Initial Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "ðŸĄ", "🐎", "ðŸģ"],
"Toy Story": ["🚀", "⚔ïļ,", "ðŸĪ–", "ðŸ‘―", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

LLM Generation

Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "ðŸĄ", "🐎", "ðŸģ"],
"Toy Story": ["🚀", "⚔ïļ,", "ðŸĪ–", "ðŸ‘―", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
{"The Lion King": ["ðŸĶ", "👑", "🌅", "🐗", "🐒"],
"The Nightmare Before Christmas": ["🎃", "ðŸ‘ŧ", "🎄", "💀", "🎁"],
"The Godfather": ["ðŸ”Ŧ", "🍊", "ðŸ‘Ļ‍⚖ïļ", "🚎", "💰"],
"The Matrix": ["ðŸ’ŧ", "ðŸ•ķ", "ðŸ”Ŧ", "💊", "🐇"],
"Casablanca": ["✈ïļ", "ðŸļ", "ðŸŽđ", "💔", "ðŸ§Ĩ"],
"Raiders of the Lost Ark": ["ðŸ‘Ļ‍ðŸŦ", "ðŸĪ ", "🔍", "💀", "🏚"],
"V for Vendetta": ["ðŸ’Ģ", "🎭", "ðŸ”Ĩ", "🇎🇧", "ðŸ—Ąïļ"],
"The Princess Bride": ["ðŸ‘ļ", "ðŸĪš", "ðŸ‘đ", "🏰", "💍"],
"Back to the Future": ["🚗", "âģ", "ðŸ‘Ļ‍🔎", "ðŸŽļ", "⚡"],
"Dune": ["🏜ïļ", "🐛", "ðŸ”Ū", "👑", "💧"]}

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
{"The Lion King": ["ðŸĶ", "👑", "🌅", "🐗", "🐒"],
"The Nightmare Before Christmas": ["🎃", "ðŸ‘ŧ", "🎄", "💀", "🎁"],
"The Godfather": ["ðŸ”Ŧ", "🍊", "ðŸ‘Ļ‍⚖ïļ", "🚎", "💰"],
"The Matrix": ["ðŸ’ŧ", "ðŸ•ķ", "ðŸ”Ŧ", "💊", "🐇"],
"Casablanca": ["✈ïļ", "ðŸļ", "ðŸŽđ", "💔", "ðŸ§Ĩ"],
"Raiders of the Lost Ark": ["ðŸ‘Ļ‍ðŸŦ", "ðŸĪ ", "🔍", "💀", "🏚"],
"V for Vendetta": ["ðŸ’Ģ", "🎭", "ðŸ”Ĩ", "🇎🇧", "ðŸ—Ąïļ"],
"The Princess Bride": ["ðŸ‘ļ", "ðŸĪš", "ðŸ‘đ", "🏰", "💍"],
"Back to the Future": ["🚗", "âģ", "ðŸ‘Ļ‍🔎", "ðŸŽļ", "⚡"],
"Dune": ["🏜ïļ", "🐛", "ðŸ”Ū", "👑", "💧"]}

PyFunc

Resulting in output: [['ðŸĶ', '👑', '🌅', '🐗', '🐒'], ['🎃', 'ðŸ‘ŧ', '🎄', '💀', '🎁'], ['ðŸ”Ŧ', '🍊', '🚎', '💰'], ['ðŸ’ŧ', 'ðŸ•ķ', 'ðŸ”Ŧ', '💊', '🐇'], ['✈ïļ', 'ðŸļ', 'ðŸŽđ', '💔', 'ðŸ§Ĩ'], ['ðŸĪ ', '🔍', '💀', '🏚'], ['ðŸ’Ģ', '🎭', 'ðŸ”Ĩ', '🇎🇧', 'ðŸ—Ąïļ'], ['ðŸ‘ļ', 'ðŸĪš', 'ðŸ‘đ', '🏰', '💍'], ['🚗', 'âģ', 'ðŸŽļ', '⚡'], ['🏜ïļ', '🐛', 'ðŸ”Ū', '👑', '💧']]

