Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "🎶", "ðŸ¦"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🎶"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "🔪", "🇮🇹", "💰"],
"The Matrix": ["💊", "💻", "🕶ï¸", "🔫", "🤖"],
"Casablanca": ["✈ï¸", "â¤ï¸", "ðŸ¸", "🕵ï¸â€â™‚ï¸", "😢"],
"Raiders of the Lost Ark": ["🤠", "ðŸ", "🗺ï¸", "🗿", "💥"],
"V for Vendetta": ["ðŸŽ", "💣", "✊", "🇬🇧", "🔥"],
"The Princess Bride": ["âš”ï¸", "👸", "â¤ï¸", "ðŸ€", "ðŸ°"],
"Back to the Future": ["🚗", "âš¡ï¸", "🕰ï¸", "👨â€ðŸ‘©â€ðŸ‘¦â€ðŸ‘¦", "🎸"],
"Dune": ["ðŸœï¸", "ðŸ›", "🔮", "âš”ï¸", "🌌"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌅", "🎶", "ðŸ¦"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🎶"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "🔪", "🇮🇹", "💰"],
"The Matrix": ["💊", "💻", "🕶ï¸", "🔫", "🤖"],
"Casablanca": ["✈ï¸", "â¤ï¸", "ðŸ¸", "🕵ï¸â€â™‚ï¸", "😢"],
"Raiders of the Lost Ark": ["🤠", "ðŸ", "🗺ï¸", "🗿", "💥"],
"V for Vendetta": ["ðŸŽ", "💣", "✊", "🇬🇧", "🔥"],
"The Princess Bride": ["âš”ï¸", "👸", "â¤ï¸", "ðŸ€", "ðŸ°"],
"Back to the Future": ["🚗", "âš¡ï¸", "🕰ï¸", "👨â€ðŸ‘©â€ðŸ‘¦â€ðŸ‘¦", "🎸"],
"Dune": ["ðŸœï¸", "ðŸ›", "🔮", "âš”ï¸", "🌌"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '👑', '🌅', '🎶', 'ðŸ¦'],
['🎃', '👻', '💀', '🎄', '🎶'],
['🔫', '🔪', '🇮🇹', '💰'],
['💊', '💻', '🕶ï¸', '🔫', '🤖'],
['✈ï¸', 'â¤ï¸', 'ðŸ¸', '😢'],
['🤠', 'ðŸ', '🗺ï¸', '🗿', '💥'],
['ðŸŽ', '💣', '✊', '🇬🇧', '🔥'],
['âš”ï¸', '👸', 'â¤ï¸', 'ðŸ€', 'ðŸ°'],
['🚗', 'âš¡ï¸', '🕰ï¸', '🎸'],
['ðŸœï¸', 'ðŸ›', '🔮', 'âš”ï¸', '🌌']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '💀', '🎄', '🎶'],
['🔫', '🔪', '🇮🇹', '💰'],
['💊', '💻', '🕶ï¸', '🔫', '🤖'],
['✈ï¸', 'â¤ï¸', 'ðŸ¸', '😢'],
['🤠', 'ðŸ', '🗺ï¸', '🗿', '💥'],
['ðŸŽ', '💣', '✊', '🇬🇧', '🔥'],
['âš”ï¸', '👸', 'â¤ï¸', 'ðŸ€', 'ðŸ°'],
['🚗', 'âš¡ï¸', '🕰ï¸', '🎸'],
['ðŸœï¸', 'ðŸ›', '🔮', 'âš”ï¸', '🌌']]
|
What are the names of the movie titles?
