Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["๐ ", "๐", "๐ก", "๐ฌ", "๐ณ"],
"Toy Story": ["๐", "โ๏ธ,", "๐ค", "๐ฝ", "๐"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["๐ ", "๐", "๐ก", "๐ฌ", "๐ณ"],
"Toy Story": ["๐", "โ๏ธ,", "๐ค", "๐ฝ", "๐"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["๐ฆ", "๐", "๐
", "๐ต", "๐"],
"The Nightmare Before Christmas": ["๐", "๐", "๐ฆด", "๐ท๏ธ", "๐ฅ"],
"The Godfather": ["๐ซ", "๐ฐ", "๐", "๐", "๐ท"],
"The Matrix": ["๐ค", "๐", "โ๏ธ", "๐ถ๏ธ", "๐ณ๏ธ"],
"Casablanca": ["โ๏ธ", "๐น", "๐ฅ", "๐ป", "๐ฐ๏ธ"],
"Raiders of the Lost Ark": ["๐", "๐ฟ", "๐", "โ ๏ธ", "๐"],
"V for Vendetta": ["๐ฅ", "๐ญ", "โ", "๐ฝ", "๐๏ธ"],
"The Princess Bride": ["๐ธ", "๐ก๏ธ", "๐งโโ๏ธ", "๐", "๐"],
"Back to the Future": ["โ", "๐", "โก", "๐", "๐ฐ๏ธ"],
"Dune": ["๐๏ธ", "๐ชฑ", "๐ช", "๐ก๏ธ", "๐"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["๐ฆ", "๐", "๐
", "๐ต", "๐"],
"The Nightmare Before Christmas": ["๐", "๐", "๐ฆด", "๐ท๏ธ", "๐ฅ"],
"The Godfather": ["๐ซ", "๐ฐ", "๐", "๐", "๐ท"],
"The Matrix": ["๐ค", "๐", "โ๏ธ", "๐ถ๏ธ", "๐ณ๏ธ"],
"Casablanca": ["โ๏ธ", "๐น", "๐ฅ", "๐ป", "๐ฐ๏ธ"],
"Raiders of the Lost Ark": ["๐", "๐ฟ", "๐", "โ ๏ธ", "๐"],
"V for Vendetta": ["๐ฅ", "๐ญ", "โ", "๐ฝ", "๐๏ธ"],
"The Princess Bride": ["๐ธ", "๐ก๏ธ", "๐งโโ๏ธ", "๐", "๐"],
"Back to the Future": ["โ", "๐", "โก", "๐", "๐ฐ๏ธ"],
"Dune": ["๐๏ธ", "๐ชฑ", "๐ช", "๐ก๏ธ", "๐"]
}
|
PyFunc
Resulting in output:
[['๐ฆ', '๐', '๐
', '๐ต', '๐'],
['๐', '๐', '๐ฆด', '๐ท๏ธ', '๐ฅ'],
['๐ซ', '๐ฐ', '๐', '๐', '๐ท'],
['๐ค', '๐', 'โ๏ธ', '๐ถ๏ธ', '๐ณ๏ธ'],
['โ๏ธ', '๐น', '๐ฅ', '๐ป', '๐ฐ๏ธ'],
['๐', '๐ฟ', '๐', 'โ ๏ธ', '๐'],
['๐ฅ', '๐ญ', 'โ', '๐ฝ', '๐๏ธ'],
['๐ธ', '๐ก๏ธ', '๐', '๐'],
['โ', '๐', 'โก', '๐', '๐ฐ๏ธ'],
['๐๏ธ', '๐ชฑ', '๐ช', '๐ก๏ธ', '๐']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['๐', '๐', '๐ฆด', '๐ท๏ธ', '๐ฅ'],
['๐ซ', '๐ฐ', '๐', '๐', '๐ท'],
['๐ค', '๐', 'โ๏ธ', '๐ถ๏ธ', '๐ณ๏ธ'],
['โ๏ธ', '๐น', '๐ฅ', '๐ป', '๐ฐ๏ธ'],
['๐', '๐ฟ', '๐', 'โ ๏ธ', '๐'],
['๐ฅ', '๐ญ', 'โ', '๐ฝ', '๐๏ธ'],
['๐ธ', '๐ก๏ธ', '๐', '๐'],
['โ', '๐', 'โก', '๐', '๐ฐ๏ธ'],
['๐๏ธ', '๐ชฑ', '๐ช', '๐ก๏ธ', '๐']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Nightmare Before Christmas",
"The Untouchables",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"Les Miserables",
"Cinderella",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Nightmare Before Christmas",
