Given this BNF-style grammar write a Python function `evaluate(str)` that evaluates the expression <expression> ::= <term> | <expression> '+' <term> | <expression> '-' <term> <term> ::= <factor> | <term> '*' <factor> | <term> '/' <factor> <factor> ::= <number> | '(' <expression> ')' | <prefix-op> <factor> <prefix-op> ::= 'sin' | 'cos' <number> ::= <digit> | <number> <digit> <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' For example you can evaluate this sin(3 + 2 * 4) - cos(15) = -0.240302
Given this BNF-style grammar write a Python function `evaluate(str)` that evaluates the expression <expression> ::= <term> | <expression> '+' <term> | <expression> '-' <term> <term> ::= <factor> | <term> '*' <factor> | <term> '/' <factor> <factor> ::= <number> | '(' <expression> ')' | <prefix-op> <factor> <prefix-op> ::= 'sin' | 'cos' <number> ::= <digit> | <number> <digit> <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' For example you can evaluate this sin(3 + 2 * 4) - cos(15) = -0.240302
To evaluate the given expression based on the BNF-style grammar, we can implement a recursive descent parser. This type of parser will break down the problem by creating functions that correspond to each rule in the grammar. For mathematical operations, we'll also import Python's `math` module for trigonometric functions. Here's an implementation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | import math def evaluate_expression(input_str): return ExpressionParser(input_str).parse() class ExpressionParser: def __init__(self, input_str): self.input_str = input_str.replace(" ", "") # Remove spaces for simplicity self.index = 0 def parse(self): return self.expression() def current_char(self): if self.index < len(self.input_str): return self.input_str[self.index] return None def consume(self): self.index += 1 def number(self): start_index = self.index while self.current_char() and self.current_char().isdigit(): self.consume() return int(self.input_str[start_index:self.index]) def factor(self): if self.current_char() == '(': self.consume() # Consume '(' result = self.expression() self.consume() # Consume ')' return result elif self.current_char().isdigit(): return self.number() else: # Check for prefix-op start_index = self.index while self.current_char() and not self.current_char().isdigit() and self.current_char() not in ['+', '-', '*', '/', '(', ')']: self.consume() op = self.input_str[start_index:self.index] if op == 'sin': return math.sin(self.factor()) elif op == 'cos': return math.cos(self.factor()) else: raise ValueError(f"Unexpected operator: {op}") def term(self): result = self.factor() while self.current_char() in ['*', '/']: if self.current_char() == '*': self.consume() result *= self.factor() elif self.current_char() == '/': self.consume() result /= self.factor() return result def expression(self): result = self.term() while self.current_char() in ['+', '-']: if self.current_char() == '+': self.consume() result += self.term() elif self.current_char() == '-': self.consume() result -= self.term() return result # Example usage: expr = "sin(3 + 2 * 4) - cos(15)" result = evaluate_expression(expr) print(f"{expr} = {result}") |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | import math def evaluate_expression(input_str): return ExpressionParser(input_str).parse() class ExpressionParser: def __init__(self, input_str): self.input_str = input_str.replace(" ", "") # Remove spaces for simplicity self.index = 0 def parse(self): return self.expression() def current_char(self): if self.index < len(self.input_str): return self.input_str[self.index] return None def consume(self): self.index += 1 def number(self): start_index = self.index while self.current_char() and self.current_char().isdigit(): self.consume() return int(self.input_str[start_index:self.index]) def factor(self): if self.current_char() == '(': self.consume() # Consume '(' result = self.expression() self.consume() # Consume ')' return result elif self.current_char().isdigit(): return self.number() else: # Check for prefix-op start_index = self.index while self.current_char() and not self.current_char().isdigit() and self.current_char() not in ['+', '-', '*', '/', '(', ')']: self.consume() op = self.input_str[start_index:self.index] if op == 'sin': return math.sin(self.factor()) elif op == 'cos': return math.cos(self.factor()) else: raise ValueError(f"Unexpected operator: {op}") def term(self): result = self.factor() while self.current_char() in ['*', '/']: if self.current_char() == '*': self.consume() result *= self.factor() elif self.current_char() == '/': self.consume() result /= self.factor() return result def expression(self): result = self.term() while self.current_char() in ['+', '-']: if self.current_char() == '+': self.consume() result += self.term() elif self.current_char() == '-': self.consume() result -= self.term() return result # Example usage: expr = "sin(3 + 2 * 4) - cos(15)" result = evaluate_expression(expr) print(f"{expr} = {result}") |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | import math def evaluate_expression(input_str): return ExpressionParser(input_str).parse() class ExpressionParser: def __init__(self, input_str): self.input_str = input_str.replace(" ", "") # Remove spaces for simplicity self.index = 0 def parse(self): return self.expression() def current_char(self): if self.index < len(self.input_str): return self.input_str[self.index] return None def consume(self): self.index += 1 def number(self): start_index = self.index while self.current_char() and self.current_char().isdigit(): self.consume() return int(self.input_str[start_index:self.index]) def factor(self): if self.current_char() == '(': self.consume() # Consume '(' result = self.expression() self.consume() # Consume ')' return result elif self.current_char().isdigit(): return self.number() else: # Check for prefix-op start_index = self.index while self.current_char() and not self.current_char().isdigit() and self.current_char() not in ['+', '-', '*', '/', '(', ')']: self.consume() op = self.input_str[start_index:self.index] if op == 'sin': return math.sin(self.factor()) elif op == 'cos': return math.cos(self.factor()) else: raise ValueError(f"Unexpected operator: {op}") def term(self): result = self.factor() while self.current_char() in ['*', '/']: if self.current_char() == '*': self.consume() result *= self.factor() elif self.current_char() == '/': self.consume() result /= self.factor() return result def expression(self): result = self.term() while self.current_char() in ['+', '-']: if self.current_char() == '+': self.consume() result += self.term() elif self.current_char() == '-': self.consume() result -= self.term() return result # Example usage: expr = "sin(3 + 2 * 4) - cos(15)" result = evaluate_expression(expr) print(f"{expr} = {result}") answer = round(evaluate('sin(35+2*4)-cos(15)'), 5) expected = -0.07209 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
sin(3 + 2 * 4) - cos(15) = -0.24030229369188216
Traceback (most recent call last):
File "/usr/src/app/main.py", line 80, in <module>
answer = round(evaluate('sin(35+2*4)-cos(15)'), 5)
^^^^^^^^
NameError: name 'evaluate' is not defined
Testing if the previous output contains the string All tests passed
: False
Given this BNF-style grammar write a Python function `evaluate(str)` that evaluates the expression <expression> ::= <term> | <expression> '+' <term> | <expression> '-' <term> <term> ::= <factor> | <term> '*' <factor> | <term> '/' <factor> <factor> ::= <number> | '(' <expression> ')' | <prefix-op> <factor> <prefix-op> ::= 'sin' | 'cos' <number> ::= <digit> | <number> <digit> <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' For example you can evaluate this sin(3 + 2 * 4) - cos(15) = -0.240302
Given this BNF-style grammar write a Python function `evaluate(str)` that evaluates the expression <expression> ::= <term> | <expression> '+' <term> | <expression> '-' <term> <term> ::= <factor> | <term> '*' <factor> | <term> '/' <factor> <factor> ::= <number> | '(' <expression> ')' | <prefix-op> <factor> <prefix-op> ::= 'sin' | 'cos' <number> ::= <digit> | <number> <digit> <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' For example you can evaluate this sin(3 + 2 * 4) - cos(15) = -0.240302
To evaluate the given expression as per the provided BNF-style grammar, we can follow these steps: 1. Parse the input string according to the grammar rules. 2. Evaluate the parsed structure. This can be done using a recursive approach, where each non-terminal in the grammar corresponds to a function in the code. We'll also need to handle the conversion of numeric strings to actual numbers and support the evaluation of the 'sin' and 'cos' operations. Here's how you could implement this:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | import math def evaluate_expression(expression): # This is the entry point for evaluating an expression result, remaining = parse_expression(expression) if remaining: # If there's any input left unparsed, it's an error raise ValueError(f"Unexpected characters left after parsing: {remaining}") return result def parse_expression(input_str): # Parse <expression> result, remaining = parse_term(input_str) while remaining and remaining[0] in ['+', '-']: op = remaining[0] next_term, remaining = parse_term(remaining[1:]) if op == '+': result += next_term else: result -= next_term return result, remaining def parse_term(input_str): # Parse <term> result, remaining = parse_factor(input_str) while remaining and remaining[0] in ['*', '/']: op = remaining[0] next_factor, remaining = parse_factor(remaining[1:]) if op == '*': result *= next_factor else: result /= next_factor return result, remaining def parse_factor(input_str): # Parse <factor> if input_str.startswith(('sin', 'cos')): op, remaining = input_str[:3], input_str[3:] factor_result, remaining = parse_factor(remaining) if op == 'sin': return math.sin(factor_result), remaining else: return math.cos(factor_result), remaining