš”ï¸"],
"The Princess Bride": ["👸", "🤴", "âš”ï¸", "🛡ï¸", "💘"],
"Back to the Future": ["â°", "🚗", "âš¡", "👟", "📅"],
"Dune": ["ðŸœï¸", "🌠", "👑", "ðŸª", "🦂"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "ðŸ—", "ðŸ’"],
"The Nightmare Before Christmas": ["🎃", "🎄", "👻", "🕸ï¸", "💀"],
"The Godfather": ["💼", "🔫", "ðŸ", "🕴ï¸", "🇮🇹"],
"The Matrix": ["🕶ï¸", "💻", "🔋", "🤖", "🎆"],
"Casablanca": ["â¤ï¸", "✈ï¸", "🎹", "ðŸŒ", "ðŸŽ"],
"Raiders of the Lost Ark": ["🗺ï¸", "🕵ï¸", "ðŸº", "ðŸ", "🚪"],
"V for Vendetta": ["ðŸŽ", "🔥", "🎇", "📰", "âš”ï¸"],
"The Princess Bride": ["👸", "🤴", "âš”ï¸", "🛡ï¸", "💘"],
"Back to the Future": ["â°", "🚗", "âš¡", "👟", "📅"],
"Dune": ["ðŸœï¸", "🌠", "👑", "ðŸª", "🦂"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '👑', '🌅', 'ðŸ—', 'ðŸ’'],
['🎃', '🎄', '👻', '🕸ï¸', '💀'],
['💼', '🔫', 'ðŸ', '🕴ï¸', '🇮🇹'],
['🕶ï¸', '💻', '🔋', '🤖', '🎆'],
['â¤ï¸', '✈ï¸', '🎹', 'ðŸŒ', 'ðŸŽ'],
['🗺ï¸', '🕵ï¸', 'ðŸº', 'ðŸ', '🚪'],
['ðŸŽ', '🔥', '🎇', '📰', 'âš”ï¸'],
['👸', '🤴', 'âš”ï¸', '🛡ï¸', '💘'],
['â°', '🚗', 'âš¡', '👟', '📅'],
['ðŸœï¸', '🌠', '👑', 'ðŸª', '🦂']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '🎄', '👻', '🕸ï¸', '💀'],
['💼', '🔫', 'ðŸ', '🕴ï¸', '🇮🇹'],
['🕶ï¸', '💻', '🔋', '🤖', '🎆'],
['â¤ï¸', '✈ï¸', '🎹', 'ðŸŒ', 'ðŸŽ'],
['🗺ï¸', '🕵ï¸', 'ðŸº', 'ðŸ', '🚪'],
['ðŸŽ', '🔥', '🎇', '📰', 'âš”ï¸'],
['👸', '🤴', 'âš”ï¸', '🛡ï¸', '💘'],
['â°', '🚗', 'âš¡', '👟', '📅'],
['ðŸœï¸', '🌠', '👑', 'ðŸª', '🦂']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Moulin Rouge!",
"Indiana Jones",
"The Greatest Showman",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Moulin Rouge!",
"Indiana Jones",
"The Greatest Showman",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
False
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "🌅", "👑", "ðŸ—", "ðŸ’"],
"The Nightmare Before Christmas": ["🎃", "💀", "🎄", "👻", "🕸ï¸"],
"The Godfather": ["👔", "🔫", "ðŸ", "💼", "🕴ï¸"],
"The Matrix": ["💊", "💻", "🕶ï¸", "🤖", "🚪"],
"Casablanca": ["🗺ï¸", "â¤ï¸", "✈ï¸", "🎶", "☕"],
"Raiders of the Lost Ark": ["🗿", "ðŸŒ", "ðŸº", "ðŸ§", "ðŸ"],
"V for Vendetta": ["ðŸŽ", "💣", "ðŸ™ï¸", "📺", "âš”ï¸"],
"The Princess Bride": ["👸", "🤴", "âš”ï¸", "🧙", "â¤ï¸"],
"Back to the Future": ["🚗", "â°", "âš¡", "👟", "📅"],
"Dune": ["ðŸœï¸", "🌠", "👑", "ðŸª", "ðŸ›"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "🌅", "👑", "ðŸ—", "ðŸ’"],
"The Nightmare Before Christmas": ["🎃", "💀", "🎄", "👻", "🕸ï¸"],
"The Godfather": ["👔", "🔫", "ðŸ", "💼", "🕴ï¸"],