"The Untouchables",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"Les Miserables",
"Cinderella",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
False
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["๐ ", "๐", "๐ก", "๐ฌ", "๐ณ"],
"Toy Story": ["๐", "โ๏ธ,", "๐ค", "๐ฝ", "๐"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["๐ ", "๐", "๐ก", "๐ฌ", "๐ณ"],
"Toy Story": ["๐", "โ๏ธ,", "๐ค", "๐ฝ", "๐"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["๐ฆ", "๐", "๐", "๐ต", "๐"],
"The Nightmare Before Christmas": ["๐", "โ ๏ธ", "๐", "๐ป", "๐ท๏ธ"],
"The Godfather": ["๐ซ", "๐ท", "๐ด๏ธ", "๐ฝ", "๐น"],
"The Matrix": ["๐ป", "๐ถ๏ธ", "โ๏ธ", "๐ซ", "๐"],
"Casablanca": ["๐ฐ๏ธ", "๐ป", "๐ฅ", "โ๏ธ", "๐น"],
"Raiders of the Lost Ark": ["๐", "๐งญ", "๐", "๐ก๏ธ", "๐บ"],
"V for Vendetta": ["๐ต", "๐ญ", "โ", "๐ฝ", "๐"],
"The Princess Bride": ["๐คบ", "๐ฐ", "๐", "โ๏ธ", "๐งโโ๏ธ"],
"Back to the Future": ["โ", "๐", "โก", "๐ค", "๐ฝ๏ธ"],
"Dune": ["๐", "๐", "๐", "๐๏ธ", "๐ก๏ธ"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["๐ฆ", "๐", "๐", "๐ต", "๐"],
"The Nightmare Before Christmas": ["๐", "โ ๏ธ", "๐", "๐ป", "๐ท๏ธ"],
"The Godfather": ["๐ซ", "๐ท", "๐ด๏ธ", "๐ฝ", "๐น"],
"The Matrix": ["๐ป", "๐ถ๏ธ", "โ๏ธ", "๐ซ", "๐"],
"Casablanca": ["๐ฐ๏ธ", "๐ป", "๐ฅ", "โ๏ธ", "๐น"],
"Raiders of the Lost Ark": ["๐", "๐งญ", "๐", "๐ก๏ธ", "๐บ"],
"V for Vendetta": ["๐ต", "๐ญ", "โ", "๐ฝ", "๐"],
"The Princess Bride": ["๐คบ", "๐ฐ", "๐", "โ๏ธ", "๐งโโ๏ธ"],
"Back to the Future": ["โ", "๐", "โก", "๐ค", "๐ฝ๏ธ"],
"Dune": ["๐", "๐", "๐", "๐๏ธ", "๐ก๏ธ"]
}
|
PyFunc
Resulting in output:
[['๐ฆ', '๐', '๐', '๐ต', '๐'],
['๐', 'โ ๏ธ', '๐', '๐ป', '๐ท๏ธ'],
['๐ซ', '๐ท', '๐ด๏ธ', '๐ฝ', '๐น'],
['๐ป', '๐ถ๏ธ', 'โ๏ธ', '๐ซ', '๐'],
['๐ฐ๏ธ', '๐ป', '๐ฅ', 'โ๏ธ', '๐น'],
['๐', '๐งญ', '๐', '๐ก๏ธ', '๐บ'],
['๐ต', '๐ญ', 'โ', '๐ฝ', '๐'],
['๐คบ', '๐ฐ', '๐', 'โ๏ธ'],
['โ', '๐', 'โก', '๐ค', '๐ฝ๏ธ'],
['๐', '๐', '๐', '๐๏ธ', '๐ก๏ธ']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['๐', 'โ ๏ธ', '๐', '๐ป', '๐ท๏ธ'],
['๐ซ', '๐ท', '๐ด๏ธ', '๐ฝ', '๐น'],
['๐ป', '๐ถ๏ธ', 'โ๏ธ', '๐ซ', '๐'],
['๐ฐ๏ธ', '๐ป', '๐ฅ', 'โ๏ธ', '๐น'],
['๐', '๐งญ', '๐', '๐ก๏ธ', '๐บ'],
['๐ต', '๐ญ', 'โ', '๐ฝ', '๐'],
['๐คบ', '๐ฐ', '๐', 'โ๏ธ'],
['โ', '๐', 'โก', '๐ค', '๐ฝ๏ธ'],
['๐', '๐', '๐', '๐๏ธ', '๐ก๏ธ']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Thomas Crown Affair",
"The Matrix",
"Casablanca",
"Indiana Jones and the Raiders of the Lost Ark",
