Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🦓", "🐗", "🐒", "🐦"],
"The Nightmare Before Christmas": ["👻", "🎃", "💀", "🎄", "🕯️"],
"The Godfather": ["👨💼", "🔫", "💣", "💼", "💰"],
"The Matrix": ["💊", "🕶️", "💻", "🤖", "🐇"],
"Casablanca": ["✈️", "💔", "🍷", "🐪", "🌆"],
"Raiders of the Lost Ark": ["🗺️", "🔫", "🐍", "💀", "✈️"],
"V for Vendetta": ["🎭", "🎩", "⚔️", "💣", "✊"],
"The Princess Bride": ["👸", "🏰", "⚔️", "🐀", "🎭"],
"Back to the Future": ["🚗", "⏰", "🔬", "⚡️", "🎸"],
"Dune": ["🏜️", "🐛", "⚔️", "🕶️", "🔮"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🦓", "🐗", "🐒", "🐦"],
"The Nightmare Before Christmas": ["👻", "🎃", "💀", "🎄", "🕯️"],
"The Godfather": ["👨💼", "🔫", "💣", "💼", "💰"],
"The Matrix": ["💊", "🕶️", "💻", "🤖", "🐇"],
"Casablanca": ["✈️", "💔", "🍷", "🐪", "🌆"],
"Raiders of the Lost Ark": ["🗺️", "🔫", "🐍", "💀", "✈️"],
"V for Vendetta": ["🎭", "🎩", "⚔️", "💣", "✊"],
"The Princess Bride": ["👸", "🏰", "⚔️", "🐀", "🎭"],
"Back to the Future": ["🚗", "⏰", "🔬", "⚡️", "🎸"],
"Dune": ["🏜️", "🐛", "⚔️", "🕶️", "🔮"]
}
|
PyFunc
Resulting in output:
[['🦁', '🦓', '🐗', '🐒', '🐦'],
['👻', '🎃', '💀', '🎄', '🕯️'],
['🔫', '💣', '💼', '💰'],
['💊', '🕶️', '💻', '🤖', '🐇'],
['✈️', '💔', '🍷', '🐪', '🌆'],
['🗺️', '🔫', '🐍', '💀', '✈️'],
['🎭', '🎩', '⚔️', '💣', '✊'],
['👸', '🏰', '⚔️', '🐀', '🎭'],
['🚗', '⏰', '🔬', '⚡️', '🎸'],
['🏜️', '🐛', '⚔️', '🕶️', '🔮']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['👻', '🎃', '💀', '🎄', '🕯️'],
['🔫', '💣', '💼', '💰'],
['💊', '🕶️', '💻', '🤖', '🐇'],
['✈️', '💔', '🍷', '🐪', '🌆'],
['🗺️', '🔫', '🐍', '💀', '✈️'],
['🎭', '🎩', '⚔️', '💣', '✊'],
['👸', '🏰', '⚔️', '🐀', '🎭'],
['🚗', '⏰', '🔬', '⚡️', '🎸'],
['🏜️', '🐛', '⚔️', '🕶️', '🔮']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Money Heist",
"The Matrix",
"Lost in Translation",
"Snakes on a Plane",
"Hamilton",
"Hamlet",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Money Heist",
"The Matrix",
"Lost in Translation",
"Snakes on a Plane",
"Hamilton",
"Hamlet",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
False
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🦓", "🐘", "🦒", "🎶"],
"The Nightmare Before Christmas": ["🎃", "💀", "👻", "🎄", "🕷️"],
"The Godfather": ["🔫", "💰", "🤵♂️", "🩸", "🚬"],
"The Matrix": ["🤖", "🕶️", "💻", "💊", "🏃♂️"],
"Casablanca": ["✈️", "🥃", "🚬", "🕵️♂️", "💔"],
"Raiders of the Lost Ark": ["🔫", "🗺️", "🐍", "💀", "✈️"],
"V for Vendetta": ["🎭", "🎩", "💣", "✊", "🌹"],
"The Princess Bride": ["⚔️", "👸", "🧙♂️", "🏰", "❤️"],
"Back to the Future": ["🚗", "🕒", "🎸", "⚡️", "🚀"],
"Dune": ["🪱", "🏜️", "🚀", "🪐", "⚔️"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🦓", "🐘", "🦒", "🎶"],
"The Nightmare Before Christmas": ["🎃", "💀", "👻", "🎄", "🕷️"],
"The Godfather": ["🔫", "💰", "🤵♂️", "🩸", "🚬"],
"The Matrix": ["🤖", "🕶️", "💻", "💊", "🏃♂️"],
"Casablanca": ["✈️", "🥃", "🚬", "🕵️♂️", "💔"],