LLM Generation

Query

For each of the following ten movies described by 5 emoji, give the movie title that best matches. Give your answer as a JSON list. So If I asked for

1

You might answer
1
["Finding Nemo", "Toy Story"]]
. Now give me answers for these movies:
1
2
3
4
5
6
7
8
9
['🎃', 'ðŸ‘ŧ', '🎄', '💀', '🎁'],
['ðŸ”Ŧ', '🍊', '🚎', '💰'],
['ðŸ’ŧ', 'ðŸ•ķ', 'ðŸ”Ŧ', '💊', '🐇'],
['✈ïļ', 'ðŸļ', 'ðŸŽđ', '💔', 'ðŸ§Ĩ'],
['ðŸĪ ', '🔍', '💀', '🏚'],
['ðŸ’Ģ', '🎭', 'ðŸ”Ĩ', '🇎🇧', 'ðŸ—Ąïļ'],
['ðŸ‘ļ', 'ðŸĪš', 'ðŸ‘đ', '🏰', '💍'],
['🚗', 'âģ', 'ðŸŽļ', '⚡'],
['🏜ïļ', '🐛', 'ðŸ”Ū', '👑', '💧']]
What are the names of the movie titles?

Output

1
["The Lion King", "The Nightmare Before Christmas", "Pulp Fiction", "The Matrix", "Casablanca", "National Treasure", "V for Vendetta", "The Princess Bride", "Back to the Future", "Dune"]

Extract Json

I extracted the following JSON from that output:

1
["The Lion King", "The Nightmare Before Christmas", "Pulp Fiction", "The Matrix", "Casablanca", "National Treasure", "V for Vendetta", "The Princess Bride", "Back to the Future", "Dune"]

PyFunc

OK Resulting in output: True

Initial Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "ðŸĄ", "🐎", "ðŸģ"],
"Toy Story": ["🚀", "⚔ïļ,", "ðŸĪ–", "ðŸ‘―", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

LLM Generation

Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "ðŸĄ", "🐎", "ðŸģ"],
"Toy Story": ["🚀", "⚔ïļ,", "ðŸĪ–", "ðŸ‘―", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

Output

1
{"The Lion King": ["ðŸĶ", "👑", "🌅", "🐒", "🌍"], "The Nightmare Before Christmas": ["🎃", "ðŸ‘ŧ", "🎄", "💀", "🎁"], "The Godfather": ["ðŸ”Ŧ", "ðŸ‘ī", "🚎", "ðŸī", "🍊"], "The Matrix": ["ðŸ’ŧ", "ðŸ•ķ", "ðŸ”Ŧ", "💊", "👔"], "Casablanca": ["✈ïļ", "ðŸŽđ", "ðŸļ", "ðŸ§Ĩ", "ðŸ‘Đ‍âĪïļâ€ðŸ‘Ļ"], "Raiders of the Lost Ark": ["ðŸĪ ", "🏚", "🐍", "🔍", "✈ïļ"], "V for Vendetta": ["🎭", "ðŸ”Ĩ", "ðŸ—Ąïļ", "ðŸŒđ", "🇎🇧"], "The Princess Bride": ["ðŸ‘ļ", "⚔ïļ", "🏰", "ðŸ‘đ", "âĪïļ"], "Back to the Future": ["🚗", "⚡", "🕰", "ðŸŽļ", "👟"], "Dune": ["🏜ïļ", "ðŸŠą", "ðŸ”Ū", "⚔ïļ", "👑"]}

Extract Json

I extracted the following JSON from that output:

1
{"The Lion King": ["ðŸĶ", "👑", "🌅", "🐒", "🌍"], "The Nightmare Before Christmas": ["🎃", "ðŸ‘ŧ", "🎄", "💀", "🎁"], "The Godfather": ["ðŸ”Ŧ", "ðŸ‘ī", "🚎", "ðŸī", "🍊"], "The Matrix": ["ðŸ’ŧ", "ðŸ•ķ", "ðŸ”Ŧ", "💊", "👔"], "Casablanca": ["✈ïļ", "ðŸŽđ", "ðŸļ", "ðŸ§Ĩ", "ðŸ‘Đ‍âĪïļâ€ðŸ‘Ļ"], "Raiders of the Lost Ark": ["ðŸĪ ", "🏚", "🐍", "🔍", "✈ïļ"], "V for Vendetta": ["🎭", "ðŸ”Ĩ", "ðŸ—Ąïļ", "ðŸŒđ", "🇎🇧"], "The Princess Bride": ["ðŸ‘ļ", "⚔ïļ", "🏰", "ðŸ‘đ", "âĪïļ"], "Back to the Future": ["🚗", "⚡", "🕰", "ðŸŽļ", "👟"], "Dune": ["🏜ïļ", "ðŸŠą", "ðŸ”Ū", "⚔ïļ", "👑"]}

PyFunc

Resulting in output: [['ðŸĶ', '👑', '🌅', '🐒', '🌍'], ['🎃', 'ðŸ‘ŧ', '🎄', '💀', '🎁'], ['ðŸ”Ŧ', 'ðŸ‘ī', '🚎', 'ðŸī', '🍊'], ['ðŸ’ŧ', 'ðŸ•ķ', 'ðŸ”Ŧ', '💊', '👔'], ['✈ïļ', 'ðŸŽđ', 'ðŸļ', 'ðŸ§Ĩ'], ['ðŸĪ ', '🏚', '🐍', '🔍', '✈ïļ'], ['🎭', 'ðŸ”Ĩ', 'ðŸ—Ąïļ', 'ðŸŒđ', '🇎🇧'], ['ðŸ‘ļ', '⚔ïļ', '🏰', 'ðŸ‘đ', 'âĪïļ'], ['🚗', '⚡', '🕰', 'ðŸŽļ', '👟'], ['🏜ïļ', 'ðŸŠą', 'ðŸ”Ū', '⚔ïļ', '👑']]

LLM Generation

Query

For each of the following ten movies described by 5 emoji, give the movie title that best matches. Give your answer as a JSON list. So If I asked for

1

You might answer
1
["Finding Nemo", "Toy Story"]]
. Now give me answers for these movies:
1
2
3
4
5
6
7
8
9
['🎃', 'ðŸ‘ŧ', '🎄', '💀', '🎁'],
['ðŸ”Ŧ', 'ðŸ‘ī', '🚎', 'ðŸī', '🍊'],
['ðŸ’ŧ', 'ðŸ•ķ', 'ðŸ”Ŧ', '💊', '👔'],
['✈ïļ', 'ðŸŽđ', 'ðŸļ', 'ðŸ§Ĩ'],
['ðŸĪ ', '🏚', '🐍', '🔍', '✈ïļ'],
['🎭', 'ðŸ”Ĩ', 'ðŸ—Ąïļ', 'ðŸŒđ', '🇎🇧'],
['ðŸ‘ļ', '⚔ïļ', '🏰', 'ðŸ‘đ', 'âĪïļ'],
['🚗', '⚡', '🕰', 'ðŸŽļ', '👟'],
['🏜ïļ', 'ðŸŠą', 'ðŸ”Ū', '⚔ïļ', '👑']]
What are the names of the movie titles?

Output

1
["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Indiana Jones", "V for Vendetta", "Beauty and the Beast", "Back to the Future", "Dune"]

Extract Json

I extracted the following JSON from that output:

1
["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Indiana Jones", "V for Vendetta", "Beauty and the Beast", "Back to the Future", "Dune"]

PyFunc

OK Resulting in output: True

Initial Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "ðŸĄ", "🐎", "ðŸģ"],
"Toy Story": ["🚀", "⚔ïļ,", "ðŸĪ–", "ðŸ‘―", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

LLM Generation

Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "ðŸĄ", "🐎", "ðŸģ"],
"Toy Story": ["🚀", "⚔ïļ,", "ðŸĪ–", "ðŸ‘―", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