"The Smurfs",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Thomas Crown Affair",
"The Matrix",
"Casablanca",
"Indiana Jones and the Raiders of the Lost Ark",
"The Smurfs",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
False
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["๐ ", "๐", "๐ก", "๐ฌ", "๐ณ"],
"Toy Story": ["๐", "โ๏ธ,", "๐ค", "๐ฝ", "๐"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["๐ ", "๐", "๐ก", "๐ฌ", "๐ณ"],
"Toy Story": ["๐", "โ๏ธ,", "๐ค", "๐ฝ", "๐"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["๐ฆ", "๐ต", "๐", "๐
", "๐"],
"The Nightmare Before Christmas": ["๐", "๐", "๐ท๏ธ", "๐ฆด", "๐"],
"The Godfather": ["๐คต", "๐ซ", "๐", "๐น", "๐ฐ"],
"The Matrix": ["๐ถ๏ธ", "โ", "๐ค", "๐ซ", "๐"],
"Casablanca": ["โ๏ธ", "๐ธ", "๐", "๐บ๏ธ", "๐ป"],
"Raiders of the Lost Ark": ["๐ฉ", "๐ฃ", "๐", "๐", "โ๏ธ"],
"V for Vendetta": ["๐บ", "๐ก๏ธ", "๐", "๐น", "๐ฌ๐ง"],
"The Princess Bride": ["๐ธ", "โ๏ธ", "๐", "๐ง", "๐"],
"Back to the Future": ["โ", "๐", "๐", "โก", "๐ค"],
"Dune": ["๐", "๐", "๐๏ธ", "โ", "๐ก๏ธ"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["๐ฆ", "๐ต", "๐", "๐
", "๐"],
"The Nightmare Before Christmas": ["๐", "๐", "๐ท๏ธ", "๐ฆด", "๐"],
"The Godfather": ["๐คต", "๐ซ", "๐", "๐น", "๐ฐ"],
"The Matrix": ["๐ถ๏ธ", "โ", "๐ค", "๐ซ", "๐"],
"Casablanca": ["โ๏ธ", "๐ธ", "๐", "๐บ๏ธ", "๐ป"],
"Raiders of the Lost Ark": ["๐ฉ", "๐ฃ", "๐", "๐", "โ๏ธ"],
"V for Vendetta": ["๐บ", "๐ก๏ธ", "๐", "๐น", "๐ฌ๐ง"],
"The Princess Bride": ["๐ธ", "โ๏ธ", "๐", "๐ง", "๐"],
"Back to the Future": ["โ", "๐", "๐", "โก", "๐ค"],
"Dune": ["๐", "๐", "๐๏ธ", "โ", "๐ก๏ธ"]
}
|
PyFunc
Resulting in output:
[['๐ฆ', '๐ต', '๐', '๐
', '๐'],
['๐', '๐', '๐ท๏ธ', '๐ฆด', '๐'],
['๐คต', '๐ซ', '๐', '๐น', '๐ฐ'],
['๐ถ๏ธ', 'โ', '๐ค', '๐ซ', '๐'],
['โ๏ธ', '๐ธ', '๐', '๐บ๏ธ', '๐ป'],
['๐ฉ', '๐ฃ', '๐', '๐', 'โ๏ธ'],
['๐บ', '๐ก๏ธ', '๐', '๐น', '๐ฌ๐ง'],
['๐ธ', 'โ๏ธ', '๐', '๐ง', '๐'],
['โ', '๐', '๐', 'โก', '๐ค'],
['๐', '๐', '๐๏ธ', 'โ', '๐ก๏ธ']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['๐', '๐', '๐ท๏ธ', '๐ฆด', '๐'],
['๐คต', '๐ซ', '๐', '๐น', '๐ฐ'],
['๐ถ๏ธ', 'โ', '๐ค', '๐ซ', '๐'],
['โ๏ธ', '๐ธ', '๐', '๐บ๏ธ', '๐ป'],
['๐ฉ', '๐ฃ', '๐', '๐', 'โ๏ธ'],
['๐บ', '๐ก๏ธ', '๐', '๐น', '๐ฌ๐ง'],
['๐ธ', 'โ๏ธ', '๐', '๐ง', '๐'],
['โ', '๐', '๐', 'โก', '๐ค'],
['๐', '๐', '๐๏ธ', 'โ', '๐ก๏ธ']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"Mulan",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"Mulan",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["๐ ", "๐", "๐ก", "๐ฌ", "๐ณ"],
