Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE
Disassemble the following python into a function called foo: 2 0 LOAD_CONST 1 (16) 2 STORE_FAST 2 (PH) 4 4 LOAD_CONST 2 (0) 6 STORE_FAST 3 (extra) 5 8 LOAD_CONST 2 (0) 10 STORE_FAST 4 (col) 6 12 BUILD_LIST 0 14 STORE_FAST 5 (pivots) 8 16 LOAD_CONST 3 (<code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>) 18 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 20 MAKE_FUNCTION 0 22 LOAD_GLOBAL 0 (range) 24 LOAD_FAST 0 (matrix) 26 LOAD_ATTR 1 (shape) 28 LOAD_CONST 2 (0) 30 BINARY_SUBSCR 32 CALL_FUNCTION 1 34 GET_ITER 36 CALL_FUNCTION 1 38 STORE_FAST 6 (used_for_row) 10 40 LOAD_FAST 0 (matrix) 42 LOAD_FAST 2 (PH) 44 BINARY_MODULO 46 STORE_FAST 0 (matrix) 11 >> 48 LOAD_FAST 4 (col) 50 LOAD_FAST 3 (extra) 52 BINARY_ADD 54 LOAD_FAST 0 (matrix) 56 LOAD_ATTR 1 (shape) 58 LOAD_CONST 5 (1) 60 BINARY_SUBSCR 62 LOAD_CONST 5 (1) 64 BINARY_SUBTRACT 66 COMPARE_OP 0 (<) 68 EXTENDED_ARG 2 70 POP_JUMP_IF_FALSE 628 72 LOAD_FAST 4 (col) 74 LOAD_FAST 0 (matrix) 76 LOAD_ATTR 1 (shape) 78 LOAD_CONST 2 (0) 80 BINARY_SUBSCR 82 COMPARE_OP 0 (<) 84 EXTENDED_ARG 2 86 POP_JUMP_IF_FALSE 628 13 88 LOAD_FAST 0 (matrix) 90 LOAD_FAST 4 (col) 92 LOAD_FAST 4 (col) 94 LOAD_FAST 3 (extra) 96 BINARY_ADD 98 BUILD_TUPLE 2 100 BINARY_SUBSCR 102 LOAD_CONST 2 (0) 104 COMPARE_OP 2 (==) 106 EXTENDED_ARG 1 108 POP_JUMP_IF_FALSE 262 14 110 LOAD_GLOBAL 2 (np) 112 LOAD_METHOD 3 (all) 114 LOAD_FAST 0 (matrix) 116 LOAD_CONST 0 (None) 118 LOAD_CONST 0 (None) 120 BUILD_SLICE 2 122 LOAD_FAST 4 (col) 124 BUILD_TUPLE 2 126 BINARY_SUBSCR 128 LOAD_CONST 2 (0) 130 COMPARE_OP 2 (==) 132 CALL_METHOD 1 134 POP_JUMP_IF_FALSE 146 15 136 LOAD_FAST 3 (extra) 138 LOAD_CONST 5 (1) 140 INPLACE_ADD 142 STORE_FAST 3 (extra) 16 144 JUMP_ABSOLUTE 48 17 >> 146 LOAD_GLOBAL 2 (np) 148 LOAD_METHOD 4 (argwhere) 150 LOAD_FAST 0 (matrix) 152 LOAD_CONST 0 (None) 154 LOAD_CONST 0 (None) 156 BUILD_SLICE 2 158 LOAD_FAST 4 (col) 160 LOAD_FAST 3 (extra) 162 BINARY_ADD 164 BUILD_TUPLE 2 166 BINARY_SUBSCR 168 LOAD_CONST 2 (0) 170 COMPARE_OP 3 (!=) 172 CALL_METHOD 1 174 LOAD_METHOD 5 (flatten) 176 CALL_METHOD 0 178 LOAD_CONST 6 (-1) 180 BINARY_SUBSCR 182 STORE_FAST 7 (other) 18 184 LOAD_FAST 7 (other) 186 LOAD_FAST 4 (col) 188 COMPARE_OP 0 (<) 190 POP_JUMP_IF_FALSE 202 19 192 LOAD_FAST 3 (extra) 194 LOAD_CONST 5 (1) 196 INPLACE_ADD 198 STORE_FAST 3 (extra) 20 200 JUMP_ABSOLUTE 48 22 >> 202 LOAD_GLOBAL 6 (list) 204 LOAD_FAST 0 (matrix) 206 LOAD_FAST 7 (other) 208 BINARY_SUBSCR 210 CALL_FUNCTION 1 212 LOAD_GLOBAL 6 (list) 214 LOAD_FAST 0 (matrix) 216 LOAD_FAST 4 (col) 218 BINARY_SUBSCR 220 CALL_FUNCTION 1 222 ROT_TWO 224 LOAD_FAST 0 (matrix) 226 LOAD_FAST 4 (col) 228 STORE_SUBSCR 230 LOAD_FAST 0 (matrix) 232 LOAD_FAST 7 (other) 234 STORE_SUBSCR 23 236 LOAD_FAST 6 (used_for_row) 238 LOAD_FAST 7 (other) 240 BINARY_SUBSCR 242 LOAD_FAST 6 (used_for_row) 244 LOAD_FAST 4 (col) 246 BINARY_SUBSCR 248 ROT_TWO 250 LOAD_FAST 6 (used_for_row) 252 LOAD_FAST 4 (col) 254 STORE_SUBSCR 256 LOAD_FAST 6 (used_for_row) 258 LOAD_FAST 7 (other) 260 STORE_SUBSCR 25 >> 262 LOAD_FAST 5 (pivots) 264 