"The Matrix": ["💊", "💻", "🕶ï¸", "🤖", "🚪"],
"Casablanca": ["🗺ï¸", "â¤ï¸", "✈ï¸", "🎶", "☕"],
"Raiders of the Lost Ark": ["🗿", "ðŸŒ", "ðŸº", "ðŸ§", "ðŸ"],
"V for Vendetta": ["ðŸŽ", "💣", "ðŸ™ï¸", "📺", "âš”ï¸"],
"The Princess Bride": ["👸", "🤴", "âš”ï¸", "🧙", "â¤ï¸"],
"Back to the Future": ["🚗", "â°", "âš¡", "👟", "📅"],
"Dune": ["ðŸœï¸", "🌠", "👑", "ðŸª", "ðŸ›"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '🌅', '👑', 'ðŸ—', 'ðŸ’'],
['🎃', '💀', '🎄', '👻', '🕸ï¸'],
['👔', '🔫', 'ðŸ', '💼', '🕴ï¸'],
['💊', '💻', '🕶ï¸', '🤖', '🚪'],
['🗺ï¸', 'â¤ï¸', '✈ï¸', '🎶', '☕'],
['🗿', 'ðŸŒ', 'ðŸº', 'ðŸ§', 'ðŸ'],
['ðŸŽ', '💣', 'ðŸ™ï¸', '📺', 'âš”ï¸'],
['👸', '🤴', 'âš”ï¸', '🧙', 'â¤ï¸'],
['🚗', 'â°', 'âš¡', '👟', '📅'],
['ðŸœï¸', '🌠', '👑', 'ðŸª', 'ðŸ›']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '💀', '🎄', '👻', '🕸ï¸'],
['👔', '🔫', 'ðŸ', '💼', '🕴ï¸'],
['💊', '💻', '🕶ï¸', '🤖', '🚪'],
['🗺ï¸', 'â¤ï¸', '✈ï¸', '🎶', '☕'],
['🗿', 'ðŸŒ', 'ðŸº', 'ðŸ§', 'ðŸ'],
['ðŸŽ', '💣', 'ðŸ™ï¸', '📺', 'âš”ï¸'],
['👸', '🤴', 'âš”ï¸', '🧙', 'â¤ï¸'],
['🚗', 'â°', 'âš¡', '👟', '📅'],
['ðŸœï¸', '🌠', '👑', 'ðŸª', 'ðŸ›']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Up",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Up",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "🌅", "👑", "ðŸ—", "ðŸ’"],
"The Nightmare Before Christmas": ["🎃", "👻", "🎄", "💀", "🕷ï¸"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "ðŸ", "💼", "🚬"],
"The Matrix": ["💊", "🕶ï¸", "💻", "🤖", "🔫"],
"Casablanca": ["â¤ï¸", "✈ï¸", "🎹", "🇲🇦", "🕶ï¸"],
"Raiders of the Lost Ark": ["🗿", "ðŸº", "🦟", "🔫", "🌴"],
"V for Vendetta": ["ðŸŽ", "🔥", "🗡ï¸", "📺", "🇬🇧"],
"The Princess Bride": ["👸", "🤴", "🗡ï¸", "â¤ï¸", "👹"],
"Back to the Future": ["🚗", "â°", "âš¡", "👟", "📖"],
"Dune": ["ðŸœï¸", "🌾", "ðŸ›", "👑", "🚀"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "🌅", "👑", "ðŸ—", "ðŸ’"],
"The Nightmare Before Christmas": ["🎃", "👻", "🎄", "💀", "🕷ï¸"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "ðŸ", "💼", "🚬"],
"The Matrix": ["💊", "🕶ï¸", "💻", "🤖", "🔫"],
"Casablanca": ["â¤ï¸", "✈ï¸", "🎹", "🇲🇦", "🕶ï¸"],
"Raiders of the Lost Ark": ["🗿", "ðŸº", "🦟", "🔫", "🌴"],
"V for Vendetta": ["ðŸŽ", "🔥", "🗡ï¸", "📺", "🇬🇧"],
"The Princess Bride": ["👸", "🤴", "🗡ï¸", "â¤ï¸", "👹"],
"Back to the Future": ["🚗", "â°", "âš¡", "👟", "📖"],
"Dune": ["ðŸœï¸", "🌾", "ðŸ›", "👑", "🚀"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '🌅', '👑', 'ðŸ—', 'ðŸ’'],
['🎃', '👻', '🎄', '💀', '🕷ï¸'],
['🔫', 'ðŸ', '💼', '🚬'],
