Initial Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

LLM Generation

Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
{
  "The Lion King": ["🦁", "👑", "🌅", "🐒", "🌍"],
  "The Nightmare Before Christmas": ["💀", "🎃", "🎄", "👻", "🌙"],
  "The Godfather": ["🤵", "🔫", "🍝", "🌹", "🐎"],
  "The Matrix": ["💊", "👓", "🤖", "🔄", "📱"],
  "Casablanca": ["🎹", "✈", "🥃", "🎭", "❤️"],
  "Raiders of the Lost Ark": ["🏺", "🐍", "🔍", "🗿", "👒"],
  "V for Vendetta": ["🎭", "💥", "🔪", "🌹", "📺"],
  "The Princess Bride": ["⚔", "👸", "💍", "🔥", "💗"],
  "Back to the Future": ["⏰", "🚗", "⚡", "🎸", "📷"],
  "Dune": ["🌵", "🪱", "💧", "👁", "🌌"]
}

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
{
  "The Lion King": ["🦁", "👑", "🌅", "🐒", "🌍"],
  "The Nightmare Before Christmas": ["💀", "🎃", "🎄", "👻", "🌙"],
  "The Godfather": ["🤵", "🔫", "🍝", "🌹", "🐎"],
  "The Matrix": ["💊", "👓", "🤖", "🔄", "📱"],
  "Casablanca": ["🎹", "✈", "🥃", "🎭", "❤️"],
  "Raiders of the Lost Ark": ["🏺", "🐍", "🔍", "🗿", "👒"],
  "V for Vendetta": ["🎭", "💥", "🔪", "🌹", "📺"],
  "The Princess Bride": ["⚔", "👸", "💍", "🔥", "💗"],
  "Back to the Future": ["⏰", "🚗", "⚡", "🎸", "📷"],
  "Dune": ["🌵", "🪱", "💧", "👁", "🌌"]
}

PyFunc

Resulting in output: [['🦁', '👑', '🌅', '🐒', '🌍'], ['💀', '🎃', '🎄', '👻', '🌙'], ['🤵', '🔫', '🍝', '🌹', '🐎'], ['💊', '👓', '🤖', '🔄', '📱'], ['🎹', '✈', '🥃', '🎭', '❤️'], ['🏺', '🐍', '🔍', '🗿', '👒'], ['🎭', '💥', '🔪', '🌹', '📺'], ['⚔', '👸', '💍', '🔥', '💗'], ['⏰', '🚗', '⚡', '🎸', '📷'], ['🌵', '🪱', '💧', '👁', '🌌']]

LLM Generation

Query

For each of the following ten movies described by 5 emoji, give the movie title that best matches. Give your answer as a JSON list. So If I asked for

1

You might answer
1
["Finding Nemo", "Toy Story"]]
. Now give me answers for these movies:
1
2
3
4
5
6
7
8
9
['💀', '🎃', '🎄', '👻', '🌙'],
['🤵', '🔫', '🍝', '🌹', '🐎'],
['💊', '👓', '🤖', '🔄', '📱'],
['🎹', '✈', '🥃', '🎭', '❤️'],
['🏺', '🐍', '🔍', '🗿', '👒'],
['🎭', '💥', '🔪', '🌹', '📺'],
['⚔', '👸', '💍', '🔥', '💗'],
['⏰', '🚗', '⚡', '🎸', '📷'],
['🌵', '🪱', '💧', '👁', '🌌']]
What are the names of the movie titles?

Output

I'll identify the movies based on the emoji clues:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
[
  "The Lion King",
  "The Nightmare Before Christmas",
  "The Godfather",
  "The Matrix",
  "Casablanca",
  "Raiders of the Lost Ark",
  "V for Vendetta",
  "The Princess Bride",
  "Back to the Future",
  "Dune"
]

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
[
  "The Lion King",
  "The Nightmare Before Christmas",
  "The Godfather",
  "The Matrix",
  "Casablanca",
  "Raiders of the Lost Ark",
  "V for Vendetta",
  "The Princess Bride",
  "Back to the Future",
  "Dune"
]

PyFunc

OK Resulting in output: True

Initial Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

LLM Generation

Query

For each of the following ten movies give at most 5 emoji that would best describe the movie. Give your answer as a JSON array. So If I asked for

1

you might might answer
1
2
{"Finding Nemo": ["🐠", "🐟", "🐡", "🐬", "🐳"],
"Toy Story": ["🚀", "⚔️,", "🤖", "👽", "🌌"]}
. Each emoji must be a single utf8 character. ABSOLUTELY NO ZERO WIDTH JOINING. (So, max(len(emoji) for movie in result.values() for emoji in movie) == 1) Now give me answers for these movies:
1

Give ONLY a JSON output. Nothing else.