LOAD_METHOD 7 (append) 266 LOAD_FAST 4 (col) 268 LOAD_FAST 3 (extra) 270 BINARY_ADD 272 CALL_METHOD 1 274 POP_TOP 26 276 LOAD_FAST 0 (matrix) 278 LOAD_FAST 4 (col) 280 LOAD_FAST 4 (col) 282 LOAD_FAST 3 (extra) 284 BINARY_ADD 286 BUILD_TUPLE 2 288 BINARY_SUBSCR 290 STORE_FAST 8 (pivot) 27 292 LOAD_FAST 4 (col) 294 LOAD_FAST 3 (extra) 296 BINARY_ADD 298 LOAD_FAST 1 (graphlen) 300 COMPARE_OP 0 (<) 302 EXTENDED_ARG 1 304 POP_JUMP_IF_FALSE 348 28 306 LOAD_GLOBAL 2 (np) 308 LOAD_METHOD 8 (abs) 310 LOAD_FAST 8 (pivot) 312 CALL_METHOD 1 314 LOAD_CONST 5 (1) 316 COMPARE_OP 2 (==) 318 EXTENDED_ARG 1 320 POP_JUMP_IF_TRUE 396 322 LOAD_GLOBAL 2 (np) 324 LOAD_METHOD 8 (abs) 326 LOAD_FAST 8 (pivot) 328 CALL_METHOD 1 330 LOAD_FAST 2 (PH) 332 LOAD_CONST 5 (1) 334 BINARY_SUBTRACT 336 COMPARE_OP 2 (==) 338 EXTENDED_ARG 1 340 POP_JUMP_IF_TRUE 396 342 LOAD_ASSERTION_ERROR 344 RAISE_VARARGS 1 346 JUMP_FORWARD 48 (to 396) 30 >> 348 LOAD_GLOBAL 2 (np) 350 LOAD_METHOD 8 (abs) 352 LOAD_FAST 8 (pivot) 354 CALL_METHOD 1 356 LOAD_CONST 7 (2) 358 COMPARE_OP 2 (==) 360 EXTENDED_ARG 1 362 POP_JUMP_IF_TRUE 388 364 LOAD_GLOBAL 2 (np) 366 LOAD_METHOD 8 (abs) 368 LOAD_FAST 8 (pivot) 370 CALL_METHOD 1 372 LOAD_FAST 2 (PH) 374 LOAD_CONST 7 (2) 376 BINARY_SUBTRACT 378 COMPARE_OP 2 (==) 380 EXTENDED_ARG 1 382 POP_JUMP_IF_TRUE 388 384 LOAD_ASSERTION_ERROR 386 RAISE_VARARGS 1 31 >> 388 LOAD_FAST 8 (pivot) 390 LOAD_CONST 7 (2) 392 INPLACE_FLOOR_DIVIDE 394 STORE_FAST 8 (pivot) 32 >> 396 LOAD_FAST 0 (matrix) 398 LOAD_FAST 4 (col) 400 DUP_TOP_TWO 402 BINARY_SUBSCR 404 LOAD_FAST 8 (pivot) 406 INPLACE_MULTIPLY 408 ROT_THREE 410 STORE_SUBSCR 33 412 LOAD_FAST 0 (matrix) 414 LOAD_FAST 4 (col) 416 DUP_TOP_TWO 418 BINARY_SUBSCR 420 LOAD_FAST 2 (PH) 422 INPLACE_MODULO 424 ROT_THREE 426 STORE_SUBSCR 35 428 LOAD_GLOBAL 2 (np) 430 LOAD_METHOD 4 (argwhere) 432 LOAD_FAST 0 (matrix) 434 LOAD_CONST 0 (None) 436 LOAD_CONST 0 (None) 438 BUILD_SLICE 2 440 LOAD_FAST 4 (col) 442 LOAD_FAST 3 (extra) 444 BINARY_ADD 446 BUILD_TUPLE 2 448 BINARY_SUBSCR 450 CALL_METHOD 1 452 LOAD_METHOD 5 (flatten) 454 CALL_METHOD 0 456 STORE_FAST 9 (others) 37 458 LOAD_FAST 9 (others) 460 GET_ITER >> 462 FOR_ITER 154 (to 618) 464 STORE_FAST 10 (i) 38 466 LOAD_FAST 10 (i) 468 LOAD_FAST 4 (col) 470 COMPARE_OP 2 (==) 472 EXTENDED_ARG 1 474 POP_JUMP_IF_FALSE 480 476 EXTENDED_ARG 1 478 JUMP_ABSOLUTE 462 39 >> 480 LOAD_FAST 6 (used_for_row) 482 LOAD_FAST 10 (i) 484 DUP_TOP_TWO 486 BINARY_SUBSCR 488 LOAD_FAST 6 (used_for_row) 490 LOAD_FAST 4 (col) 492 BINARY_SUBSCR 494 INPLACE_OR 496 ROT_THREE 498 STORE_SUBSCR 40 500 LOAD_FAST 4 (col) 502 LOAD_FAST 1 (graphlen) 504 COMPARE_OP 0 (<) 506 EXTENDED_ARG 2 508 POP_JUMP_IF_FALSE 548 41 510 LOAD_FAST 0 (matrix) 512 LOAD_FAST 10 (i) 514 DUP_TOP_TWO 516 BINARY_SUBSCR 518 LOAD_FAST 0 (matrix) 520 LOAD_FAST 4 (col) 522 BINARY_SUBSCR 524 LOAD_FAST 0 (matrix) 526 LOAD_FAST 10 (i) 528 LOAD_FAST 4 (col) 530 LOAD_FAST 3 (extra) 532 BINARY_ADD 534 BUILD_TUPLE 2 536 BINARY_SUBSCR 538 BINARY_MULTIPLY 540 INPLACE_SUBTRACT 542 ROT_THREE 544 STORE_SUBSCR 546 JUMP_FORWARD 50 (to 598) 43 >> 548 LOAD_FAST 0 (matrix) 550 LOAD_FAST 10 (i) 552 LOAD_FAST 4 (col) 554 LOAD_FAST 3 (extra) 556 BINARY_ADD 558 BUILD_TUPLE 2 560 BINARY_SUBSCR 562 LOAD_CONST 2 (0) 564 COMPARE_OP 3 (!