Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "👑", "🌅", "🐒", "🌍"],
"The Nightmare Before Christmas": ["💀", "🎃", "🎄", "👻", "🌙"],
"The Godfather": ["🤵", "🔫", "🍝", "🌹", "🐎"],
"The Matrix": ["💊", "👓", "🤖", "🔄", "📱"],
"Casablanca": ["🎹", "✈", "🥃", "🎭", "❤️"],
"Raiders of the Lost Ark": ["🏺", "🐍", "🔍", "🗿", "👒"],
"V for Vendetta": ["🎭", "💥", "🔪", "🌹", "📺"],
"The Princess Bride": ["⚔", "👸", "💍", "🔥", "💗"],
"Back to the Future": ["⏰", "🚗", "⚡", "🎸", "📷"],
"Dune": ["🌵", "🪱", "💧", "👁", "🌌"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "👑", "🌅", "🐒", "🌍"],
"The Nightmare Before Christmas": ["💀", "🎃", "🎄", "👻", "🌙"],
"The Godfather": ["🤵", "🔫", "🍝", "🌹", "🐎"],
"The Matrix": ["💊", "👓", "🤖", "🔄", "📱"],
"Casablanca": ["🎹", "✈", "🥃", "🎭", "❤️"],
"Raiders of the Lost Ark": ["🏺", "🐍", "🔍", "🗿", "👒"],
"V for Vendetta": ["🎭", "💥", "🔪", "🌹", "📺"],
"The Princess Bride": ["⚔", "👸", "💍", "🔥", "💗"],
"Back to the Future": ["⏰", "🚗", "⚡", "🎸", "📷"],
"Dune": ["🌵", "🪱", "💧", "👁", "🌌"]
}
|
PyFunc
Resulting in output:
[['🦁', '👑', '🌅', '🐒', '🌍'],
['💀', '🎃', '🎄', '👻', '🌙'],
['🤵', '🔫', '🍝', '🌹', '🐎'],
['💊', '👓', '🤖', '🔄', '📱'],
['🎹', '✈', '🥃', '🎭', '❤️'],
['🏺', '🐍', '🔍', '🗿', '👒'],
['🎭', '💥', '🔪', '🌹', '📺'],
['⚔', '👸', '💍', '🔥', '💗'],
['⏰', '🚗', '⚡', '🎸', '📷'],
['🌵', '🪱', '💧', '👁', '🌌']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['💀', '🎃', '🎄', '👻', '🌙'],
['🤵', '🔫', '🍝', '🌹', '🐎'],
['💊', '👓', '🤖', '🔄', '📱'],
['🎹', '✈', '🥃', '🎭', '❤️'],
['🏺', '🐍', '🔍', '🗿', '👒'],
['🎭', '💥', '🔪', '🌹', '📺'],
['⚔', '👸', '💍', '🔥', '💗'],
['⏰', '🚗', '⚡', '🎸', '📷'],
['🌵', '🪱', '💧', '👁', '🌌']]
|
What are the names of the movie titles?
Output
I'll identify the movies based on the emoji clues:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"The Godfather",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"V for Vendetta",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True
Initial Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
LLM Generation
Query
For each of the following ten movies give at most 5 emoji that would best describe the movie.
Give your answer as a JSON array. So If I asked for
you might might answer
| {"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
|
.
Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1)
Now give me answers for these movies:
Give ONLY a JSON output. Nothing else.
Output
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "👑", "🌅", "🐗", "🐒"],
"The Nightmare Before Christmas": ["💀", "🎃", "🎄", "👻", "🦇"],
"The Godfather": ["🤵", "🔫", "💰", "🍝", "🎭"],
"The Matrix": ["💊", "😎", "💻", "🤖", "🔄"],
"Casablanca": ["✈", "🍸", "🎹", "❤", "🎩"],
"Raiders of the Lost Ark": ["👒", "🐍", "🏺", "🔍", "✝"],
"V for Vendetta": ["🎭", "💣", "🔪", "🏢", "📺"],
"The Princess Bride": ["⚔", "👸", "💘", "🏰", "🧙"],
"Back to the Future": ["⏰", "🚗", "⚡", "🔙", "🕰"],
"Dune": ["🏜", "🪱", "🌑", "💧", "👁"]
}
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | {
"The Lion King": ["🦁", "👑", "🌅", "🐗", "🐒"],
"The Nightmare Before Christmas": ["💀", "🎃", "🎄", "👻", "🦇"],
"The Godfather": ["🤵", "🔫", "💰", "🍝", "🎭"],
"The Matrix": ["💊", "😎", "💻", "🤖", "🔄"],
"Casablanca": ["✈", "🍸", "🎹", "❤", "🎩"],
"Raiders of the Lost Ark": ["👒", "🐍", "🏺", "🔍", "✝"],
"V for Vendetta": ["🎭", "💣", "🔪", "🏢", "📺"],
"The Princess Bride": ["⚔", "👸", "💘", "🏰", "🧙"],
"Back to the Future": ["⏰", "🚗", "⚡", "🔙", "🕰"],
"Dune": ["🏜", "🪱", "🌑", "💧", "👁"]
}
|
PyFunc
Resulting in output:
[['🦁', '👑', '🌅', '🐗', '🐒'],
['💀', '🎃', '🎄', '👻', '🦇'],
['🤵', '🔫', '💰', '🍝', '🎭'],
['💊', '😎', '💻', '🤖', '🔄'],
['✈', '🍸', '🎹', '❤', '🎩'],
['👒', '🐍', '🏺', '🔍', '✝'],
['🎭', '💣', '🔪', '🏢', '📺'],
['⚔', '👸', '💘', '🏰', '🧙'],
['⏰', '🚗', '⚡', '🔙', '🕰'],
['🏜', '🪱', '🌑', '💧', '👁']]
LLM Generation
Query
For each of the following ten movies described by 5 emoji, give the movie title that best matches.
Give your answer as a JSON list. So If I asked for
You might answer
| ["Finding Nemo", "Toy Story"]]
|
.
Now give me answers for these movies:
| ['💀', '🎃', '🎄', '👻', '🦇'],
['🤵', '🔫', '💰', '🍝', '🎭'],
['💊', '😎', '💻', '🤖', '🔄'],
['✈', '🍸', '🎹', '❤', '🎩'],
['👒', '🐍', '🏺', '🔍', '✝'],
['🎭', '💣', '🔪', '🏢', '📺'],
['⚔', '👸', '💘', '🏰', '🧙'],
['⏰', '🚗', '⚡', '🔙', '🕰'],
['🏜', '🪱', '🌑', '💧', '👁']]
|
What are the names of the movie titles?
Output
Looking at these emoji sets, I'll identify the movie titles and provide them in the requested JSON format:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"Pulp Fiction",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"Fight Club",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
Extract Json
I extracted the following JSON from that output:
1
2
3
4
5
6
7
8
9
10
11
12 | [
"The Lion King",
"The Nightmare Before Christmas",
"Pulp Fiction",
"The Matrix",
"Casablanca",
"Raiders of the Lost Ark",
"Fight Club",
"The Princess Bride",
"Back to the Future",
"Dune"
]
|
PyFunc
OK
Resulting in output:
True