"Raiders of the Lost Ark": ["🔫", "🗺️", "🐍", "💀", "✈️"],
"V for Vendetta": ["🎭", "🎩", "💣", "✊", "🌹"],
"The Princess Bride": ["⚔️", "👸", "🧙♂️", "🏰", "❤️"],
"Back to the Future": ["🚗", "🕒", "🎸", "⚡️", "🚀"],
"Dune": ["🪱", "🏜️", "🚀", "🪐", "⚔️"]
}
|
PyFunc
Resulting in output:
[['🦁', '🦓', '🐘', '🦒', '🎶'],
['🎃', '💀', '👻', '🎄', '🕷️'],
['🔫', '💰', '🩸', '🚬'],
['🤖', '🕶️', '💻', '💊'],
['✈️', '🥃', '🚬', '💔'],
['🔫', '🗺️', '🐍', '💀', '✈️'],
['🎭', '🎩', '💣', '✊', '🌹'],
['⚔️', '👸', '🏰', '❤️'],
['🚗', '🕒', '🎸', '⚡️', '🚀'],
['🪱', '🏜️', '🚀', '🪐', '⚔️']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '💀', '👻', '🎄', '🕷️'],
['🔫', '💰', '🩸', '🚬'],
['🤖', '🕶️', '💻', '💊'],
['✈️', '🥃', '🚬', '💔'],
['🔫', '🗺️', '🐍', '💀', '✈️'],
['🎭', '🎩', '💣', '✊', '🌹'],
['⚔️', '👸', '🏰', '❤️'],
['🚗', '🕒', '🎸', '⚡️', '🚀'],
['🪱', '🏜️', '🚀', '🪐', '⚔️']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Halloweentown",
"Scarface",
"The Matrix",
"Casablanca",
"Red Eye",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Halloweentown",
"Scarface",
"The Matrix",
"Casablanca",
"Red Eye",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
False
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🦓", "🐘", "🦒", "🌳"],
"The Nightmare Before Christmas": ["💀", "🎃", "👻", "🦇", "🎄"],
"The Godfather": ["🔫", "💰", "🩸", "🚬", "🕴️"],
"The Matrix": ["💾", "💻", "💊", "🕶️", "🤖"],
"Casablanca": ["✈️", "🌃", "🎩", "🥃", "🚬"],
"Raiders of the Lost Ark": ["🗺️", "🔫", "🐍", "✈️", "🕌"],
"V for Vendetta": ["🎭", "🎩", "💣", "✊", "💂"],
"The Princess Bride": ["👸", "⚔️", "🧙", "🐎", "🏰"],
"Back to the Future": ["🚗", "🕒", "⚡️", "🏫", "🎸"],
"Dune": ["🏜️", "🪱", "🛡️", "🔮", "🦅"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🦓", "🐘", "🦒", "🌳"],
"The Nightmare Before Christmas": ["💀", "🎃", "👻", "🦇", "🎄"],
"The Godfather": ["🔫", "💰", "🩸", "🚬", "🕴️"],
"The Matrix": ["💾", "💻", "💊", "🕶️", "🤖"],
"Casablanca": ["✈️", "🌃", "🎩", "🥃", "🚬"],
"Raiders of the Lost Ark": ["🗺️", "🔫", "🐍", "✈️", "🕌"],
"V for Vendetta": ["🎭", "🎩", "💣", "✊", "💂"],
"The Princess Bride": ["👸", "⚔️", "🧙", "🐎", "🏰"],
"Back to the Future": ["🚗", "🕒", "⚡️", "🏫", "🎸"],
"Dune": ["🏜️", "🪱", "🛡️", "🔮", "🦅"]
}
|
PyFunc
Resulting in output:
[['🦁', '🦓', '🐘', '🦒', '🌳'],
['💀', '🎃', '👻', '🦇', '🎄'],
['🔫', '💰', '🩸', '🚬', '🕴️'],
['💾', '💻', '💊', '🕶️', '🤖'],
['✈️', '🌃', '🎩', '🥃', '🚬'],
['🗺️', '🔫', '🐍', '✈️', '🕌'],
['🎭', '🎩', '💣', '✊', '💂'],
['👸', '⚔️', '🧙', '🐎', '🏰'],
['🚗', '🕒', '⚡️', '🏫', '🎸'],
['🏜️', '🪱', '🛡️', '🔮', '🦅']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['💀', '🎃', '👻', '🦇', '🎄'],
['🔫', '💰', '🩸', '🚬', '🕴️'],
['💾', '💻', '💊', '🕶️', '🤖'],
['✈️', '🌃', '🎩', '🥃', '🚬'],
['🗺️', '🔫', '🐍', '✈️', '🕌'],
['🎭', '🎩', '💣', '✊', '💂'],
['👸', '⚔️', '🧙', '🐎', '🏰'],
['🚗', '🕒', '⚡️', '🏫', '🎸'],
['🏜️', '🪱', '🛡️', '🔮', '🦅']]
|
What are the names of the movie titles?