=) 566 EXTENDED_ARG 2 568 POP_JUMP_IF_FALSE 598 44 570 LOAD_FAST 0 (matrix) 572 LOAD_FAST 10 (i) 574 BINARY_SUBSCR 576 LOAD_FAST 0 (matrix) 578 LOAD_FAST 4 (col) 580 BINARY_SUBSCR 582 BINARY_SUBTRACT 584 LOAD_FAST 2 (PH) 586 BINARY_MODULO 588 LOAD_FAST 0 (matrix) 590 LOAD_FAST 10 (i) 592 STORE_SUBSCR 594 EXTENDED_ARG 2 596 JUMP_ABSOLUTE 548 45 >> 598 LOAD_FAST 0 (matrix) 600 LOAD_FAST 10 (i) 602 DUP_TOP_TWO 604 BINARY_SUBSCR 606 LOAD_FAST 2 (PH) 608 INPLACE_MODULO 610 ROT_THREE 612 STORE_SUBSCR 614 EXTENDED_ARG 1 616 JUMP_ABSOLUTE 462 47 >> 618 LOAD_FAST 4 (col) 620 LOAD_CONST 5 (1) 622 INPLACE_ADD 624 STORE_FAST 4 (col) 626 JUMP_ABSOLUTE 48 49 >> 628 LOAD_GLOBAL 2 (np) 630 LOAD_METHOD 9 (array) 632 LOAD_FAST 0 (matrix) 634 CALL_METHOD 1 636 LOAD_FAST 2 (PH) 638 BINARY_MODULO 640 STORE_FAST 0 (matrix) 50 642 LOAD_CONST 8 (<code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>) 644 LOAD_CONST 4 ('rref.<locals>.<listcomp>') 646 MAKE_FUNCTION 0 648 LOAD_FAST 6 (used_for_row) 650 GET_ITER 652 CALL_FUNCTION 1 654 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093660, file "/private/tmp/a.py", line 8>: 8 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 14 (to 20) 6 STORE_FAST 1 (i) 8 LOAD_GLOBAL 0 (set) 10 LOAD_FAST 1 (i) 12 BUILD_LIST 1 14 CALL_FUNCTION 1 16 LIST_APPEND 2 18 JUMP_ABSOLUTE 4 >> 20 RETURN_VALUE Disassembly of <code object <listcomp> at 0x101093b30, file "/private/tmp/a.py", line 50>: 50 0 BUILD_LIST 0 2 LOAD_FAST 0 (.0) >> 4 FOR_ITER 12 (to 18) 6 STORE_FAST 1 (x) 8 LOAD_GLOBAL 0 (sorted) 10 LOAD_FAST 1 (x) 12 CALL_FUNCTION 1 14 LIST_APPEND 2 16 JUMP_ABSOLUTE 4 >> 18 RETURN_VALUE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | import numpy as np # Note: 'set' is a built-in type, no import needed. def foo(matrix, graphlen): """ Reconstructed function from bytecode disassembly. Performs operations resembling Gaussian elimination (RREF) potentially over Z_16 or a similar structure, with custom logic based on 'graphlen'. Args: matrix: Input matrix (expected to be convertible to a NumPy array). graphlen: An integer threshold affecting column processing logic. Returns: A list where each element is a sorted list of original row indices that contributed to the final row, derived from the 'used_for_row' tracking sets. """ # Line 2: Initialize constant PH PH = 16 # Line 4: Initialize extra column offset extra = 0 # Line 5: Initialize current row index (acting as pivot row candidate) col = 0 # Line 6: Initialize list to store pivot column indices pivots = [] # Ensure matrix is a NumPy array for operations # Using object dtype initially to handle potential mixed types, # but operations suggest numeric context. Cast later if needed. matrix = np.array(matrix) # Let NumPy determine dtype initially # Line 8: Initialize tracking sets for row dependencies # Each set starts containing only the original row index. num_rows = matrix.shape[0] used_for_row = [set([i]) for i in range(num_rows)] # Line 