Initial Query

Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE

Output

Based on the provided Python bytecode disassembly, it's clear this code is performing a series of mathematical and array manipulations, likely related to matrix operations given the use of attributes like `shape` and methods from the `numpy` library (`np`). This function, which we'll name `foo`, appears to perform operations on a given matrix to presumably put it in a reduced row echelon form or perform some similar transformation, considering the variable naming and operations performed. Let's reconstruct a Python function that captures the essence of these operations. Note that due to the nature of bytecode, some assumptions about variable names and the broader context (like the content of the list comprehensions) have to be made. The given bytecode snippet suggests a focus on matrix manipulation, so we'll assume `matrix` is a numpy array, and operations like modulo (`%`), shape inspection, and element-wise operations are used accordingly.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np

def foo(matrix, PH, graphlen):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(matrix.shape[0])) for _ in range(matrix.shape[0])]

    matrix = matrix % PH

    while col + extra < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col + extra, col] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]

            if other < col:
                extra += 1
                continue
            
            # Swap rows in matrix and in used_for_row
            matrix[[col, other], :] = matrix[[other, col], :]
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]

        # Pivot adjustments
        if col + extra < graphlen:
            assert np.abs(pivot) in {1, PH - 1}, "Invalid pivot value"
        else:
            assert np.abs(pivot) in {2, PH - 2}, "Invalid pivot value"
            pivot //= 2
        
        matrix[col, :] *= pivot
        matrix[col, :] %= PH

        # Row reduction
        others = np.argwhere(matrix[:, col + extra] != 0).flatten()
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i, :] -= matrix[col, :] * matrix[i, col + extra]
            elif matrix[i, col + extra] != 0:
                matrix[i, :] -= matrix[col, :]
                matrix[i, :] %= PH
            matrix[i, :] %= PH
        
        col += 1

    matrix = np.array(matrix) % PH

    # The final transformations based on used_for_row are not detailed, so we return the modified matrix and pivots
    return matrix, pivots, [sorted(x) for x in used_for_row]
This reconstructed function, `foo`, takes a `matrix`, a modulus `PH`, and a `graphlen` parameter. It performs a sequence of operations that might be part of a broader algorithm for matrix manipulation in a numerical or algorithmic context. The reconstructed function includes assumptions about the purpose of the operations and the intended logic that matches the described bytecode, especially regarding the handling of pivot elements and row operations.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np

def foo(matrix, PH, graphlen):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(matrix.shape[0])) for _ in range(matrix.shape[0])]

    matrix = matrix % PH

    while col + extra < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col + extra, col] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]

            if other < col:
                extra += 1
                continue
            
            # Swap rows in matrix and in used_for_row
            matrix[[col, other], :] = matrix[[other, col], :]
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]

        # Pivot adjustments
        if col + extra < graphlen:
            assert np.abs(pivot) in {1, PH - 1}, "Invalid pivot value"
        else:
            assert np.abs(pivot) in {2, PH - 2}, "Invalid pivot value"
            pivot //= 2
        
        matrix[col, :] *= pivot
        matrix[col, :] %= PH

        # Row reduction
        others = np.argwhere(matrix[:, col + extra] != 0).flatten()
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i, :] -= matrix[col, :] * matrix[i, col + extra]
            elif matrix[i, col + extra] != 0:
                matrix[i, :] -= matrix[col, :]
                matrix[i, :] %= PH
            matrix[i, :] %= PH
        
        col += 1

    matrix = np.array(matrix) % PH

    # The final transformations based on used_for_row are not detailed, so we return the modified matrix and pivots
    return matrix, pivots, [sorted(x) for x in used_for_row]

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np

def foo(matrix, PH, graphlen):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(matrix.shape[0])) for _ in range(matrix.shape[0])]

    matrix = matrix % PH

    while col + extra < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col + extra, col] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]

            if other < col:
                extra += 1
                continue
            
            # Swap rows in matrix and in used_for_row
            matrix[[col, other], :] = matrix[[other, col], :]
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]