Output
| ["The Lion King", "Halloween", "Scarface", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "King Arthur", "Back to the Future", "Dune"]
|
Extract Json
I extracted the following JSON from that output:
| ["The Lion King", "Halloween", "Scarface", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "King Arthur", "Back to the Future", "Dune"]
|
PyFunc
OK
Resulting in output:
False
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🦓", "🐗", "🐘", "🐒"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🦇", "🕷️"],
"The Godfather": ["🔫", "🩸", "💼", "🕶️", "🚬"],
"The Matrix": ["💊", "💻", "🕶️", "🤖", "🔫"],
"Casablanca": ["✈️", "🧥", "🥃", "🚬", "🗺️"],
"Raiders of the Lost Ark": ["🗺️", "🔫", "🐍", "🎭", "✈️"],
"V for Vendetta": ["🎭", "🎩", "💣", "🩸", "👁️"],
"The Princess Bride": ["🏰", "⚔️", "🐎", "🐀", "💍"],
"Back to the Future": ["⚡️", "🚗", "🕒", "🎸", "🏫"],
"Dune": ["🏜️", "🪱", "🦅", "⚔️", "🪐"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🦓", "🐗", "🐘", "🐒"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🦇", "🕷️"],
"The Godfather": ["🔫", "🩸", "💼", "🕶️", "🚬"],
"The Matrix": ["💊", "💻", "🕶️", "🤖", "🔫"],
"Casablanca": ["✈️", "🧥", "🥃", "🚬", "🗺️"],
"Raiders of the Lost Ark": ["🗺️", "🔫", "🐍", "🎭", "✈️"],
"V for Vendetta": ["🎭", "🎩", "💣", "🩸", "👁️"],
"The Princess Bride": ["🏰", "⚔️", "🐎", "🐀", "💍"],
"Back to the Future": ["⚡️", "🚗", "🕒", "🎸", "🏫"],
"Dune": ["🏜️", "🪱", "🦅", "⚔️", "🪐"]
}
|
PyFunc
Resulting in output:
[['🦁', '🦓', '🐗', '🐘', '🐒'],
['🎃', '👻', '💀', '🦇', '🕷️'],
['🔫', '🩸', '💼', '🕶️', '🚬'],
['💊', '💻', '🕶️', '🤖', '🔫'],
['✈️', '🧥', '🥃', '🚬', '🗺️'],
['🗺️', '🔫', '🐍', '🎭', '✈️'],
['🎭', '🎩', '💣', '🩸', '👁️'],
['🏰', '⚔️', '🐎', '🐀', '💍'],
['⚡️', '🚗', '🕒', '🎸', '🏫'],
['🏜️', '🪱', '🦅', '⚔️', '🪐']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '💀', '🦇', '🕷️'],
['🔫', '🩸', '💼', '🕶️', '🚬'],
['💊', '💻', '🕶️', '🤖', '🔫'],
['✈️', '🧥', '🥃', '🚬', '🗺️'],
['🗺️', '🔫', '🐍', '🎭', '✈️'],
['🎭', '🎩', '💣', '🩸', '👁️'],
['🏰', '⚔️', '🐎', '🐀', '💍'],
['⚡️', '🚗', '🕒', '🎸', '🏫'],
['🏜️', '🪱', '🦅', '⚔️', '🪐']]
|
What are the names of the movie titles?