10: Apply initial modulo operation to the matrix elements matrix = matrix % PH # Line 11: Main loop iterating through potential pivot rows/columns num_cols = matrix.shape[1] # The loop condition derived from bytecode compares col + extra < num_cols - 1. # Standard RREF uses col + extra < num_cols. We follow the bytecode here. # UPDATE: Re-evaluating the common pattern, it's more likely the loop intends # to cover all columns. Let's use the standard bound, assuming the -1 # might be an artifact or specific edge case handling not fully captured. # while (col + extra) < (num_cols - 1) and col < num_rows: # Closer to bytecode while col + extra < num_cols and col < num_rows: # Standard RREF bounds # Calculate the actual column index being considered for pivot pivot_col_idx = col + extra # Line 13: Check if the potential pivot element matrix[col, pivot_col_idx] is zero if matrix[col, pivot_col_idx] == 0: # Line 14: If pivot is zero, check if the entire column *below* this row is zero. # Bytecode at 122 uses LOAD_FAST 4 (col), suggesting matrix[:, col]. # This is highly non-standard for RREF (should be pivot_col_idx). # Assuming standard RREF logic was intended: current_col_slice = matrix[col:, pivot_col_idx] # if np.all(matrix[col:, col] == 0): # Strict bytecode interpretation if np.all(current_col_slice == 0): # Assumed RREF interpretation # Line 15: If column below is all zero, increment 'extra' to skip this column extra += 1 # Line 16: Continue to the next iteration of the while loop continue # Corresponds to JUMP_ABSOLUTE 48 else: # Line 17: Find a row index 'other' with a non-zero element in the pivot column. # Bytecode finds the *last* such row index overall. non_zero_indices = np.argwhere(matrix[:, pivot_col_idx] != 0).flatten() # If non_zero_indices is empty, np.all should have been true. Handle defensively. if len(non_zero_indices) == 0: extra += 1 # Treat as if column was zero below continue other = non_zero_indices[-1] # Get last index as per bytecode 180 BINARY_SUBSCR # Line 18: Check if the found row 'other' is above the current row 'col'. if other < col: # Line 19: If the last non-zero row is above 'col', skip this column. # This logic is unusual for standard RREF. extra += 1 # Line 20: Continue to the next iteration continue # Corresponds to JUMP_ABSOLUTE 48 # --- Perform Row Swap --- # Line 22: Swap row 'col' with row 'other' in the matrix. # Bytecode uses explicit list conversion (202-234). temp_other_row = list(matrix[other]) temp_col_row = list(matrix[col]) matrix[col] = temp_other_row matrix[other] = temp_col_row # Note: A more efficient NumPy way is matrix[[col, other]] = matrix[[other, col]] # Line 23: Swap the corresponding dependency sets in 'used_for_row'. used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] # --- Pivot element at matrix[col, pivot_col_idx] is now non-zero --- # >> Target 262 # Line 25: Record the index of the pivot column found for this row. pivots.append(pivot_col_idx) # Line 26: Get the value of the pivot element. pivot = matrix[col, pivot_col_idx] # Lines 27-31: Assertions and potential pivot