"Toy Story": ["๐", "โ๏ธ,", "๐ค", "๐ฝ", "๐"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["๐ ", "๐", "๐ก", "๐ฌ", "๐ณ"],
"Toy Story": ["๐", "โ๏ธ,", "๐ค", "๐ฝ", "๐"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["๐ฆ", "๐", "๐ต", "๐", "๐"],
"The Nightmare Before Christmas": ["๐", "๐", "๐งโโ๏ธ", "๐", "๐ฆด"],
"The Godfather": ["๐ด๏ธ", "๐ฐ", "๐ซ", "๐", "๐ฎ๐น"],
"The Matrix": ["๐ค", "๐", "๐ฅ", "๐ถ๏ธ", "๐"],
"Casablanca": ["๐ฐ๏ธ", "โ๏ธ", "๐ฅ", "๐น", "๐ฒ๐ฆ"],
"Raiders of the Lost Ark": ["๐ฃ", "๐งญ", "๐", "โ๏ธ", "๐"],
"V for Vendetta": ["โญ", "๐ญ", "โ", "๐ฝ", "๐ฅ"],
"The Princess Bride": ["๐ธ", "๐ก๏ธ", "๐คบ", "๐", "๐งโโ๏ธ"],
"Back to the Future": ["โ", "๐", "โก", "๐ฐ๏ธ", "๐ค"],
"Dune": ["๐๏ธ", "๐ชฑ", "โ", "๐ก๏ธ", "๐ธ"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["๐ฆ", "๐", "๐ต", "๐", "๐"],
"The Nightmare Before Christmas": ["๐", "๐", "๐งโโ๏ธ", "๐", "๐ฆด"],
"The Godfather": ["๐ด๏ธ", "๐ฐ", "๐ซ", "๐", "๐ฎ๐น"],
"The Matrix": ["๐ค", "๐", "๐ฅ", "๐ถ๏ธ", "๐"],
"Casablanca": ["๐ฐ๏ธ", "โ๏ธ", "๐ฅ", "๐น", "๐ฒ๐ฆ"],
"Raiders of the Lost Ark": ["๐ฃ", "๐งญ", "๐", "โ๏ธ", "๐"],
"V for Vendetta": ["โญ", "๐ญ", "โ", "๐ฝ", "๐ฅ"],
"The Princess Bride": ["๐ธ", "๐ก๏ธ", "๐คบ", "๐", "๐งโโ๏ธ"],
"Back to the Future": ["โ", "๐", "โก", "๐ฐ๏ธ", "๐ค"],
"Dune": ["๐๏ธ", "๐ชฑ", "โ", "๐ก๏ธ", "๐ธ"]
}
|
PyFunc
Resulting in output:
[['๐ฆ', '๐', '๐ต', '๐', '๐'],
['๐', '๐', '๐', '๐ฆด'],
['๐ด๏ธ', '๐ฐ', '๐ซ', '๐', '๐ฎ๐น'],
['๐ค', '๐', '๐ฅ', '๐ถ๏ธ', '๐'],
['๐ฐ๏ธ', 'โ๏ธ', '๐ฅ', '๐น', '๐ฒ๐ฆ'],
['๐ฃ', '๐งญ', '๐', 'โ๏ธ', '๐'],
['โญ', '๐ญ', 'โ', '๐ฝ', '๐ฅ'],
['๐ธ', '๐ก๏ธ', '๐คบ', '๐'],
['โ', '๐', 'โก', '๐ฐ๏ธ', '๐ค'],
['๐๏ธ', '๐ชฑ', 'โ', '๐ก๏ธ', '๐ธ']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['๐', '๐', '๐', '๐ฆด'],
['๐ด๏ธ', '๐ฐ', '๐ซ', '๐', '๐ฎ๐น'],
['๐ค', '๐', '๐ฅ', '๐ถ๏ธ', '๐'],
['๐ฐ๏ธ', 'โ๏ธ', '๐ฅ', '๐น', '๐ฒ๐ฆ'],
['๐ฃ', '๐งญ', '๐', 'โ๏ธ', '๐'],
['โญ', '๐ญ', 'โ', '๐ฝ', '๐ฅ'],
['๐ธ', '๐ก๏ธ', '๐คบ', '๐'],
['โ', '๐', 'โก', '๐ฐ๏ธ', '๐ค'],
['๐๏ธ', '๐ชฑ', 'โ', '๐ก๏ธ', '๐ธ']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Casablanca",
"Indiana Jones and the Raiders of the Lost Ark",
"Rocky",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Casablanca",
"Indiana Jones and the Raiders of the Lost Ark",