elif input_str[0] == '(': expr_result, remaining = parse_expression(input_str[1:]) if remaining[0] != ')': raise ValueError("Expected ')' after expression.") return expr_result, remaining[1:] else: return parse_number(input_str) def parse_number(input_str): # Parse <number> num_str = '' index = 0 while index < len(input_str) and input_str[index].isdigit(): num_str += input_str[index] index += 1 if not num_str: raise ValueError("Expected a number, found none.") return float(num_str), input_str[index:] def evaluate(input_str): try: result = evaluate_expression(input_str) return result except ValueError as e: print(f"Error evaluating expression: {e}") return None # Example usage if __name__ == "__main__": print(evaluate("sin(3 + 2 * 4) - cos(15)")) # Your example |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | import math def evaluate_expression(expression): # This is the entry point for evaluating an expression result, remaining = parse_expression(expression) if remaining: # If there's any input left unparsed, it's an error raise ValueError(f"Unexpected characters left after parsing: {remaining}") return result def parse_expression(input_str): # Parse <expression> result, remaining = parse_term(input_str) while remaining and remaining[0] in ['+', '-']: op = remaining[0] next_term, remaining = parse_term(remaining[1:]) if op == '+': result += next_term else: result -= next_term return result, remaining def parse_term(input_str): # Parse <term> result, remaining = parse_factor(input_str) while remaining and remaining[0] in ['*', '/']: op = remaining[0] next_factor, remaining = parse_factor(remaining[1:]) if op == '*': result *= next_factor else: result /= next_factor return result, remaining def parse_factor(input_str): # Parse <factor> if input_str.startswith(('sin', 'cos')): op, remaining = input_str[:3], input_str[3:] factor_result, remaining = parse_factor(remaining) if op == 'sin': return math.sin(factor_result), remaining else: return math.cos(factor_result), remaining elif input_str[0] == '(': expr_result, remaining = parse_expression(input_str[1:]) if remaining[0] != ')': raise ValueError("Expected ')' after expression.") return expr_result, remaining[1:] else: return parse_number(input_str) def parse_number(input_str): # Parse <number> num_str = '' index = 0 while index < len(input_str) and input_str[index].isdigit(): num_str += input_str[index] index += 1 if not num_str: raise ValueError("Expected a number, found none.") return float(num_str), input_str[index:] def evaluate(input_str): try: result = evaluate_expression(input_str) return result except ValueError as e: print(f"Error evaluating expression: {e}") return None # Example usage if __name__ == "__main__": print(evaluate("sin(3 + 2 * 4) - cos(15)")) # Your example |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | import math def evaluate_expression(expression): # This is the entry point for evaluating an expression result, remaining = parse_expression(expression) if remaining: # If there's any input left unparsed, it's an error raise ValueError(f"Unexpected characters left after parsing: {remaining}") return result def parse_expression(input_str): # Parse <expression> result, remaining = parse_term(input_str) while remaining and remaining[0] in ['+', '-']: op = remaining[0] next_term, remaining = parse_term(remaining[1:]) if op == '+': result += next_term else: result -= next_term return result, remaining def parse_term(input_str): # Parse <term> result, remaining = parse_factor(input_str) while remaining and remaining[0] in ['*', '/']: op = remaining[0] next_factor, remaining = parse_factor(remaining[1:]) if op == '*': result *= next_factor else: result /= next_factor return result, remaining def parse_factor(input_str): # Parse <factor> if input_str.startswith(('sin', 'cos')): op, remaining = input_str[:3], input_str[3:] factor_result, remaining = parse_factor(remaining) if op == 'sin': return math.sin(factor_result), remaining else: return math.cos(factor_result), remaining elif input_str[0] == '(': expr_result, remaining = parse_expression(input_str[1:]) if remaining[0] != ')': raise ValueError("Expected ')' after expression.") return expr_result, remaining[1:] else: return parse_number(input_str) def parse_number(input_str): # Parse <number> num_str = '' index = 0 while index < len(input_str) and input_str[index].isdigit(): num_str += input_str[index] index += 1 if not num_str: raise ValueError("Expected a number, found none.") return float(num_str), input_str[index:] def evaluate(input_str): try: result = evaluate_expression(input_str) return result except ValueError as e: print(f"Error evaluating expression: {e}") return None # Example usage if __name__ == "__main__": print(evaluate("sin(3 + 2 * 4) - cos(15)")) # Your example answer = round(evaluate('sin(35+2*4)-cos(15)'), 5) expected = -0.07209 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Error evaluating expression: Expected ')' after expression.