Output

1
{"The Lion King": ["ðŸĶ", "👑", "🌅", "🐒", "🌍"], "The Nightmare Before Christmas": ["🎃", "🎅", "ðŸ‘ŧ", "🎁", "❄ïļ"], "The Godfather": ["ðŸ”Ŧ", "🍊", "ðŸ‘Ļ‍⚖ïļ", "ðŸī", "ðŸ’ĩ"], "The Matrix": ["ðŸ’ŧ", "ðŸ•ķ", "🐇", "💊", "ðŸĒ"], "Casablanca": ["✈ïļ", "ðŸŽđ", "âĪïļ", "ðŸ•ĩïļ", "ðŸļ"], "Raiders of the Lost Ark": ["🏚", "ðŸ”Ĩ", "ðŸ‘Ļ‍ðŸŦ", "🐍", "ðŸ§Ē"], "V for Vendetta": ["ðŸ’Ģ", "🎭", "ðŸ—Ąïļ", "ðŸŒđ", "ðŸ”Ĩ"], "The Princess Bride": ["ðŸ‘ļ", "ðŸĪš", "💍", "ðŸ‘đ", "🏰"], "Back to the Future": ["🚗", "⚡", "🕰ïļ", "ðŸ‘Ļ‍🔎", "ðŸ›đ"], "Dune": ["🏜ïļ", "🐛", "ðŸ”Ū", "👑", "💧"]}

Extract Json

I extracted the following JSON from that output:

1
{"The Lion King": ["ðŸĶ", "👑", "🌅", "🐒", "🌍"], "The Nightmare Before Christmas": ["🎃", "🎅", "ðŸ‘ŧ", "🎁", "❄ïļ"], "The Godfather": ["ðŸ”Ŧ", "🍊", "ðŸ‘Ļ‍⚖ïļ", "ðŸī", "ðŸ’ĩ"], "The Matrix": ["ðŸ’ŧ", "ðŸ•ķ", "🐇", "💊", "ðŸĒ"], "Casablanca": ["✈ïļ", "ðŸŽđ", "âĪïļ", "ðŸ•ĩïļ", "ðŸļ"], "Raiders of the Lost Ark": ["🏚", "ðŸ”Ĩ", "ðŸ‘Ļ‍ðŸŦ", "🐍", "ðŸ§Ē"], "V for Vendetta": ["ðŸ’Ģ", "🎭", "ðŸ—Ąïļ", "ðŸŒđ", "ðŸ”Ĩ"], "The Princess Bride": ["ðŸ‘ļ", "ðŸĪš", "💍", "ðŸ‘đ", "🏰"], "Back to the Future": ["🚗", "⚡", "🕰ïļ", "ðŸ‘Ļ‍🔎", "ðŸ›đ"], "Dune": ["🏜ïļ", "🐛", "ðŸ”Ū", "👑", "💧"]}

PyFunc

Resulting in output: [['ðŸĶ', '👑', '🌅', '🐒', '🌍'], ['🎃', '🎅', 'ðŸ‘ŧ', '🎁', '❄ïļ'], ['ðŸ”Ŧ', '🍊', 'ðŸī', 'ðŸ’ĩ'], ['ðŸ’ŧ', 'ðŸ•ķ', '🐇', '💊', 'ðŸĒ'], ['✈ïļ', 'ðŸŽđ', 'âĪïļ', 'ðŸ•ĩïļ', 'ðŸļ'], ['🏚', 'ðŸ”Ĩ', '🐍', 'ðŸ§Ē'], ['ðŸ’Ģ', '🎭', 'ðŸ—Ąïļ', 'ðŸŒđ', 'ðŸ”Ĩ'], ['ðŸ‘ļ', 'ðŸĪš', '💍', 'ðŸ‘đ', '🏰'], ['🚗', '⚡', '🕰ïļ', 'ðŸ›đ'], ['🏜ïļ', '🐛', 'ðŸ”Ū', '👑', '💧']]

LLM Generation

Query

For each of the following ten movies described by 5 emoji, give the movie title that best matches. Give your answer as a JSON list. So If I asked for

