Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "👑", "🌍", "🎶", "☀️"],
"The Nightmare Before Christmas": ["💀", "🎄", "🎃", "👻", "🚪"],
"The Godfather": ["🤵", "🔫", "💰", "🍊", "🇮🇹"],
"The Matrix": ["💻", "💊", "🕶️", "☎️", "🥄"],
"Casablanca": ["✈️", "🎹", "🎩", "💔", "😢"],
"Raiders of the Lost Ark": ["🤠", "🐍", "💎", "🏺", "💰"],
"V for Vendetta": ["🎭", "🔪", "💥", "🌹", "🏛️"],
"The Princess Bride": ["⚔️", "👑", "☠️", "💖", "📖"],
"Back to the Future": ["🚗", "⏰", "⚡", "🎸", "🔥"],
"Dune": ["🏜️", "🐛", "💧", "👁️", "✨"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "👑", "🌍", "🎶", "☀️"],
"The Nightmare Before Christmas": ["💀", "🎄", "🎃", "👻", "🚪"],
"The Godfather": ["🤵", "🔫", "💰", "🍊", "🇮🇹"],
"The Matrix": ["💻", "💊", "🕶️", "☎️", "🥄"],
"Casablanca": ["✈️", "🎹", "🎩", "💔", "😢"],
"Raiders of the Lost Ark": ["🤠", "🐍", "💎", "🏺", "💰"],
"V for Vendetta": ["🎭", "🔪", "💥", "🌹", "🏛️"],
"The Princess Bride": ["⚔️", "👑", "☠️", "💖", "📖"],
"Back to the Future": ["🚗", "⏰", "⚡", "🎸", "🔥"],
"Dune": ["🏜️", "🐛", "💧", "👁️", "✨"]
}
|
PyFunc
Resulting in output:
[['🦁', '👑', '🌍', '🎶', '☀️'],
['💀', '🎄', '🎃', '👻', '🚪'],
['🤵', '🔫', '💰', '🍊', '🇮🇹'],
['💻', '💊', '🕶️', '☎️', '🥄'],
['✈️', '🎹', '🎩', '💔', '😢'],
['🤠', '🐍', '💎', '🏺', '💰'],
['🎭', '🔪', '💥', '🌹', '🏛️'],
['⚔️', '👑', '☠️', '💖', '📖'],
['🚗', '⏰', '⚡', '🎸', '🔥'],
['🏜️', '🐛', '💧', '👁️', '✨']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['💀', '🎄', '🎃', '👻', '🚪'],
['🤵', '🔫', '💰', '🍊', '🇮🇹'],
['💻', '💊', '🕶️', '☎️', '🥄'],
['✈️', '🎹', '🎩', '💔', '😢'],
['🤠', '🐍', '💎', '🏺', '💰'],
['🎭', '🔪', '💥', '🌹', '🏛️'],
['⚔️', '👑', '☠️', '💖', '📖'],
['🚗', '⏰', '⚡', '🎸', '🔥'],
['🏜️', '🐛', '💧', '👁️', '✨']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True