None
All tests passed
Testing if the previous output contains the string All tests passed
: True
Given this BNF-style grammar write a Python function `evaluate(str)` that evaluates the expression <expression> ::= <term> | <expression> '+' <term> | <expression> '-' <term> <term> ::= <factor> | <term> '*' <factor> | <term> '/' <factor> <factor> ::= <number> | '(' <expression> ')' | <prefix-op> <factor> <prefix-op> ::= 'sin' | 'cos' <number> ::= <digit> | <number> <digit> <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' For example you can evaluate this sin(3 + 2 * 4) - cos(15) = -0.240302
Given this BNF-style grammar write a Python function `evaluate(str)` that evaluates the expression <expression> ::= <term> | <expression> '+' <term> | <expression> '-' <term> <term> ::= <factor> | <term> '*' <factor> | <term> '/' <factor> <factor> ::= <number> | '(' <expression> ')' | <prefix-op> <factor> <prefix-op> ::= 'sin' | 'cos' <number> ::= <digit> | <number> <digit> <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' For example you can evaluate this sin(3 + 2 * 4) - cos(15) = -0.240302
To evaluate expressions defined by the provided BNF-style grammar, we'll write a Python function that processes the input string step by step. This function will need to handle the precedence of operations as defined by the grammar: parentheses and prefix operations (like `sin` and `cos`) have the highest precedence, followed by multiplication and division, and finally addition and subtraction. We'll use a recursive descent parser approach, where we have a function or a block of code for each rule in the grammar. This approach is straightforward for implementing parsers for simple grammars like the one provided. Here's how to implement the `evaluate` function:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | import math def tokenize(expression): tokens = [] i = 0 while i < len(expression): if expression[i].isspace(): i += 1 continue elif expression[i].isdigit(): num = expression[i] i += 1 while i < len(expression) and expression[i].isdigit(): num += expression[i] i += 1 tokens.append(('NUMBER', int(num))) elif expression[i] in "+-*/()": tokens.append((expression[i], expression[i])) i += 1 elif expression[i:i+3] in ["sin", "cos"]: tokens.append((expression[i:i+3], expression[i:i+3])) i += 3 else: raise ValueError("Unknown character: {}".format(expression[i])) tokens.append(('EOF', None)) return tokens def parse_factor(tokens): token, value = tokens.pop(0) if token == 'NUMBER': return value elif token in ['sin', 'cos']: factor_value = parse_factor(tokens) if token == 'sin': return math.sin(factor_value) else: return math.cos(factor_value) elif token == '(': expr_value = parse_expression(tokens) if tokens.pop(0)[0] != ')': raise ValueError("Missing closing parenthesis") return expr_value else: raise ValueError("Unexpected token: {}".format(token)) def parse_term(tokens): left = parse_factor(tokens) while tokens[0][0] in ['*', '/']: op, _ = tokens.pop(0) right = parse_factor(tokens) if op == '*': left *= right else: left /= right return left def parse_expression(tokens): left = parse_term(tokens) while tokens[0][0] in ['+', '-']: op, _ = tokens.pop(0) right = parse_term(tokens) if op == '+': left += right else: left -= right return left def evaluate(expression): tokens = tokenize(expression) return parse_expression(tokens) # Example usage expression = "sin(3 + 2 * 4) - cos(15)" result = evaluate(expression) print(f"{expression} = {result}") |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | import math def tokenize(expression): tokens = [] i = 0 while i < len(expression): if expression[i].isspace(): i += 1 continue elif expression[i].isdigit(): num = expression[i] i += 1 while i < len(expression) and expression[i].isdigit(): num += expression[i] i += 1 tokens.append(('NUMBER', int(num))) elif expression[i] in "+-*/()": tokens.append((expression[i], expression[i])) i += 1 elif expression[i:i+3] in ["sin", "cos"]: tokens.append((expression[i:i+3], expression[i:i+3])) i += 3 else: raise ValueError("Unknown character: {}".format(expression[i])) tokens.append(('EOF', None)) return tokens def parse_factor(tokens): token, value = tokens.pop(0) if token == 'NUMBER': return value elif token in ['sin', 'cos']: factor_value = parse_factor(tokens) if token == 'sin': return math.sin(factor_value) else: return math.cos(factor_value) elif token == '(': expr_value = parse_expression(tokens) if tokens.pop(0)[0] != ')': raise ValueError("Missing closing parenthesis") return expr_value else: raise ValueError("Unexpected token: {}".format(token)) def parse_term(tokens): left = parse_factor(tokens) while tokens[0][0] in ['*', '/']: op, _ = tokens.pop(0) right = parse_factor(tokens) if op == '*': left *= right else: left /= right return left def parse_expression(tokens): left = parse_term(tokens) while tokens[0][0] in ['+', '-']: op, _ = tokens.pop(0) right = parse_term(tokens) if op == '+': left += right else: left -= right return left def evaluate(expression): tokens = tokenize(expression) return parse_expression(tokens) # Example usage expression = "sin(3 + 2 * 4) - cos(15)" result = evaluate(expression) print(f"{expression} = {result}") |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | import math def tokenize(expression): tokens = [] i = 0 while i < len(expression): if expression[i].isspace(): i += 1 continue elif expression[i].isdigit(): num = expression[i] i += 1 while i < len(expression) and expression[i].isdigit(): num += expression[i] i += 1 tokens.append(('NUMBER', int(num))) elif expression[i] in "+-*/()": tokens.append((expression[i], expression[i])) i += 1 elif expression[i:i+3] in ["sin", "cos"]: tokens.append((expression[i:i+3], expression[i:i+3])) i += 3 else: raise ValueError("Unknown character: {}".format(expression[i])) tokens.append(('EOF', None)) return tokens def parse_factor(tokens): token, value = tokens.pop(0) if token == 'NUMBER': return value elif token in ['sin', 'cos']: factor_value = parse_factor(tokens) if token == 'sin': return math.sin(factor_value) else: return math.cos(factor_value) elif token == '(': expr_value = parse_expression(tokens) if tokens.pop(0)[0] != ')': raise ValueError("Missing closing parenthesis") return expr_value else: raise ValueError("Unexpected token: {}".format(token)) def parse_term(tokens): left = parse_factor(tokens) while tokens[0][0] in ['*', '/']: op, _ = tokens.pop(0) right = parse_factor(tokens) if op == '*': left *= right else: left /= right return left def parse_expression(tokens): left = parse_term(tokens) while tokens[0][0] in ['+', '-']: op, _ = tokens.pop(0) right = parse_term(tokens) if op == '+': left += right else: left -= right return left def evaluate(expression): tokens = tokenize(expression) return parse_expression(tokens) # Example usage expression = "sin(3 + 2 * 4) - cos(15)" result = evaluate(expression) print(f"{expression} = {result}") answer = round(evaluate('sin(35+2*4)-cos(15)'), 5) expected = -0.07209 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
sin(3 + 2 * 4) - cos(15) = -0.24030229369188216
All tests passed
Testing if the previous output contains the string All tests passed
: True
Given this BNF-style grammar write a Python function `evaluate(str)` that evaluates the expression <expression> ::= <term> | <expression> '+' <term> | <expression> '-' <term> <term> ::= <factor> | <term> '*' <factor> | <term> '/' <factor> <factor> ::= <number> | '(' <expression> ')' | <prefix-op> <factor> <prefix-op> ::= 'sin' | 'cos' <number> ::= <digit> | <number> <digit> <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' For example you can evaluate this sin(3 + 2 * 4) - cos(15) = -0.240302
Given this BNF-style grammar write a Python function `evaluate(str)` that evaluates the expression <expression> ::= <term> | <expression> '+' <term> | <expression> '-' <term> <term> ::= <factor> | <term> '*' <factor> | <term> '/' <factor> <factor> ::= <number> | '(' <expression> ')' | <prefix-op> <factor> <prefix-op> ::= 'sin' | 'cos' <number> ::= <digit> | <number> <digit> <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' For example you can evaluate this sin(3 + 2 * 4) - cos(15) = -0.240302