1

You might answer
1
["Finding Nemo", "Toy Story"]]
. Now give me answers for these movies:
1
2
3
4
5
6
7
8
9
['🎃', '🎅', 'ðŸ‘ŧ', '🎁', '❄ïļ'],
['ðŸ”Ŧ', '🍊', 'ðŸī', 'ðŸ’ĩ'],
['ðŸ’ŧ', 'ðŸ•ķ', '🐇', '💊', 'ðŸĒ'],
['✈ïļ', 'ðŸŽđ', 'âĪïļ', 'ðŸ•ĩïļ', 'ðŸļ'],
['🏚', 'ðŸ”Ĩ', '🐍', 'ðŸ§Ē'],
['ðŸ’Ģ', '🎭', 'ðŸ—Ąïļ', 'ðŸŒđ', 'ðŸ”Ĩ'],
['ðŸ‘ļ', 'ðŸĪš', '💍', 'ðŸ‘đ', '🏰'],
['🚗', '⚡', '🕰ïļ', 'ðŸ›đ'],
['🏜ïļ', '🐛', 'ðŸ”Ū', '👑', '💧']]
What are the names of the movie titles?

Output

1
["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Hercules", "V for Vendetta", "The Princess Bride", "Back to the Future", "Dune"]

Extract Json

I extracted the following JSON from that output:

1
["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Hercules", "V for Vendetta", "The Princess Bride", "Back to the Future", "Dune"]

PyFunc

OK Resulting in output: True

Initial Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "ðŸĄ", "🐎", "ðŸģ"],
"Toy Story": ["🚀", "⚔ïļ,", "ðŸĪ–", "ðŸ‘―", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

LLM Generation

Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "ðŸĄ", "🐎", "ðŸģ"],
"Toy Story": ["🚀", "⚔ïļ,", "ðŸĪ–", "ðŸ‘―", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
{"The Lion King": ["ðŸĶ", "👑", "🌅", "🐒", "🌍"],
"The Nightmare Before Christmas": ["🎃", "ðŸ‘ŧ", "🎅", "🎁", "❄ïļ"],
"The Godfather": ["ðŸ”Ŧ", "🍊", "ðŸ‘Ļ‍ðŸ‘Đ‍👧‍ðŸ‘Ķ", "💰", "ðŸī"],
"The Matrix": ["ðŸ•ķïļ", "ðŸ’ŧ", "💊", "ðŸĪ–", "ðŸ”Ŧ"],
"Casablanca": ["✈ïļ", "ðŸŽđ", "âĪïļ", "ðŸ•ĩïļ", "🚎"],
"Raiders of the Lost Ark": ["🏚", "ðŸ”Ŧ", "🐍", "ðŸ‘Ļ‍ðŸŦ", "🏜ïļ"],
"V for Vendetta": ["💂‍♂ïļ", "ðŸ”Ĩ", "📅", "🔊", "🎭"],
"The Princess Bride": ["⚔ïļ", "ðŸ‘ļ", "ðŸĪī", "🏰", "🐀"],
"Back to the Future": ["🚗", "⏰", "🔎", "ðŸŽļ", "⚡"],
"Dune": ["🏜ïļ", "ðŸŠą", "👑", "💧", "ðŸ”Ū"]}

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
{"The Lion King": ["ðŸĶ", "👑", "🌅", "🐒", "🌍"],
"The Nightmare Before Christmas": ["🎃", "ðŸ‘ŧ", "🎅", "🎁", "❄ïļ"],
"The Godfather": ["ðŸ”Ŧ", "🍊", "ðŸ‘Ļ‍ðŸ‘Đ‍👧‍ðŸ‘Ķ", "💰", "ðŸī"],
"The Matrix": ["ðŸ•ķïļ", "ðŸ’ŧ", "💊", "ðŸĪ–", "ðŸ”Ŧ"],
"Casablanca": ["✈ïļ", "ðŸŽđ", "âĪïļ", "ðŸ•ĩïļ", "🚎"],
"Raiders of the Lost Ark": ["🏚", "ðŸ”Ŧ", "🐍", "ðŸ‘Ļ‍ðŸŦ", "🏜ïļ"],
"V for Vendetta": ["💂‍♂ïļ", "ðŸ”Ĩ", "📅", "🔊", "🎭"],
"The Princess Bride": ["⚔ïļ", "ðŸ‘ļ", "ðŸĪī", "🏰", "🐀"],
"Back to the Future": ["🚗", "⏰", "🔎", "ðŸŽļ", "⚡"],
"Dune": ["🏜ïļ", "ðŸŠą", "👑", "💧", "ðŸ”Ū"]}