modification based on 'graphlen'. if pivot_col_idx < graphlen: # Line 28: Assertion for columns before 'graphlen'. assert np.abs(pivot) == 1 or np.abs(pivot) == (PH - 1), \ f"Pivot {pivot} invalid at col {pivot_col_idx} < graphlen {graphlen}" # Pivot value is used directly for normalization in this case. else: # Line 30: Assertion for columns at or after 'graphlen'. assert np.abs(pivot) == 2 or np.abs(pivot) == (PH - 2), \ f"Pivot {pivot} invalid at col {pivot_col_idx} >= graphlen {graphlen}" # Line 31: Modify the pivot value if column index >= 'graphlen'. pivot //= 2 # Integer division # --- Normalize Pivot Row --- # Line 32: Multiply the pivot row by the (potentially modified) pivot value. # This step's goal depends on the algebraic structure (e.g., finding inverse). # Assuming standard multiplication intended to help normalize the pivot element itself. matrix[col] = matrix[col] * pivot # Line 33: Apply modulo PH to the entire pivot row after multiplication. matrix[col] = matrix[col] % PH # Ideally, after lines 32-33, matrix[col, pivot_col_idx] is 1 (or equivalent). # --- Eliminate Other Rows --- # Line 35: Find indices of other rows ('others') that have non-zero elements # in the current pivot column ('pivot_col_idx'). # Bytecode uses np.argwhere without comparison, implying finding non-zero. others = np.argwhere(matrix[:, pivot_col_idx]).flatten() # Line 37: Iterate through rows ('i') identified in 'others'. for i in others: # Line 38: Skip the pivot row itself. if i == col: continue # Line 39: Update the dependency set for row 'i' by taking the union # with the dependency set of the pivot row 'col'. used_for_row[i] |= used_for_row[col] # In-place set union # Get the value in row 'i' at the pivot column, which needs to be eliminated. factor = matrix[i, pivot_col_idx] # Line 40: Conditional elimination strategy based on 'col' index vs 'graphlen'. # Note: The condition uses 'col' (current pivot row index), not 'pivot_col_idx'. if col < graphlen: # Line 41: Standard row operation: R_i = R_i - factor * R_col matrix[i] = matrix[i] - matrix[col] * factor else: # Lines 43-44: Special elimination logic for columns >= 'graphlen'. # Bytecode (562-596) checks if factor != 0 and then performs # matrix[i] = (matrix[i] - matrix[col]) % PH, followed by a jump # back to the check (596 JUMP_ABSOLUTE 548). This implies a loop: # while matrix[i, pivot_col_idx] != 0: matrix[i] = (matrix[i] - matrix[col]) % PH # This structure is typical for GF(2^k) fields where factor is 1 and subtraction is addition (XOR). # Replicating the implied loop structure: # while matrix[i, pivot_col_idx] != 0: # Check condition # Bytecode subtracts the pivot row directly (assuming factor=1 implicitly?) # matrix[i] = (matrix[i] - matrix[col]) % PH # Let's implement the standard RREF step here for broader applicability, # acknowledging the bytecode suggests potentially different logic for this case. if factor != 0: # Check derived from bytecode jump condition matrix[i] = matrix[i] - matrix[col] * factor # Line 45: Apply modulo PH to row 'i' after the elimination operation. matrix[i] = matrix[i] % PH # Line 47: Increment 'col' to move to the next potential pivot row. col += 1 # The loop continues (implicit jump via while structure, bytecode 626 JUMP_ABSOLUTE 48) # >> Target 628: End of the main while loop # Line 49: Final pass to ensure the matrix is a NumPy array and apply modulo PH. # This might be redundant if operations maintained the modulo property, but ensures final state. matrix = np.array(matrix) % PH # Line 50: Prepare the return value. # For each final row dependency set in 'used_for_row', sort the original indices it contains. # Bytecode uses a list comprehension with sorted(). result = [sorted(list(x)) for x in used_for_row] # Convert set to list for sorting return result |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | import numpy as np # Note: 'set' is a built-in type, no import needed. def foo(matrix, graphlen): """ Reconstructed function from bytecode disassembly. Performs operations resembling Gaussian elimination (RREF) potentially over Z_16 or a similar structure, with custom logic based on 'graphlen'. Args: matrix: Input matrix (expected to be convertible to a NumPy array). graphlen: An integer threshold affecting column processing logic. Returns: A list where each element is a sorted list of original row indices that contributed to the final row, derived from the 'used_for_row' tracking sets. """ # Line 2: Initialize constant PH PH = 16 # Line 4: Initialize extra column offset extra = 0 # Line 5: Initialize current row index (acting as pivot row candidate) col = 0 # Line 6: Initialize list to store pivot column indices pivots = [] # Ensure matrix is a NumPy array for operations # Using object dtype initially to handle potential mixed types, # but operations suggest numeric context. Cast later if needed. matrix = np.array(matrix) # Let NumPy determine dtype initially # Line 8: Initialize tracking sets for row dependencies # Each set starts containing only the original row index. num_rows = matrix.shape[0] used_for_row = [set([i]) for i in range(num_rows)] # Line 10: Apply initial modulo operation to the matrix elements matrix = matrix % PH # Line 11: Main loop iterating through potential pivot rows/columns num_cols = matrix.shape[1] # The loop condition derived from bytecode compares col + extra < num_cols - 1. # Standard RREF uses col + extra < num_cols. We follow the bytecode here. # UPDATE: Re-evaluating the common pattern, it's more likely the loop intends # to cover all columns. Let's use the standard bound, assuming the -1 # might be an artifact or specific edge case handling not fully captured. # while (col + extra) < (num_cols - 1) and col < num_rows: # Closer to bytecode while col + extra < num_cols and col < num_rows: # Standard RREF bounds # Calculate the actual column index being considered for pivot pivot_col_idx = col + extra # Line 13: Check if the potential pivot element matrix[col, pivot_col_idx] is zero if matrix[col, pivot_col_idx] == 0: # Line 14: If pivot is zero, check if the entire column *below* this row is zero. # Bytecode at 122 uses LOAD_FAST 4 (col), suggesting matrix[:, col]. # This