To evaluate the expression defined by the given BNF-style grammar, we'll write a Python function named `evaluate`. The function will parse and evaluate expressions recursively according to the defined grammar rules. The evaluation will involve basic arithmetic operations, as well as handling of trigonometric functions (sin and cos) for the prefix operations. We'll start by implementing a basic parser that can handle the grammar's elements step by step, from parsing numbers, factors, terms, to full expressions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | import math def parse_number(s, index): number = 0 while index < len(s) and s[index].isdigit(): number = number * 10 + int(s[index]) index += 1 return number, index def parse_factor(s, index): if s[index] == '(': value, index = parse_expression(s, index + 1) if s[index] == ')': index += 1 return value, index elif s[index:index+3] == 'sin' or s[index:index+3] == 'cos': op = s[index:index+3] value, index = parse_factor(s, index + 3) if op == 'sin': return math.sin(value), index else: return math.cos(value), index else: return parse_number(s, index) def parse_term(s, index): value, index = parse_factor(s, index) while index < len(s) and s[index] in '*/': op = s[index] index += 1 right, index = parse_factor(s, index) if op == '*': value *= right else: value /= right return value, index def parse_expression(s, index): value, index = parse_term(s, index) while index < len(s) and s[index] in '+-': op = s[index] index += 1 right, index = parse_term(s, index) if op == '+': value += right else: value -= right return value, index def evaluate(s): s = s.replace(" ", "") # Remove spaces to simplify parsing result, _ = parse_expression(s, 0) return result # Example usage expression = "sin(3 + 2 * 4) - cos(15)" result = evaluate(expression) print(f"{expression} = {result}") |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | import math def parse_number(s, index): number = 0 while index < len(s) and s[index].isdigit(): number = number * 10 + int(s[index]) index += 1 return number, index def parse_factor(s, index): if s[index] == '(': value, index = parse_expression(s, index + 1) if s[index] == ')': index += 1 return value, index elif s[index:index+3] == 'sin' or s[index:index+3] == 'cos': op = s[index:index+3] value, index = parse_factor(s, index + 3) if op == 'sin': return math.sin(value), index else: return math.cos(value), index else: return parse_number(s, index) def parse_term(s, index): value, index = parse_factor(s, index) while index < len(s) and s[index] in '*/': op = s[index] index += 1 right, index = parse_factor(s, index) if op == '*': value *= right else: value /= right return value, index def parse_expression(s, index): value, index = parse_term(s, index) while index < len(s) and s[index] in '+-': op = s[index] index += 1 right, index = parse_term(s, index) if op == '+': value += right else: value -= right return value, index def evaluate(s): s = s.replace(" ", "") # Remove spaces to simplify parsing result, _ = parse_expression(s, 0) return result # Example usage expression = "sin(3 + 2 * 4) - cos(15)" result = evaluate(expression) print(f"{expression} = {result}") |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | import math def parse_number(s, index): number = 0 while index < len(s) and s[index].isdigit(): number = number * 10 + int(s[index]) index += 1 return number, index def parse_factor(s, index): if s[index] == '(': value, index = parse_expression(s, index + 1) if s[index] == ')': index += 1 return value, index elif s[index:index+3] == 'sin' or s[index:index+3] == 'cos': op = s[index:index+3] value, index = parse_factor(s, index + 3) if op == 'sin': return math.sin(value), index else: return math.cos(value), index else: return parse_number(s, index) def parse_term(s, index): value, index = parse_factor(s, index) while index < len(s) and s[index] in '*/': op = s[index] index += 1 right, index = parse_factor(s, index) if op == '*': value *= right else: value /= right return value, index def parse_expression(s, index): value, index = parse_term(s, index) while index < len(s) and s[index] in '+-': op = s[index] index += 1 right, index = parse_term(s, index) if op == '+': value += right else: value -= right return value, index def evaluate(s): s = s.replace(" ", "") # Remove spaces to simplify parsing result, _ = parse_expression(s, 0) return result # Example usage expression = "sin(3 + 2 * 4) - cos(15)" result = evaluate(expression) print(f"{expression} = {result}") answer = round(evaluate('sin(35+2*4)-cos(15)'), 5) expected = -0.07209 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
sin(3 + 2 * 4) - cos(15) = -0.24030229369188216
All tests passed
Testing if the previous output contains the string All tests passed
: True
Given this BNF-style grammar write a Python function `evaluate(str)` that evaluates the expression <expression> ::= <term> | <expression> '+' <term> | <expression> '-' <term> <term> ::= <factor> | <term> '*' <factor> | <term> '/' <factor> <factor> ::= <number> | '(' <expression> ')' | <prefix-op> <factor> <prefix-op> ::= 'sin' | 'cos' <number> ::= <digit> | <number> <digit> <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' For example you can evaluate this sin(3 + 2 * 4) - cos(15) = -0.240302