PyFunc

Resulting in output: [['ðŸĶ', '👑', '🌅', '🐒', '🌍'], ['🎃', 'ðŸ‘ŧ', '🎅', '🎁', '❄ïļ'], ['ðŸ”Ŧ', '🍊', '💰', 'ðŸī'], ['ðŸ•ķïļ', 'ðŸ’ŧ', '💊', 'ðŸĪ–', 'ðŸ”Ŧ'], ['✈ïļ', 'ðŸŽđ', 'âĪïļ', 'ðŸ•ĩïļ', '🚎'], ['🏚', 'ðŸ”Ŧ', '🐍', '🏜ïļ'], ['ðŸ”Ĩ', '📅', '🔊', '🎭'], ['⚔ïļ', 'ðŸ‘ļ', 'ðŸĪī', '🏰', '🐀'], ['🚗', '⏰', '🔎', 'ðŸŽļ', '⚡'], ['🏜ïļ', 'ðŸŠą', '👑', '💧', 'ðŸ”Ū']]

LLM Generation

Query

For each of the following ten movies described by 5 emoji, give the movie title that best matches. Give your answer as a JSON list. So If I asked for

1

You might answer
1
["Finding Nemo", "Toy Story"]]
. Now give me answers for these movies:
1
2
3
4
5
6
7
8
9
['🎃', 'ðŸ‘ŧ', '🎅', '🎁', '❄ïļ'],
['ðŸ”Ŧ', '🍊', '💰', 'ðŸī'],
['ðŸ•ķïļ', 'ðŸ’ŧ', '💊', 'ðŸĪ–', 'ðŸ”Ŧ'],
['✈ïļ', 'ðŸŽđ', 'âĪïļ', 'ðŸ•ĩïļ', '🚎'],
['🏚', 'ðŸ”Ŧ', '🐍', '🏜ïļ'],
['ðŸ”Ĩ', '📅', '🔊', '🎭'],
['⚔ïļ', 'ðŸ‘ļ', 'ðŸĪī', '🏰', '🐀'],
['🚗', '⏰', '🔎', 'ðŸŽļ', '⚡'],
['🏜ïļ', 'ðŸŠą', '👑', '💧', 'ðŸ”Ū']]
What are the names of the movie titles?

Output

1
["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "Halloween", "Game of Thrones", "Back to the Future", "Dune"]

Extract Json

I extracted the following JSON from that output:

1
["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "Halloween", "Game of Thrones", "Back to the Future", "Dune"]

PyFunc

OK Resulting in output: True

Initial Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "ðŸĄ", "🐎", "ðŸģ"],
"Toy Story": ["🚀", "⚔ïļ,", "ðŸĪ–", "ðŸ‘―", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

LLM Generation

Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "ðŸĄ", "🐎", "ðŸģ"],
"Toy Story": ["🚀", "⚔ïļ,", "ðŸĪ–", "ðŸ‘―", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

Output

1
{"The Lion King": ["ðŸĶ", "👑", "🌅", "🐒", "🌍"], "The Nightmare Before Christmas": ["🎃", "🎄", "ðŸ‘ŧ", "💀", "🎁"], "The Godfather": ["ðŸ”Ŧ", "ðŸ‘ī", "🚎", "ðŸ‡ŪðŸ‡đ", "💞"], "The Matrix": ["ðŸ’ŧ", "ðŸ•ķ", "🐇", "💊", "ðŸĪ–"], "Casablanca": ["✈ïļ", "ðŸŽđ", "âĪïļ", "ðŸ§Ĩ", "🚎"], "Raiders of the Lost Ark": ["👷", "🏚", "🐍", "💎", "✈ïļ"], "V for Vendetta": ["🎭", "ðŸ”Ĩ", "🇎🇧", "⚔ïļ", "📖"], "The Princess Bride": ["ðŸ‘ļ", "ðŸĪī", "🏰", "ðŸ—Ąïļ", "🐀"], "Back to the Future": ["🚗", "⚡", "🕰ïļ", "👟", "ðŸŽļ"], "Dune": ["🏜ïļ", "🐛", "💧", "⚔ïļ", "👑"]}