['💊', '🕶ï¸', '💻', '🤖', '🔫'],
['â¤ï¸', '✈ï¸', '🎹', '🇲🇦', '🕶ï¸'],
['🗿', 'ðŸº', '🦟', '🔫', '🌴'],
['ðŸŽ', '🔥', '🗡ï¸', '📺', '🇬🇧'],
['👸', '🤴', '🗡ï¸', 'â¤ï¸', '👹'],
['🚗', 'â°', 'âš¡', '👟', '📖'],
['ðŸœï¸', '🌾', 'ðŸ›', '👑', '🚀']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '🎄', '💀', '🕷ï¸'],
['🔫', 'ðŸ', '💼', '🚬'],
['💊', '🕶ï¸', '💻', '🤖', '🔫'],
['â¤ï¸', '✈ï¸', '🎹', '🇲🇦', '🕶ï¸'],
['🗿', 'ðŸº', '🦟', '🔫', '🌴'],
['ðŸŽ', '🔥', '🗡ï¸', '📺', '🇬🇧'],
['👸', '🤴', '🗡ï¸', 'â¤ï¸', '👹'],
['🚗', 'â°', 'âš¡', '👟', '📖'],
['ðŸœï¸', '🌾', 'ðŸ›', '👑', '🚀']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"Pulp Fiction",
"The Matrix",
"Casablanca",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"Pulp Fiction",
"The Matrix",
"Casablanca",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "🌿", "ðŸ—"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🕸"],
"The Godfather": ["🤵", "ðŸ", "🔫", "🕴ï¸", "🇮🇹"],
"The Matrix": ["🕶ï¸", "💊", "💻", "🕴ï¸", "🔫"],
"Casablanca": ["🕌", "🎶", "💔", "✈ï¸", "🌆"],
"Raiders of the Lost Ark": ["🧑â€ðŸ«", "🗺ï¸", "ðŸº", "ðŸ", "✈ï¸"],
"V for Vendetta": ["ðŸŽ", "💣", "🔥", "🇬🇧", "âš”ï¸"],
"The Princess Bride": ["👸", "🤴", "âš”ï¸", "🧙", "🌄"],
"Back to the Future": ["🚗", "â°", "âš¡", "👟", "📅"],
"Dune": ["ðŸœï¸", "ðŸª", "👑", "ðŸ›", "🗡ï¸"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "🌿", "ðŸ—"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🕸"],
"The Godfather": ["🤵", "ðŸ", "🔫", "🕴ï¸", "🇮🇹"],
"The Matrix": ["🕶ï¸", "💊", "💻", "🕴ï¸", "🔫"],
"Casablanca": ["🕌", "🎶", "💔", "✈ï¸", "🌆"],
"Raiders of the Lost Ark": ["🧑â€ðŸ«", "🗺ï¸", "ðŸº", "ðŸ", "✈ï¸"],
"V for Vendetta": ["ðŸŽ", "💣", "🔥", "🇬🇧", "âš”ï¸"],
"The Princess Bride": ["👸", "🤴", "âš”ï¸", "🧙", "🌄"],
"Back to the Future": ["🚗", "â°", "âš¡", "👟", "📅"],
"Dune": ["ðŸœï¸", "ðŸª", "👑", "ðŸ›", "🗡ï¸"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '👑', '🌅', '🌿', 'ðŸ—'],
['🎃', '👻', '💀', '🎄', '🕸'],
['🤵', 'ðŸ', '🔫', '🕴ï¸', '🇮🇹'],
['🕶ï¸', '💊', '💻', '🕴ï¸', '🔫'],
['🕌', '🎶', '💔', '✈ï¸', '🌆'],
['🗺ï¸', 'ðŸº', 'ðŸ', '✈ï¸'],
['ðŸŽ', '💣', '🔥', '🇬🇧', 'âš”ï¸'],
['👸', '🤴', 'âš”ï¸', '🧙', '🌄'],
['🚗', 'â°', 'âš¡', '👟', '📅'],
['ðŸœï¸', 'ðŸª', '👑', 'ðŸ›', '🗡ï¸']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '💀', '🎄', '🕸'],
['🤵', 'ðŸ', '🔫', '🕴ï¸', '🇮🇹'],
['🕶ï¸', '💊', '💻', '🕴ï¸', '🔫'],
['🕌', '🎶', '💔', '✈ï¸', '🌆'],
['🗺ï¸', 'ðŸº', 'ðŸ', '✈ï¸'],
['ðŸŽ', '💣', '🔥', '🇬🇧', 'âš”ï¸'],
['👸', '🤴', 'âš”ï¸', '🧙', '🌄'],
['🚗', 'â°', 'âš¡', '👟', '📅'],