Given this BNF-style grammar write a Python function `evaluate(str)` that evaluates the expression <expression> ::= <term> | <expression> '+' <term> | <expression> '-' <term> <term> ::= <factor> | <term> '*' <factor> | <term> '/' <factor> <factor> ::= <number> | '(' <expression> ')' | <prefix-op> <factor> <prefix-op> ::= 'sin' | 'cos' <number> ::= <digit> | <number> <digit> <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' For example you can evaluate this sin(3 + 2 * 4) - cos(15) = -0.240302
To tackle this problem, we'll build a simple recursive descent parser based on the provided grammar. The `evaluate` function will parse the input string according to the rules defined in the BNF grammar and compute the result. Note that we will use Python's built-in `math` library for computing sine and cosine values. Let's break down the implementation according to the grammar: 1. **Expression**: Handles addition and subtraction operations. 2. **Term**: Handles multiplication and division operations. 3. **Factor**: Deals with numbers, expressions enclosed in parentheses, and operations prefixed by `sin` or `cos`. 4. **Prefix-op**: Applies the sine or cosine operation to a factor. 5. **Number**: Parses numeric values. Here's the Python code implementing the above logic:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | import math class Parser: def __init__(self, expression): self.tokens = self.tokenize(expression) self.current_token = None self.next_token() def tokenize(self, expression): # Tokenize the input string: numbers, parentheses, operators, and prefix-ops tokens = [] i = 0 while i < len(expression): if expression[i].isspace(): i += 1 elif expression[i].isdigit(): num = expression[i] i += 1 while i < len(expression) and expression[i].isdigit(): num += expression[i] i += 1 tokens.append(('NUMBER', float(num))) elif expression[i] in '+-*/()': tokens.append(expression[i]) i += 1 elif expression[i:i+3] == 'sin' or expression[i:i+3] == 'cos': tokens.append(expression[i:i+3]) i += 3 else: raise ValueError("Unknown character: {}".format(expression[i])) tokens.append(('EOF', None)) return tokens def next_token(self): self.current_token = self.tokens.pop(0) def parse_expression(self): result = self.parse_term() while self.current_token in ('+', '-'): if self.current_token == '+': self.next_token() result += self.parse_term() elif self.current_token == '-': self.next_token() result -= self.parse_term() return result def parse_term(self): result = self.parse_factor() while self.current_token in ('*', '/'): if self.current_token == '*': self.next_token() result *= self.parse_factor() elif self.current_token == '/': self.next_token() divisor = self.parse_factor() if divisor == 0: raise ValueError("Division by zero") result /= divisor return result def parse_factor(self): if self.current_token == '(': self.next_token() # skip '(' result = self.parse_expression() if self.current_token != ')': raise ValueError("Expected ')'") self.next_token() # skip ')' return result elif self.current_token in ['sin', 'cos']: op = self.current_token self.next_token() if op == 'sin': return math.sin(self.parse_factor()) else: return math.cos(self.parse_factor()) elif isinstance(self.current_token, tuple) and self.current_token[0] == 'NUMBER': value = self.current_token[1] self.next_token() return value else: raise ValueError("Unexpected token: {}".format(self.current_token)) def evaluate(self): return self.parse_expression() def evaluate(expression): parser = Parser(expression) return parser.evaluate() # Example usage print(evaluate("sin(3 + 2 * 4) - cos(15)")) # This should output something close to -0.240302 |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | import math class Parser: def __init__(self, expression): self.tokens = self.tokenize(expression) self.current_token = None self.next_token() def tokenize(self, expression): # Tokenize the input string: numbers, parentheses, operators, and prefix-ops tokens = [] i = 0 while i < len(expression): if expression[i].isspace(): i += 1 elif expression[i].isdigit(): num = expression[i] i += 1 while i < len(expression) and expression[i].isdigit(): num += expression[i] i += 1 tokens.append(('NUMBER', float(num))) elif