        # Pivot adjustments
        if col + extra < graphlen:
            assert np.abs(pivot) in {1, PH - 1}, "Invalid pivot value"
        else:
            assert np.abs(pivot) in {2, PH - 2}, "Invalid pivot value"
            pivot //= 2
        
        matrix[col, :] *= pivot
        matrix[col, :] %= PH

        # Row reduction
        others = np.argwhere(matrix[:, col + extra] != 0).flatten()
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i, :] -= matrix[col, :] * matrix[i, col + extra]
            elif matrix[i, col + extra] != 0:
                matrix[i, :] -= matrix[col, :]
                matrix[i, :] %= PH
            matrix[i, :] %= PH
        
        col += 1

    matrix = np.array(matrix) % PH

    # The final transformations based on used_for_row are not detailed, so we return the modified matrix and pivots
    return matrix, pivots, [sorted(x) for x in used_for_row]



arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

answer = foo(arr, 37)
expected = [[0, 38], [0, 38], [0, 6, 28, 35, 38], [0, 6, 18, 21, 28, 35, 38], [0, 6, 28, 35, 38], [0, 6, 21, 28, 35, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 9, 10, 23, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 25, 27, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 24, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 33, 38], [0, 22, 29, 38], [0, 22, 29, 38], [0, 6, 28, 35, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [14, 18, 21, 28, 35]]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 65, in <module> answer = foo(arr, 37) ^^^^^^^^^^^^ TypeError: foo() missing 1 required positional argument: 'graphlen'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE

Output

Based on the disassembled bytecode you've provided, it appears to be a part of a Python program that performs some operations on a matrix, possibly related to row reduction or similar linear algebraic manipulations. The program involves numpy for matrix operations, and it's adjusting the matrix based on certain conditions and calculations. Given the complexity and the specific details provided in the bytecode, I'll sketch out a Python function `foo` that captures the main operations as described by the bytecode. However, please note that without the actual context and purpose of the original Python code, some assumptions have to be made regarding the function's parameters and operations, especially regarding the list comprehensions and their intended purpose.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np

def foo(matrix, graphlen, PH):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(matrix.shape[0])) for _ in range(matrix.shape[0])]

    matrix = matrix % PH

    while (col + extra < matrix.shape[1] - 1) and (col < matrix.shape[0]):
        if matrix[:, col + extra][0] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            matrix[:, col], matrix[:, other] = list(matrix[:, other]), list(matrix[:, col])
            used_for_row[other], used_for_row[col] = used_for_row[col], used_for_row[other]
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        assert np.abs(pivot) == 1 or np.abs(pivot) == PH - 1 or np.abs(pivot) == 2 or np.abs(pivot) == PH - 2, "Pivot condition failed"
        if pivot == 2 or pivot == PH - 2:
            pivot //= 2
        matrix[col, col] *= pivot
        matrix[col, col] %= PH

        others = np.argwhere(matrix[:, col + extra]).flatten()
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] -= matrix[col]
                    matrix[i] %= PH
            matrix[i] %= PH
        col += 1

    matrix = np.array(matrix) % PH
    result = [sorted(x) for x in used_for_row]
    return result
This function attempts to replicate the operations described in the bytecode, with some educated guesses about the list comprehensions and overall structure of the function. Key operations include modulo adjustments of the matrix with `PH`, row swaps, condition checks on matrix elements, and adjustments based on the `graphlen` parameter. Please adjust the function as necessary to fit the precise requirements and context of your original Python code, as the disassembly only provides a limited view of the program's logic and intent.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np

def foo(matrix, graphlen, PH):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(matrix.shape[0])) for _ in range(matrix.shape[0])]

    matrix = matrix % PH

    while (col + extra < matrix.shape[1] - 1) and (col < matrix.shape[0]):
        if matrix[:, col + extra][0] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            matrix[:, col], matrix[:, other] = list(matrix[:, other]), list(matrix[:, col])
            used_for_row[other], used_for_row[col] = used_for_row[col], used_for_row[other]
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        assert np.abs(pivot) == 1 or np.abs(pivot) == PH - 1 or np.abs(pivot) == 2 or np.abs(pivot) == PH - 2, "Pivot condition failed"
        if pivot == 2 or pivot == PH - 2:
            pivot //= 2
        matrix[col, col] *= pivot
        matrix[col, col] %= PH

        others = np.argwhere(matrix[:, col + extra]).flatten()
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] -= matrix[col]
                    matrix[i] %= PH
            matrix[i] %= PH
        col += 1

    matrix = np.array(matrix) % PH
    result = [sorted(x) for x in used_for_row]
    return result