['ðŸœï¸', 'ðŸª', '👑', 'ðŸ›', '🗡ï¸']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Aladdin",
"Indiana Jones",
"V for Vendetta",
"The Lord of the Rings",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Aladdin",
"Indiana Jones",
"V for Vendetta",
"The Lord of the Rings",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
False
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "🌅", "👑", "ðŸ—", "ðŸ’"],
"The Nightmare Before Christmas": ["🎃", "🎄", "👻", "🕸ï¸", "💀"],
"The Godfather": ["🕴ï¸", "💼", "🔫", "ðŸ", "🚬"],
"The Matrix": ["🕶ï¸", "💊", "💻", "🤖", "🚪"],
"Casablanca": ["â¤ï¸", "✈ï¸", "🎹", "🌆", "🇲🇦"],
"Raiders of the Lost Ark": ["🧳", "âš”ï¸", "🗺ï¸", "ðŸ", "ðŸº"],
"V for Vendetta": ["ðŸŽ", "💣", "🔪", "ðŸ›ï¸", "📰"],
"The Princess Bride": ["👸", "🤴", "âš”ï¸", "🧙", "â¤ï¸"],
"Back to the Future": ["â°", "🚗", "âš¡", "👟", "📅"],
"Dune": ["ðŸœï¸", "ðŸ›", "👑", "🌠", "ðŸª"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "🌅", "👑", "ðŸ—", "ðŸ’"],
"The Nightmare Before Christmas": ["🎃", "🎄", "👻", "🕸ï¸", "💀"],
"The Godfather": ["🕴ï¸", "💼", "🔫", "ðŸ", "🚬"],
"The Matrix": ["🕶ï¸", "💊", "💻", "🤖", "🚪"],
"Casablanca": ["â¤ï¸", "✈ï¸", "🎹", "🌆", "🇲🇦"],
"Raiders of the Lost Ark": ["🧳", "âš”ï¸", "🗺ï¸", "ðŸ", "ðŸº"],
"V for Vendetta": ["ðŸŽ", "💣", "🔪", "ðŸ›ï¸", "📰"],
"The Princess Bride": ["👸", "🤴", "âš”ï¸", "🧙", "â¤ï¸"],
"Back to the Future": ["â°", "🚗", "âš¡", "👟", "📅"],
"Dune": ["ðŸœï¸", "ðŸ›", "👑", "🌠", "ðŸª"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '🌅', '👑', 'ðŸ—', 'ðŸ’'],
['🎃', '🎄', '👻', '🕸ï¸', '💀'],
['🕴ï¸', '💼', '🔫', 'ðŸ', '🚬'],
['🕶ï¸', '💊', '💻', '🤖', '🚪'],
['â¤ï¸', '✈ï¸', '🎹', '🌆', '🇲🇦'],
['🧳', 'âš”ï¸', '🗺ï¸', 'ðŸ', 'ðŸº'],
['ðŸŽ', '💣', '🔪', 'ðŸ›ï¸', '📰'],
['👸', '🤴', 'âš”ï¸', '🧙', 'â¤ï¸'],
['â°', '🚗', 'âš¡', '👟', '📅'],
['ðŸœï¸', 'ðŸ›', '👑', '🌠', 'ðŸª']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '🎄', '👻', '🕸ï¸', '💀'],
['🕴ï¸', '💼', '🔫', 'ðŸ', '🚬'],
['🕶ï¸', '💊', '💻', '🤖', '🚪'],
['â¤ï¸', '✈ï¸', '🎹', '🌆', '🇲🇦'],
['🧳', 'âš”ï¸', '🗺ï¸', 'ðŸ', 'ðŸº'],
['ðŸŽ', '💣', '🔪', 'ðŸ›ï¸', '📰'],
['👸', '🤴', 'âš”ï¸', '🧙', 'â¤ï¸'],
['â°', '🚗', 'âš¡', '👟', '📅'],
['ðŸœï¸', 'ðŸ›', '👑', '🌠', 'ðŸª']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"Pulp Fiction",
"The Matrix",
"Casablanca",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"Pulp Fiction",
"The Matrix",
"Casablanca",
"Indiana Jones",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True