Extract Json

I extracted the following JSON from that output:

1
{"The Lion King": ["ðŸĶ", "👑", "🌅", "🐒", "🌍"], "The Nightmare Before Christmas": ["🎃", "🎄", "ðŸ‘ŧ", "💀", "🎁"], "The Godfather": ["ðŸ”Ŧ", "ðŸ‘ī", "🚎", "ðŸ‡ŪðŸ‡đ", "💞"], "The Matrix": ["ðŸ’ŧ", "ðŸ•ķ", "🐇", "💊", "ðŸĪ–"], "Casablanca": ["✈ïļ", "ðŸŽđ", "âĪïļ", "ðŸ§Ĩ", "🚎"], "Raiders of the Lost Ark": ["👷", "🏚", "🐍", "💎", "✈ïļ"], "V for Vendetta": ["🎭", "ðŸ”Ĩ", "🇎🇧", "⚔ïļ", "📖"], "The Princess Bride": ["ðŸ‘ļ", "ðŸĪī", "🏰", "ðŸ—Ąïļ", "🐀"], "Back to the Future": ["🚗", "⚡", "🕰ïļ", "👟", "ðŸŽļ"], "Dune": ["🏜ïļ", "🐛", "💧", "⚔ïļ", "👑"]}

PyFunc

Resulting in output: [['ðŸĶ', '👑', '🌅', '🐒', '🌍'], ['🎃', '🎄', 'ðŸ‘ŧ', '💀', '🎁'], ['ðŸ”Ŧ', 'ðŸ‘ī', '🚎', 'ðŸ‡ŪðŸ‡đ', '💞'], ['ðŸ’ŧ', 'ðŸ•ķ', '🐇', '💊', 'ðŸĪ–'], ['✈ïļ', 'ðŸŽđ', 'âĪïļ', 'ðŸ§Ĩ', '🚎'], ['👷', '🏚', '🐍', '💎', '✈ïļ'], ['🎭', 'ðŸ”Ĩ', '🇎🇧', '⚔ïļ', '📖'], ['ðŸ‘ļ', 'ðŸĪī', '🏰', 'ðŸ—Ąïļ', '🐀'], ['🚗', '⚡', '🕰ïļ', '👟', 'ðŸŽļ'], ['🏜ïļ', '🐛', '💧', '⚔ïļ', '👑']]

LLM Generation

Query

For each of the following ten movies described by 5 emoji, give the movie title that best matches. Give your answer as a JSON list. So If I asked for

1

You might answer
1
["Finding Nemo", "Toy Story"]]
. Now give me answers for these movies:
1
2
3
4
5
6
7
8
9
['🎃', '🎄', 'ðŸ‘ŧ', '💀', '🎁'],
['ðŸ”Ŧ', 'ðŸ‘ī', '🚎', 'ðŸ‡ŪðŸ‡đ', '💞'],
['ðŸ’ŧ', 'ðŸ•ķ', '🐇', '💊', 'ðŸĪ–'],
['✈ïļ', 'ðŸŽđ', 'âĪïļ', 'ðŸ§Ĩ', '🚎'],
['👷', '🏚', '🐍', '💎', '✈ïļ'],
['🎭', 'ðŸ”Ĩ', '🇎🇧', '⚔ïļ', '📖'],
['ðŸ‘ļ', 'ðŸĪī', '🏰', 'ðŸ—Ąïļ', '🐀'],
['🚗', '⚡', '🕰ïļ', '👟', 'ðŸŽļ'],
['🏜ïļ', '🐛', '💧', '⚔ïļ', '👑']]
What are the names of the movie titles?

Output

1
["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Indiana Jones", "V for Vendetta", "The Princess Bride", "Back to the Future", "Dune"]

Extract Json

I extracted the following JSON from that output:

1
["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Indiana Jones", "V for Vendetta", "The Princess Bride", "Back to the Future", "Dune"]

PyFunc

OK Resulting in output: True