Output
| ["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "Cinderella", "Back to the Future", "Dune"]
|
Extract Json
I extracted the following JSON from that output:
| ["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "Cinderella", "Back to the Future", "Dune"]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌄", "🎶", "💔"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🎶"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "💰", "🇮🇹", "🌹"],
"The Matrix": ["💊", "😎", "🤖", "🔫", "💻"],
"Casablanca": ["✈ï¸", "ðŸ¸", "💔", "🎹", "🕵ï¸â€â™‚ï¸"],
"Raiders of the Lost Ark": ["🤠", "ðŸ", "🗺ï¸", "🗿", "💥"],
"V for Vendetta": ["ðŸŽ", "💣", "✊", "🇬🇧", "🔥"],
"The Princess Bride": ["âš”ï¸", "👸", "ðŸ", "💋", "ðŸ°"],
"Back to the Future": ["🚗", "âš¡ï¸", "🕰ï¸", "🎸", "👨â€ðŸ‘¦"],
"Dune": ["ðŸœï¸", "ðŸ›", "🔮", "âš”ï¸", "🚀"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌄", "🎶", "💔"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🎶"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "💰", "🇮🇹", "🌹"],
"The Matrix": ["💊", "😎", "🤖", "🔫", "💻"],
"Casablanca": ["✈ï¸", "ðŸ¸", "💔", "🎹", "🕵ï¸â€â™‚ï¸"],
"Raiders of the Lost Ark": ["🤠", "ðŸ", "🗺ï¸", "🗿", "💥"],
"V for Vendetta": ["ðŸŽ", "💣", "✊", "🇬🇧", "🔥"],
"The Princess Bride": ["âš”ï¸", "👸", "ðŸ", "💋", "ðŸ°"],
"Back to the Future": ["🚗", "âš¡ï¸", "🕰ï¸", "🎸", "👨â€ðŸ‘¦"],
"Dune": ["ðŸœï¸", "ðŸ›", "🔮", "âš”ï¸", "🚀"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '👑', '🌄', '🎶', '💔'],
['🎃', '👻', '💀', '🎄', '🎶'],
['🔫', '💰', '🇮🇹', '🌹'],
['💊', '😎', '🤖', '🔫', '💻'],
['✈ï¸', 'ðŸ¸', '💔', '🎹'],
['🤠', 'ðŸ', '🗺ï¸', '🗿', '💥'],
['ðŸŽ', '💣', '✊', '🇬🇧', '🔥'],
['âš”ï¸', '👸', 'ðŸ', '💋', 'ðŸ°'],
['🚗', 'âš¡ï¸', '🕰ï¸', '🎸'],
['ðŸœï¸', 'ðŸ›', '🔮', 'âš”ï¸', '🚀']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '💀', '🎄', '🎶'],
['🔫', '💰', '🇮🇹', '🌹'],
['💊', '😎', '🤖', '🔫', '💻'],
['✈ï¸', 'ðŸ¸', '💔', '🎹'],
['🤠', 'ðŸ', '🗺ï¸', '🗿', '💥'],
['ðŸŽ', '💣', '✊', '🇬🇧', '🔥'],
['âš”ï¸', '👸', 'ðŸ', '💋', 'ðŸ°'],
['🚗', 'âš¡ï¸', '🕰ï¸', '🎸'],
['ðŸœï¸', 'ðŸ›', '🔮', 'âš”ï¸', '🚀']]
|
What are the names of the movie titles?
Output
| ["The Lion King", "The Nightmare Before Christmas", "The Italian Job", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "Sleeping Beauty", "Back to the Future", "Dune"]
|
Extract Json
I extracted the following JSON from that output:
| ["The Lion King", "The Nightmare Before Christmas", "The Italian Job", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "Sleeping Beauty", "Back to the Future", "Dune"]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌄", "🎶", "ðŸ¦"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🎶"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "💰", "🌹", "🇮🇹"],
"The Matrix": ["💊", "🕶ï¸", "🔫", "🤖", "â“"],
"Casablanca": ["✈ï¸", "ðŸ¸", "â¤ï¸", "🎹", "😢"],
"Raiders of the Lost Ark": ["🤠", "ðŸ", "🗺ï¸", "ðŸº", "ðŸƒ"],
"V for Vendetta": ["ðŸŽ", "💥", "✊", "🇬🇧", "🔪"],
"The Princess Bride": ["🤺", "👑", "ðŸ€", "ðŸ°", "â¤ï¸"],
"Back to the Future": ["🚗", "âš¡ï¸", "🕰ï¸", "🎸", "👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦"],
"Dune": ["ðŸœï¸", "ðŸ›", "🔮", "âš”ï¸", "🌌"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌄", "🎶", "ðŸ¦"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🎶"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "💰", "🌹", "🇮🇹"],
"The Matrix": ["💊", "🕶ï¸", "🔫", "🤖", "â“"],
"Casablanca": ["✈ï¸", "ðŸ¸", "â¤ï¸", "🎹", "😢"],
"Raiders of the Lost Ark": ["🤠", "ðŸ", "🗺ï¸", "ðŸº", "ðŸƒ"],
"V for Vendetta": ["ðŸŽ", "💥", "✊", "🇬🇧", "🔪"],
"The Princess Bride": ["🤺", "👑", "ðŸ€", "ðŸ°", "â¤ï¸"],
"Back to the Future": ["🚗", "âš¡ï¸", "🕰ï¸", "🎸", "👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦"],
"Dune": ["ðŸœï¸", "ðŸ›", "🔮", "âš”ï¸", "🌌"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '👑', '🌄', '🎶', 'ðŸ¦'],
['🎃', '👻', '💀', '🎄', '🎶'],
['🔫', '💰', '🌹', '🇮🇹'],
['💊', '🕶ï¸', '🔫', '🤖', 'â“'],
['✈ï¸', 'ðŸ¸', 'â¤ï¸', '🎹', '😢'],
['🤠', 'ðŸ', '🗺ï¸', 'ðŸº', 'ðŸƒ'],
['ðŸŽ', '💥', '✊', '🇬🇧', '🔪'],
['🤺', '👑', 'ðŸ€', 'ðŸ°', 'â¤ï¸'],
['🚗', 'âš¡ï¸', '🕰ï¸', '🎸'],
['ðŸœï¸', 'ðŸ›', '🔮', 'âš”ï¸', '🌌']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '💀', '🎄', '🎶'],
['🔫', '💰', '🌹', '🇮🇹'],
['💊', '🕶ï¸', '🔫', '🤖', 'â“'],
['✈ï¸', 'ðŸ¸', 'â¤ï¸', '🎹', '😢'],
['🤠', 'ðŸ', '🗺ï¸', 'ðŸº', 'ðŸƒ'],
['ðŸŽ', '💥', '✊', '🇬🇧', '🔪'],
['🤺', '👑', 'ðŸ€', 'ðŸ°', 'â¤ï¸'],
['🚗', 'âš¡ï¸', '🕰ï¸', '🎸'],
['ðŸœï¸', 'ðŸ›', '🔮', 'âš”ï¸', '🌌']]
|
What are the names of the movie titles?