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np

def foo(matrix, graphlen, PH):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(matrix.shape[0])) for _ in range(matrix.shape[0])]

    matrix = matrix % PH

    while (col + extra < matrix.shape[1] - 1) and (col < matrix.shape[0]):
        if matrix[:, col + extra][0] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            matrix[:, col], matrix[:, other] = list(matrix[:, other]), list(matrix[:, col])
            used_for_row[other], used_for_row[col] = used_for_row[col], used_for_row[other]
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        assert np.abs(pivot) == 1 or np.abs(pivot) == PH - 1 or np.abs(pivot) == 2 or np.abs(pivot) == PH - 2, "Pivot condition failed"
        if pivot == 2 or pivot == PH - 2:
            pivot //= 2
        matrix[col, col] *= pivot
        matrix[col, col] %= PH

        others = np.argwhere(matrix[:, col + extra]).flatten()
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] -= matrix[col]
                    matrix[i] %= PH
            matrix[i] %= PH
        col += 1

    matrix = np.array(matrix) % PH
    result = [sorted(x) for x in used_for_row]
    return result



arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

answer = foo(arr, 37)
expected = [[0, 38], [0, 38], [0, 6, 28, 35, 38], [0, 6, 18, 21, 28, 35, 38], [0, 6, 28, 35, 38], [0, 6, 21, 28, 35, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 9, 10, 23, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 25, 27, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 24, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 33, 38], [0, 22, 29, 38], [0, 22, 29, 38], [0, 6, 28, 35, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [14, 18, 21, 28, 35]]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 53, in <module> answer = foo(arr, 37) ^^^^^^^^^^^^ TypeError: foo() missing 1 required positional argument: 'PH'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE

Output

Based on the disassembled Python byte code you provided, it's evident that the code involves matrix manipulation, possibly for a row reduction or similar linear algebra operation. To convert this byte code back into Python code within a function `foo`, we have to make some assumptions about the functionality and variables used: 1. `matrix` seems to be a two-dimensional array or similar structure, likely a NumPy array given the usage of attributes like `shape` and methods from the NumPy library (`np`). 2. Operations such as modulo (`BINARY_MODULO`), addition (`BINARY_ADD`), and comparisons (`COMPARE_OP`) hint at manipulation of matrix elements and indices. 3. The use of `shape` attribute and slicing suggests that operations are performed on rows and columns of the matrix. 4. There are list comprehensions at the end, indicating the creation of new lists based on the existing matrix or other structures. Given these observations, let's try to craft a Python function that captures the essence of the provided byte code. Note that without the full context, some assumptions about the purpose and intermediate variables (like `graphlen`, `PH`, etc.) must be made.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np

def foo(matrix, PH, graphlen):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(matrix.shape[0])) for _ in range(matrix.shape[1])]
    
    matrix = matrix % PH
    
    while (col + extra) < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col, col + extra] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            
            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        
        if col + extra < graphlen:
            assert np.abs(pivot) in {1, PH - 1}, "Pivot check failed"
        else:
            assert np.abs(pivot) in {2, PH - 2}, "Pivot check failed"
            pivot //= 2
        
        matrix[col] *= pivot
        matrix[col] %= PH
        
        for i in np.argwhere(matrix[:, col + extra] != 0).flatten():
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] = (matrix[i] - matrix[col]) % PH
            matrix[i] %= PH
        
        col += 1
    
    matrix = np.array(matrix) % PH
    final_structure = [sorted(x) for x in used_for_row]
    return final_structure
This function is an attempt to translate the byte code operations back into Python code, focusing on matrix manipulations that resemble operations from linear algebra, particularly row reduction or echelon form transformation. The variables and operations have been inferred to best match the given byte code, with some liberties taken to fill in gaps where the byte code's original context was not fully clear.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np