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
{
  "The Lion King": ["🦁", "👑", "🌅", "🐗", "🐒"],
  "The Nightmare Before Christmas": ["💀", "🎃", "🎄", "👻", "🦇"],
  "The Godfather": ["🤵", "🔫", "💰", "🍝", "🎭"],
  "The Matrix": ["💊", "😎", "💻", "🤖", "🔄"],
  "Casablanca": ["✈", "🍸", "🎹", "❤", "🎩"],
  "Raiders of the Lost Ark": ["👒", "🐍", "🏺", "🔍", "✝"],
  "V for Vendetta": ["🎭", "💣", "🔪", "🏢", "📺"],
  "The Princess Bride": ["⚔", "👸", "💘", "🏰", "🧙"],
  "Back to the Future": ["⏰", "🚗", "⚡", "🔙", "🕰"],
  "Dune": ["🏜", "🪱", "🌑", "💧", "👁"]
}

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
{
  "The Lion King": ["🦁", "👑", "🌅", "🐗", "🐒"],
  "The Nightmare Before Christmas": ["💀", "🎃", "🎄", "👻", "🦇"],
  "The Godfather": ["🤵", "🔫", "💰", "🍝", "🎭"],
  "The Matrix": ["💊", "😎", "💻", "🤖", "🔄"],
  "Casablanca": ["✈", "🍸", "🎹", "❤", "🎩"],
  "Raiders of the Lost Ark": ["👒", "🐍", "🏺", "🔍", "✝"],
  "V for Vendetta": ["🎭", "💣", "🔪", "🏢", "📺"],
  "The Princess Bride": ["⚔", "👸", "💘", "🏰", "🧙"],
  "Back to the Future": ["⏰", "🚗", "⚡", "🔙", "🕰"],
  "Dune": ["🏜", "🪱", "🌑", "💧", "👁"]
}

PyFunc

Resulting in output: [['🦁', '👑', '🌅', '🐗', '🐒'], ['💀', '🎃', '🎄', '👻', '🦇'], ['🤵', '🔫', '💰', '🍝', '🎭'], ['💊', '😎', '💻', '🤖', '🔄'], ['✈', '🍸', '🎹', '❤', '🎩'], ['👒', '🐍', '🏺', '🔍', '✝'], ['🎭', '💣', '🔪', '🏢', '📺'], ['⚔', '👸', '💘', '🏰', '🧙'], ['⏰', '🚗', '⚡', '🔙', '🕰'], ['🏜', '🪱', '🌑', '💧', '👁']]

LLM Generation

Query

For each of the following ten movies described by 5 emoji, give the movie title that best matches. Give your answer as a JSON list. So If I asked for

1

You might answer
1
["Finding Nemo", "Toy Story"]]
. Now give me answers for these movies:
1
2
3
4
5
6
7
8
9
['💀', '🎃', '🎄', '👻', '🦇'],
['🤵', '🔫', '💰', '🍝', '🎭'],
['💊', '😎', '💻', '🤖', '🔄'],
['✈', '🍸', '🎹', '❤', '🎩'],
['👒', '🐍', '🏺', '🔍', '✝'],
['🎭', '💣', '🔪', '🏢', '📺'],
['⚔', '👸', '💘', '🏰', '🧙'],
['⏰', '🚗', '⚡', '🔙', '🕰'],
['🏜', '🪱', '🌑', '💧', '👁']]
What are the names of the movie titles?

Output

Looking at these emoji sets, I'll identify the movie titles and provide them in the requested JSON format:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
[
  "The Lion King",
  "The Nightmare Before Christmas",
  "Pulp Fiction",
  "The Matrix",
  "Casablanca",
  "Raiders of the Lost Ark",
  "Fight Club",
  "The Princess Bride",
  "Back to the Future",
  "Dune"
]

Extract Json

I extracted the following JSON from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
[
  "The Lion King",
  "The Nightmare Before Christmas",
  "Pulp Fiction",
  "The Matrix",
  "Casablanca",
  "Raiders of the Lost Ark",
  "Fight Club",
  "The Princess Bride",
  "Back to the Future",
  "Dune"
]

PyFunc

OK Resulting in output: True