Output
| ["The Lion King", "The Nightmare Before Christmas", "The Italian Job", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "Cinderella", "Back to the Future", "Dune"]
|
Extract Json
I extracted the following JSON from that output:
| ["The Lion King", "The Nightmare Before Christmas", "The Italian Job", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "Cinderella", "Back to the Future", "Dune"]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌄", "🎶", "ðŸ¦"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🎶"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "🌹", "💰", "🇮🇹"],
"The Matrix": ["💊", "😎", "🤖", "🔫", "💻"],
"Casablanca": ["✈ï¸", "â¤ï¸", "ðŸ¸", "🕵ï¸â€â™‚ï¸", "😢"],
"Raiders of the Lost Ark": ["🤠", "ðŸ", "🗺ï¸", "🗿", "💥"],
"V for Vendetta": ["ðŸŽ", "💣", "✊", "🇬🇧", "🔥"],
"The Princess Bride": ["âš”ï¸", "👸", "â¤ï¸", "ðŸ", "🤺"],
"Back to the Future": ["🚗", "âš¡ï¸", "🕰ï¸", "👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🎸"],
"Dune": ["ðŸœï¸", "ðŸ›", "🔮", "âš”ï¸", "🌌"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌄", "🎶", "ðŸ¦"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🎶"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "🌹", "💰", "🇮🇹"],
"The Matrix": ["💊", "😎", "🤖", "🔫", "💻"],
"Casablanca": ["✈ï¸", "â¤ï¸", "ðŸ¸", "🕵ï¸â€â™‚ï¸", "😢"],
"Raiders of the Lost Ark": ["🤠", "ðŸ", "🗺ï¸", "🗿", "💥"],
"V for Vendetta": ["ðŸŽ", "💣", "✊", "🇬🇧", "🔥"],
"The Princess Bride": ["âš”ï¸", "👸", "â¤ï¸", "ðŸ", "🤺"],
"Back to the Future": ["🚗", "âš¡ï¸", "🕰ï¸", "👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🎸"],
"Dune": ["ðŸœï¸", "ðŸ›", "🔮", "âš”ï¸", "🌌"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '👑', '🌄', '🎶', 'ðŸ¦'],
['🎃', '👻', '💀', '🎄', '🎶'],
['🔫', '🌹', '💰', '🇮🇹'],
['💊', '😎', '🤖', '🔫', '💻'],
['✈ï¸', 'â¤ï¸', 'ðŸ¸', '😢'],
['🤠', 'ðŸ', '🗺ï¸', '🗿', '💥'],
['ðŸŽ', '💣', '✊', '🇬🇧', '🔥'],
['âš”ï¸', '👸', 'â¤ï¸', 'ðŸ', '🤺'],
['🚗', 'âš¡ï¸', '🕰ï¸', '🎸'],
['ðŸœï¸', 'ðŸ›', '🔮', 'âš”ï¸', '🌌']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '💀', '🎄', '🎶'],
['🔫', '🌹', '💰', '🇮🇹'],
['💊', '😎', '🤖', '🔫', '💻'],
['✈ï¸', 'â¤ï¸', 'ðŸ¸', '😢'],
['🤠', 'ðŸ', '🗺ï¸', '🗿', '💥'],
['ðŸŽ', '💣', '✊', '🇬🇧', '🔥'],
['âš”ï¸', '👸', 'â¤ï¸', 'ðŸ', '🤺'],
['🚗', 'âš¡ï¸', '🕰ï¸', '🎸'],
['ðŸœï¸', 'ðŸ›', '🔮', 'âš”ï¸', '🌌']]
|
What are the names of the movie titles?