def foo(matrix, PH, graphlen):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(matrix.shape[0])) for _ in range(matrix.shape[1])]
    
    matrix = matrix % PH
    
    while (col + extra) < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col, col + extra] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            
            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        
        if col + extra < graphlen:
            assert np.abs(pivot) in {1, PH - 1}, "Pivot check failed"
        else:
            assert np.abs(pivot) in {2, PH - 2}, "Pivot check failed"
            pivot //= 2
        
        matrix[col] *= pivot
        matrix[col] %= PH
        
        for i in np.argwhere(matrix[:, col + extra] != 0).flatten():
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] = (matrix[i] - matrix[col]) % PH
            matrix[i] %= PH
        
        col += 1
    
    matrix = np.array(matrix) % PH
    final_structure = [sorted(x) for x in used_for_row]
    return final_structure

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np

def foo(matrix, PH, graphlen):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(matrix.shape[0])) for _ in range(matrix.shape[1])]
    
    matrix = matrix % PH
    
    while (col + extra) < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col, col + extra] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            
            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        
        if col + extra < graphlen:
            assert np.abs(pivot) in {1, PH - 1}, "Pivot check failed"
        else:
            assert np.abs(pivot) in {2, PH - 2}, "Pivot check failed"
            pivot //= 2
        
        matrix[col] *= pivot
        matrix[col] %= PH
        
        for i in np.argwhere(matrix[:, col + extra] != 0).flatten():
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] = (matrix[i] - matrix[col]) % PH
            matrix[i] %= PH
        
        col += 1
    
    matrix = np.array(matrix) % PH
    final_structure = [sorted(x) for x in used_for_row]
    return final_structure



arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

answer = foo(arr, 37)
expected = [[0, 38], [0, 38], [0, 6, 28, 35, 38], [0, 6, 18, 21, 28, 35, 38], [0, 6, 28, 35, 38], [0, 6, 21, 28, 35, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 9, 10, 23, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 25, 27, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 24, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 33, 38], [0, 22, 29, 38], [0, 22, 29, 38], [0, 6, 28, 35, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [14, 18, 21, 28, 35]]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 58, in <module> answer = foo(arr, 37) ^^^^^^^^^^^^ TypeError: foo() missing 1 required positional argument: 'graphlen'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE

Output

Based on the disassembled Python bytecode you've provided, we can reconstruct the original Python function. Given the complexity and detail within the bytecode, the reconstruction will attempt to follow the logic and operations indicated, focusing on the key operations performed on the matrix and other variables. Please note that due to the nature of bytecode, some assumptions about variable names (beyond those provided) and operations must be made. The reconstructed function attempts to capture the essence of operations such as matrix manipulation, loop iterations, and conditional checks. Here's the reconstructed Python function named `foo`:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np

def foo(matrix, graphlen, PH):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [{i} for i in range(matrix.shape[0])]  # Assuming matrix has an attribute shape

    matrix = matrix % PH

    while col + extra < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col, col + extra] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            matrix[[col, other]] = matrix[[other, col]]
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        if col + extra < graphlen:
            if not (np.abs(pivot) == 1 or np.abs(pivot) == PH - 1):
                assert False
        else:
            if not (np.abs(pivot) == 2 or np.abs(pivot) == PH - 2):
                assert False
            pivot //= 2
        
        matrix[col, col] *= pivot
        matrix[col, col] %= PH

        others = np.argwhere(matrix[:, col + extra]).flatten()
        
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] -= matrix[col]
                    matrix[i] %= PH
            matrix[i] %= PH
        col += 1

    matrix = np.array(matrix) % PH
    return [sorted(x) for x in used_for_row]
Given the bytecode, here are some key points about the reconstruction: 1. **Matrix Operations**: The original function performs various operations on a matrix, including element-wise modification, row swapping, and modulo operations with a given value `PH`. 2. **Looping and Conditionals**: The code iterates through columns and performs checks on matrix elements to decide on swapping rows or adjusting values. 3. **List Comprehensions**: Two code objects are list comprehensions that generate sets and sorted lists from iterables, which are reconstructed based on the bytecode for list comprehensions. This reconstruction aims to replicate the functionality as closely as possible based on the given bytecode. However, without the original Python source code, some specific details (especially variable names and the exact nature of some operations) are assumed based on standard practices and the operations presented.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np