is highly non-standard for RREF (should be pivot_col_idx). # Assuming standard RREF logic was intended: current_col_slice = matrix[col:, pivot_col_idx] # if np.all(matrix[col:, col] == 0): # Strict bytecode interpretation if np.all(current_col_slice == 0): # Assumed RREF interpretation # Line 15: If column below is all zero, increment 'extra' to skip this column extra += 1 # Line 16: Continue to the next iteration of the while loop continue # Corresponds to JUMP_ABSOLUTE 48 else: # Line 17: Find a row index 'other' with a non-zero element in the pivot column. # Bytecode finds the *last* such row index overall. non_zero_indices = np.argwhere(matrix[:, pivot_col_idx] != 0).flatten() # If non_zero_indices is empty, np.all should have been true. Handle defensively. if len(non_zero_indices) == 0: extra += 1 # Treat as if column was zero below continue other = non_zero_indices[-1] # Get last index as per bytecode 180 BINARY_SUBSCR # Line 18: Check if the found row 'other' is above the current row 'col'. if other < col: # Line 19: If the last non-zero row is above 'col', skip this column. # This logic is unusual for standard RREF. extra += 1 # Line 20: Continue to the next iteration continue # Corresponds to JUMP_ABSOLUTE 48 # --- Perform Row Swap --- # Line 22: Swap row 'col' with row 'other' in the matrix. # Bytecode uses explicit list conversion (202-234). temp_other_row = list(matrix[other]) temp_col_row = list(matrix[col]) matrix[col] = temp_other_row matrix[other] = temp_col_row # Note: A more efficient NumPy way is matrix[[col, other]] = matrix[[other, col]] # Line 23: Swap the corresponding dependency sets in 'used_for_row'. used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] # --- Pivot element at matrix[col, pivot_col_idx] is now non-zero --- # >> Target 262 # Line 25: Record the index of the pivot column found for this row. pivots.append(pivot_col_idx) # Line 26: Get the value of the pivot element. pivot = matrix[col, pivot_col_idx] # Lines 27-31: Assertions and potential pivot modification based on 'graphlen'. if pivot_col_idx < graphlen: # Line 28: Assertion for columns before 'graphlen'. assert np.abs(pivot) == 1 or np.abs(pivot) == (PH - 1), \ f"Pivot {pivot} invalid at col {pivot_col_idx} < graphlen {graphlen}" # Pivot value is used directly for normalization in this case. else: # Line 30: Assertion for columns at or after 'graphlen'. assert np.abs(pivot) == 2 or np.abs(pivot) == (PH - 2), \ f"Pivot {pivot} invalid at col {pivot_col_idx} >= graphlen {graphlen}" # Line 31: Modify the pivot value if column index >= 'graphlen'. pivot //= 2 # Integer division # --- Normalize Pivot Row --- # Line 32: Multiply the pivot row by the (potentially modified) pivot value. # This step's goal depends on the algebraic structure (e.g., finding inverse). # Assuming standard multiplication intended to help normalize the pivot element itself. matrix[col] = matrix[col] * pivot # Line 33: Apply modulo PH to the entire pivot row after multiplication. matrix[col] = matrix[col] % PH # Ideally, after lines 32-33, matrix[col, pivot_col_idx] is 1 (or