Output
| ["The Lion King",
"Halloween",
"John Wick",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"The Prestige",
"The Lord of the Rings: The Fellowship of the Ring",
"Back to the Future",
"Dune"]
|
Extract Json
I extracted the following JSON from that output:
| ["The Lion King",
"Halloween",
"John Wick",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"The Prestige",
"The Lord of the Rings: The Fellowship of the Ring",
"Back to the Future",
"Dune"]
|
PyFunc
OK
Resulting in output:
False
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🐘", "🐒", "🦓", "🦒"],
"The Nightmare Before Christmas": ["💀", "🎃", "🦇", "🕷️", "🕸️"],
"The Godfather": ["🔫", "💰", "🤵", "🍷", "🚬"],
"The Matrix": ["🕶️", "💻", "💊", "🤖", "🔫"],
"Casablanca": ["✈️", "🥃", "🚬", "🧥", "🎩"],
"Raiders of the Lost Ark": ["🗺️", "🔫", "🐍", "🎩", "✈️"],
"V for Vendetta": ["🎭", "💣", "🎩", "🩸", "✊"],
"The Princess Bride": ["👸", "👰", "⚔️", "🏰", "🐎"],
"Back to the Future": ["🚗", "⏰", "🎸", "🕶️", "🛹"],
"Dune": ["🪱", "🏜️", "⚔️", "🌌", "🛡️"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "🐘", "🐒", "🦓", "🦒"],
"The Nightmare Before Christmas": ["💀", "🎃", "🦇", "🕷️", "🕸️"],
"The Godfather": ["🔫", "💰", "🤵", "🍷", "🚬"],
"The Matrix": ["🕶️", "💻", "💊", "🤖", "🔫"],
"Casablanca": ["✈️", "🥃", "🚬", "🧥", "🎩"],
"Raiders of the Lost Ark": ["🗺️", "🔫", "🐍", "🎩", "✈️"],
"V for Vendetta": ["🎭", "💣", "🎩", "🩸", "✊"],
"The Princess Bride": ["👸", "👰", "⚔️", "🏰", "🐎"],
"Back to the Future": ["🚗", "⏰", "🎸", "🕶️", "🛹"],
"Dune": ["🪱", "🏜️", "⚔️", "🌌", "🛡️"]
}
|
PyFunc
Resulting in output:
[['🦁', '🐘', '🐒', '🦓', '🦒'],
['💀', '🎃', '🦇', '🕷️', '🕸️'],
['🔫', '💰', '🤵', '🍷', '🚬'],
['🕶️', '💻', '💊', '🤖', '🔫'],
['✈️', '🥃', '🚬', '🧥', '🎩'],
['🗺️', '🔫', '🐍', '🎩', '✈️'],
['🎭', '💣', '🎩', '🩸', '✊'],
['👸', '👰', '⚔️', '🏰', '🐎'],
['🚗', '⏰', '🎸', '🕶️', '🛹'],
['🪱', '🏜️', '⚔️', '🌌', '🛡️']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['💀', '🎃', '🦇', '🕷️', '🕸️'],
['🔫', '💰', '🤵', '🍷', '🚬'],
['🕶️', '💻', '💊', '🤖', '🔫'],
['✈️', '🥃', '🚬', '🧥', '🎩'],
['🗺️', '🔫', '🐍', '🎩', '✈️'],
['🎭', '💣', '🎩', '🩸', '✊'],
['👸', '👰', '⚔️', '🏰', '🐎'],
['🚗', '⏰', '🎸', '🕶️', '🛹'],
['🪱', '🏜️', '⚔️', '🌌', '🛡️']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Halloween",
"James Bond",
"The Matrix",
"Casablanca",
"Indiana Jones",
"Fight Club",
"Braveheart",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Halloween",
"James Bond",
"The Matrix",
"Casablanca",
"Indiana Jones",
"Fight Club",
"Braveheart",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
False