def foo(matrix, graphlen, PH):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [{i} for i in range(matrix.shape[0])]  # Assuming matrix has an attribute shape

    matrix = matrix % PH

    while col + extra < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col, col + extra] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            matrix[[col, other]] = matrix[[other, col]]
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        if col + extra < graphlen:
            if not (np.abs(pivot) == 1 or np.abs(pivot) == PH - 1):
                assert False
        else:
            if not (np.abs(pivot) == 2 or np.abs(pivot) == PH - 2):
                assert False
            pivot //= 2
        
        matrix[col, col] *= pivot
        matrix[col, col] %= PH

        others = np.argwhere(matrix[:, col + extra]).flatten()
        
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] -= matrix[col]
                    matrix[i] %= PH
            matrix[i] %= PH
        col += 1

    matrix = np.array(matrix) % PH
    return [sorted(x) for x in used_for_row]

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np

def foo(matrix, graphlen, PH):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [{i} for i in range(matrix.shape[0])]  # Assuming matrix has an attribute shape

    matrix = matrix % PH

    while col + extra < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col, col + extra] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            matrix[[col, other]] = matrix[[other, col]]
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        if col + extra < graphlen:
            if not (np.abs(pivot) == 1 or np.abs(pivot) == PH - 1):
                assert False
        else:
            if not (np.abs(pivot) == 2 or np.abs(pivot) == PH - 2):
                assert False
            pivot //= 2
        
        matrix[col, col] *= pivot
        matrix[col, col] %= PH

        others = np.argwhere(matrix[:, col + extra]).flatten()
        
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] -= matrix[col]
                    matrix[i] %= PH
            matrix[i] %= PH
        col += 1

    matrix = np.array(matrix) % PH
    return [sorted(x) for x in used_for_row]



arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

answer = foo(arr, 37)
expected = [[0, 38], [0, 38], [0, 6, 28, 35, 38], [0, 6, 18, 21, 28, 35, 38], [0, 6, 28, 35, 38], [0, 6, 21, 28, 35, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 9, 10, 23, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 25, 27, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 24, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 33, 38], [0, 22, 29, 38], [0, 22, 29, 38], [0, 6, 28, 35, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [14, 18, 21, 28, 35]]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 58, in <module> answer = foo(arr, 37) ^^^^^^^^^^^^ TypeError: foo() missing 1 required positional argument: 'PH'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE

Output

The provided Python bytecode represents a complex algorithm, potentially related to matrix operations, given the references to matrix shapes, modifications, and conditions related to matrix elements. To reconstruct a Python function named `foo` from this disassembly, we'll need to infer the purpose and logic behind these operations. Let's make some general assumptions based on the bytecode and typical conventions in matrix manipulation algorithms: 1. The function seems to be modifying a matrix (`matrix`) in-place, given the repeated loads and stores to this variable. 2. It uses some external variables like `np` (typically NumPy) for matrix operations. 3. The algorithm involves iterating over rows and columns, swapping elements, and performing arithmetic operations, which are common in matrix transformation algorithms (e.g., for reducing matrices to row-echelon form). 4. The constants and variables like `PH`, `extra`, `col`, `pivots`, `used_for_row`, and `graphlen` are used as part of the algorithm's logic. 5. The `<listcomp>` code objects indicate list comprehensions used within the function, likely for generating lists based on certain conditions. Given these observations, let's attempt to write a Python function encapsulating this logic. Note that due to the nature of bytecode, some assumptions about variable names and their roles within the algorithm are made, and specific details might not exactly match the original Python code but should capture the overall logic.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np

def foo(matrix, PH, graphlen):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(x)) for x in matrix.shape[0]]
    
    matrix %= PH
    
    while col + extra < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col, col + extra] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        
        if col + extra < graphlen:
            if np.abs(pivot) == 1 or np.abs(pivot) == PH - 1:
                pass  # Conditions for pivot validity
            elif np.abs(pivot) == 2 or np.abs(pivot) == PH - 2:
                pivot //= 2
            else:
                assert False, "Invalid pivot value"
        