"Rocky",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["๐ ", "๐", "๐ก", "๐ฌ", "๐ณ"],
"Toy Story": ["๐", "โ๏ธ,", "๐ค", "๐ฝ", "๐"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["๐ ", "๐", "๐ก", "๐ฌ", "๐ณ"],
"Toy Story": ["๐", "โ๏ธ,", "๐ค", "๐ฝ", "๐"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["๐ฆ", "๐ญ", "๐", "๐", "๐ญ"],
"The Nightmare Before Christmas": ["๐", "๐ฆด", "๐", "๐
", "๐"],
"The Godfather": ["๐ซ", "๐คก", "๐", "๐", "๐ฎ๐น"],
"The Matrix": ["๐", "๐ถ๏ธ", "โ๏ธ", "๐ค", "๐ด"],
"Casablanca": ["โ๏ธ", "๐ฅ", "๐", "๐น", "๐ฒ๐ฆ"],
"Raiders of the Lost Ark": ["๐", "๐ฟ", "๐ค ", "๐", "๐"],
"V for Vendetta": ["๐ญ", "โ", "๐ฌ๐ง", "๐ฝ", "๐ฅ"],
"The Princess Bride": ["๐ธ", "๐คบ", "๐งโโ๏ธ", "๐", "๐"],
"Back to the Future": ["โ", "๐", "โก", "๐", "๐ฐ๏ธ"],
"Dune": ["๐", "๐๏ธ", "๐ชฑ", "๐ถ", "โ๏ธ"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["๐ฆ", "๐ญ", "๐", "๐", "๐ญ"],
"The Nightmare Before Christmas": ["๐", "๐ฆด", "๐", "๐
", "๐"],
"The Godfather": ["๐ซ", "๐คก", "๐", "๐", "๐ฎ๐น"],
"The Matrix": ["๐", "๐ถ๏ธ", "โ๏ธ", "๐ค", "๐ด"],
"Casablanca": ["โ๏ธ", "๐ฅ", "๐", "๐น", "๐ฒ๐ฆ"],
"Raiders of the Lost Ark": ["๐", "๐ฟ", "๐ค ", "๐", "๐"],
"V for Vendetta": ["๐ญ", "โ", "๐ฌ๐ง", "๐ฝ", "๐ฅ"],
"The Princess Bride": ["๐ธ", "๐คบ", "๐งโโ๏ธ", "๐", "๐"],
"Back to the Future": ["โ", "๐", "โก", "๐", "๐ฐ๏ธ"],
"Dune": ["๐", "๐๏ธ", "๐ชฑ", "๐ถ", "โ๏ธ"]
}
|
PyFunc
Resulting in output:
[['๐ฆ', '๐ญ', '๐', '๐', '๐ญ'],
['๐', '๐ฆด', '๐', '๐
', '๐'],
['๐ซ', '๐คก', '๐', '๐', '๐ฎ๐น'],
['๐', '๐ถ๏ธ', 'โ๏ธ', '๐ค', '๐ด'],
['โ๏ธ', '๐ฅ', '๐', '๐น', '๐ฒ๐ฆ'],
['๐', '๐ฟ', '๐ค ', '๐', '๐'],
['๐ญ', 'โ', '๐ฌ๐ง', '๐ฝ', '๐ฅ'],
['๐ธ', '๐คบ', '๐', '๐'],
['โ', '๐', 'โก', '๐', '๐ฐ๏ธ'],
['๐', '๐๏ธ', '๐ชฑ', '๐ถ', 'โ๏ธ']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['๐', '๐ฆด', '๐', '๐
', '๐'],
['๐ซ', '๐คก', '๐', '๐', '๐ฎ๐น'],
['๐', '๐ถ๏ธ', 'โ๏ธ', '๐ค', '๐ด'],
['โ๏ธ', '๐ฅ', '๐', '๐น', '๐ฒ๐ฆ'],
['๐', '๐ฟ', '๐ค ', '๐', '๐'],
['๐ญ', 'โ', '๐ฌ๐ง', '๐ฝ', '๐ฅ'],
['๐ธ', '๐คบ', '๐', '๐'],
['โ', '๐', 'โก', '๐', '๐ฐ๏ธ'],
['๐', '๐๏ธ', '๐ชฑ', '๐ถ', 'โ๏ธ']]
|
What are the names of the movie titles?
Output
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"Les Misรฉrables",
"The Princess Bride",
"Back to the Future",
"The Fifth Element"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"Les Misรฉrables",
"The Princess Bride",
"Back to the Future",
"The Fifth Element"
]
|
PyFunc
OK
Resulting in output:
True