expression[i] in '+-*/()': tokens.append(expression[i]) i += 1 elif expression[i:i+3] == 'sin' or expression[i:i+3] == 'cos': tokens.append(expression[i:i+3]) i += 3 else: raise ValueError("Unknown character: {}".format(expression[i])) tokens.append(('EOF', None)) return tokens def next_token(self): self.current_token = self.tokens.pop(0) def parse_expression(self): result = self.parse_term() while self.current_token in ('+', '-'): if self.current_token == '+': self.next_token() result += self.parse_term() elif self.current_token == '-': self.next_token() result -= self.parse_term() return result def parse_term(self): result = self.parse_factor() while self.current_token in ('*', '/'): if self.current_token == '*': self.next_token() result *= self.parse_factor() elif self.current_token == '/': self.next_token() divisor = self.parse_factor() if divisor == 0: raise ValueError("Division by zero") result /= divisor return result def parse_factor(self): if self.current_token == '(': self.next_token() # skip '(' result = self.parse_expression() if self.current_token != ')': raise ValueError("Expected ')'") self.next_token() # skip ')' return result elif self.current_token in ['sin', 'cos']: op = self.current_token self.next_token() if op == 'sin': return math.sin(self.parse_factor()) else: return math.cos(self.parse_factor()) elif isinstance(self.current_token, tuple) and self.current_token[0] == 'NUMBER': value = self.current_token[1] self.next_token() return value else: raise ValueError("Unexpected token: {}".format(self.current_token)) def evaluate(self): return self.parse_expression() def evaluate(expression): parser = Parser(expression) return parser.evaluate() # Example usage print(evaluate("sin(3 + 2 * 4) - cos(15)")) # This should output something close to -0.240302 |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | import math class Parser: def __init__(self, expression): self.tokens = self.tokenize(expression) self.current_token = None self.next_token() def tokenize(self, expression): # Tokenize the input string: numbers, parentheses, operators, and prefix-ops tokens = [] i = 0 while i < len(expression): if expression[i].isspace(): i += 1 elif expression[i].isdigit(): num = expression[i] i += 1 while i < len(expression) and expression[i].isdigit(): num += expression[i] i += 1 tokens.append(('NUMBER', float(num))) elif expression[i] in '+-*/()': tokens.append(expression[i]) i += 1 elif expression[i:i+3] == 'sin' or expression[i:i+3] == 'cos': tokens.append(expression[i:i+3]) i += 3 else: raise ValueError("Unknown character: {}".format(expression[i])) tokens.append(('EOF', None)) return tokens def next_token(self): self.current_token = self.tokens.pop(0) def parse_expression(self): result = self.parse_term() while self.current_token in ('+', '-'): if self.current_token == '+': self.next_token() result += self.parse_term() elif self.current_token == '-': self.next_token() result -= self.parse_term() return result def parse_term(self): result = self.parse_factor() while self.current_token in ('*', '/'): if self.current_token == '*': self.next_token() result *= self.parse_factor() elif self.current_token == '/': self.next_token() divisor = self.parse_factor() if divisor == 0: raise ValueError("Division by zero") result /= divisor return result def parse_factor(self): if self.current_token == '(': self.next_token() # skip '(' result = self.parse_expression() if self.current_token != ')': raise ValueError("Expected ')'") self.next_token() # skip ')' return result elif self.current_token in ['sin', 'cos']: op = self.current_token self.next_token() if op == 'sin': return math.sin(self.parse_factor()) else: return math.cos(self.parse_factor()) elif isinstance(self.current_token, tuple) and self.current_token[0] == 'NUMBER': value = self.current_token[1] self.next_token() return value else: raise ValueError("Unexpected token: {}".format(self.current_token)) def evaluate(self): return self.parse_expression() def evaluate(expression): parser = Parser(expression) return parser.evaluate() # Example usage print(evaluate("sin(3 + 2 * 4) - cos(15)")) # This should output something close to -0.240302 answer = round(evaluate('sin(35+2*4)-cos(15)'), 5) expected = -0.07209 assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
-0.24030229369188216
All tests passed
Testing if the previous output contains the string All tests passed
: True