        matrix[col, col] *= pivot
        matrix[col] %= PH
        
        others = np.argwhere(matrix[:, col + extra]).flatten()
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] = (matrix[i] - matrix[col]) % PH
            matrix[i] %= PH
        
        col += 1
    
    matrix = np.array(matrix) % PH
    sorted_used_for_row = [sorted(x) for x in used_for_row]
    
    return matrix, sorted_used_for_row
This function attempts to encapsulate the operations described in the bytecode. However, without more context about the specific algorithm (e.g., whether it's related to Gaussian elimination, finding a reduced row echelon form, or another matrix operation), certain details like condition checks and list comprehensions' purposes are assumed based on common tasks in matrix manipulation.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np

def foo(matrix, PH, graphlen):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(x)) for x in matrix.shape[0]]
    
    matrix %= PH
    
    while col + extra < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col, col + extra] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        
        if col + extra < graphlen:
            if np.abs(pivot) == 1 or np.abs(pivot) == PH - 1:
                pass  # Conditions for pivot validity
            elif np.abs(pivot) == 2 or np.abs(pivot) == PH - 2:
                pivot //= 2
            else:
                assert False, "Invalid pivot value"
        
        matrix[col, col] *= pivot
        matrix[col] %= PH
        
        others = np.argwhere(matrix[:, col + extra]).flatten()
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] = (matrix[i] - matrix[col]) % PH
            matrix[i] %= PH
        
        col += 1
    
    matrix = np.array(matrix) % PH
    sorted_used_for_row = [sorted(x) for x in used_for_row]
    
    return matrix, sorted_used_for_row

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np

def foo(matrix, PH, graphlen):
    extra = 0
    col = 0
    pivots = []
    used_for_row = [set(range(x)) for x in matrix.shape[0]]
    
    matrix %= PH
    
    while col + extra < matrix.shape[1] - 1 and col < matrix.shape[0]:
        if matrix[col, col + extra] == 0:
            if np.all(matrix[:, col] == 0):
                extra += 1
                continue
            other = np.argwhere(matrix[:, col + extra] != 0).flatten()[-1]
            if other < col:
                extra += 1
                continue
            matrix[col], matrix[other] = list(matrix[other]), list(matrix[col])
            used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col]
        
        pivots.append(col + extra)
        pivot = matrix[col, col + extra]
        
        if col + extra < graphlen:
            if np.abs(pivot) == 1 or np.abs(pivot) == PH - 1:
                pass  # Conditions for pivot validity
            elif np.abs(pivot) == 2 or np.abs(pivot) == PH - 2:
                pivot //= 2
            else:
                assert False, "Invalid pivot value"
        
        matrix[col, col] *= pivot
        matrix[col] %= PH
        
        others = np.argwhere(matrix[:, col + extra]).flatten()
        for i in others:
            if i == col:
                continue
            used_for_row[i] |= used_for_row[col]
            if col < graphlen:
                matrix[i] -= matrix[col] * matrix[i, col + extra]
            else:
                if matrix[i, col + extra] != 0:
                    matrix[i] = (matrix[i] - matrix[col]) % PH
            matrix[i] %= PH
        
        col += 1
    
    matrix = np.array(matrix) % PH
    sorted_used_for_row = [sorted(x) for x in used_for_row]
    
    return matrix, sorted_used_for_row



arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

answer = foo(arr, 37)
expected = [[0, 38], [0, 38], [0, 6, 28, 35, 38], [0, 6, 18, 21, 28, 35, 38], [0, 6, 28, 35, 38], [0, 6, 21, 28, 35, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 9, 10, 23, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 25, 27, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 24, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 33, 38], [0, 22, 29, 38], [0, 22, 29, 38], [0, 6, 28, 35, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [14, 18, 21, 28, 35]]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 61, in <module> answer = foo(arr, 37) ^^^^^^^^^^^^ TypeError: foo() missing 1 required positional argument: 'graphlen'

Substring Evaluation

Testing if the previous output contains the string All tests passed: False