Output
| ["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "Cinderella", "Back to the Future", "Dune"]
|
Extract Json
I extracted the following JSON from that output:
| ["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "Cinderella", "Back to the Future", "Dune"]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["ðŸ ", "ðŸŸ", "ðŸ¡", "ðŸ¬", "ðŸ³"],
"Toy Story": ["🚀", "âš”ï¸,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌄", "🎶", "💔"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🎶"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "🔪", "🇮🇹", "💰"],
"The Matrix": ["💊", "💻", "😎", "🔫", "🤖"],
"Casablanca": ["✈ï¸", "â¤ï¸", "ðŸ¸", "🕵ï¸â€â™‚ï¸", "😢"],
"Raiders of the Lost Ark": ["🤠", "ðŸ", "🗺ï¸", "ðŸƒâ€â™‚ï¸", "🛕"],
"V for Vendetta": ["ðŸŽ", "💥", "✊", "🇬🇧", "🔪"],
"The Princess Bride": ["âš”ï¸", "👸", "â¤ï¸", "ðŸ€", "巨人"],
"Back to the Future": ["🚗", "âš¡ï¸", "🕰ï¸", "👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🎸"],
"Dune": ["ðŸœï¸", "ðŸ›", "🔮", "âš”ï¸", "🌌"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["ðŸ¦", "👑", "🌄", "🎶", "💔"],
"The Nightmare Before Christmas": ["🎃", "👻", "💀", "🎄", "🎶"],
"The Godfather": ["👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🔫", "🔪", "🇮🇹", "💰"],
"The Matrix": ["💊", "💻", "😎", "🔫", "🤖"],
"Casablanca": ["✈ï¸", "â¤ï¸", "ðŸ¸", "🕵ï¸â€â™‚ï¸", "😢"],
"Raiders of the Lost Ark": ["🤠", "ðŸ", "🗺ï¸", "ðŸƒâ€â™‚ï¸", "🛕"],
"V for Vendetta": ["ðŸŽ", "💥", "✊", "🇬🇧", "🔪"],
"The Princess Bride": ["âš”ï¸", "👸", "â¤ï¸", "ðŸ€", "巨人"],
"Back to the Future": ["🚗", "âš¡ï¸", "🕰ï¸", "👨â€ðŸ‘©â€ðŸ‘§â€ðŸ‘¦", "🎸"],
"Dune": ["ðŸœï¸", "ðŸ›", "🔮", "âš”ï¸", "🌌"]
}
|
PyFunc
Resulting in output:
[['ðŸ¦', '👑', '🌄', '🎶', '💔'],
['🎃', '👻', '💀', '🎄', '🎶'],
['🔫', '🔪', '🇮🇹', '💰'],
['💊', '💻', '😎', '🔫', '🤖'],
['✈ï¸', 'â¤ï¸', 'ðŸ¸', '😢'],
['🤠', 'ðŸ', '🗺ï¸', '🛕'],
['ðŸŽ', '💥', '✊', '🇬🇧', '🔪'],
['âš”ï¸', '👸', 'â¤ï¸', 'ðŸ€', '巨人'],
['🚗', 'âš¡ï¸', '🕰ï¸', '🎸'],
['ðŸœï¸', 'ðŸ›', '🔮', 'âš”ï¸', '🌌']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['🎃', '👻', '💀', '🎄', '🎶'],
['🔫', '🔪', '🇮🇹', '💰'],
['💊', '💻', '😎', '🔫', '🤖'],
['✈ï¸', 'â¤ï¸', 'ðŸ¸', '😢'],
['🤠', 'ðŸ', '🗺ï¸', '🛕'],
['ðŸŽ', '💥', '✊', '🇬🇧', '🔪'],
['âš”ï¸', '👸', 'â¤ï¸', 'ðŸ€', '巨人'],
['🚗', 'âš¡ï¸', '🕰ï¸', '🎸'],
['ðŸœï¸', 'ðŸ›', '🔮', 'âš”ï¸', '🌌']]
|
What are the names of the movie titles?
Output
| ["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "Ella Enchanted", "Back to the Future", "Dune"]
|
Extract Json
I extracted the following JSON from that output:
| ["The Lion King", "The Nightmare Before Christmas", "The Godfather", "The Matrix", "Casablanca", "Raiders of the Lost Ark", "V for Vendetta", "Ella Enchanted", "Back to the Future", "Dune"]
|
PyFunc
OK
Resulting in output:
True