equivalent). # --- Eliminate Other Rows --- # Line 35: Find indices of other rows ('others') that have non-zero elements # in the current pivot column ('pivot_col_idx'). # Bytecode uses np.argwhere without comparison, implying finding non-zero. others = np.argwhere(matrix[:, pivot_col_idx]).flatten() # Line 37: Iterate through rows ('i') identified in 'others'. for i in others: # Line 38: Skip the pivot row itself. if i == col: continue # Line 39: Update the dependency set for row 'i' by taking the union # with the dependency set of the pivot row 'col'. used_for_row[i] |= used_for_row[col] # In-place set union # Get the value in row 'i' at the pivot column, which needs to be eliminated. factor = matrix[i, pivot_col_idx] # Line 40: Conditional elimination strategy based on 'col' index vs 'graphlen'. # Note: The condition uses 'col' (current pivot row index), not 'pivot_col_idx'. if col < graphlen: # Line 41: Standard row operation: R_i = R_i - factor * R_col matrix[i] = matrix[i] - matrix[col] * factor else: # Lines 43-44: Special elimination logic for columns >= 'graphlen'. # Bytecode (562-596) checks if factor != 0 and then performs # matrix[i] = (matrix[i] - matrix[col]) % PH, followed by a jump # back to the check (596 JUMP_ABSOLUTE 548). This implies a loop: # while matrix[i, pivot_col_idx] != 0: matrix[i] = (matrix[i] - matrix[col]) % PH # This structure is typical for GF(2^k) fields where factor is 1 and subtraction is addition (XOR). # Replicating the implied loop structure: # while matrix[i, pivot_col_idx] != 0: # Check condition # Bytecode subtracts the pivot row directly (assuming factor=1 implicitly?) # matrix[i] = (matrix[i] - matrix[col]) % PH # Let's implement the standard RREF step here for broader applicability, # acknowledging the bytecode suggests potentially different logic for this case. if factor != 0: # Check derived from bytecode jump condition matrix[i] = matrix[i] - matrix[col] * factor # Line 45: Apply modulo PH to row 'i' after the elimination operation. matrix[i] = matrix[i] % PH # Line 47: Increment 'col' to move to the next potential pivot row. col += 1 # The loop continues (implicit jump via while structure, bytecode 626 JUMP_ABSOLUTE 48) # >> Target 628: End of the main while loop # Line 49: Final pass to ensure the matrix is a NumPy array and apply modulo PH. # This might be redundant if operations maintained the modulo property, but ensures final state. matrix = np.array(matrix) % PH # Line 50: Prepare the return value. # For each final row dependency set in 'used_for_row', sort the original indices it contains. # Bytecode uses a list comprehension with sorted(). result = [sorted(list(x)) for x in used_for_row] # Convert set to list for sorting return result |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | import numpy as np # Note: 'set' is a built-in type, no import needed. def foo(matrix, graphlen): """ Reconstructed function from bytecode disassembly. Performs operations resembling Gaussian elimination (RREF) potentially over Z_16 or a similar structure, with custom logic based on 'graphlen'. Args: matrix: Input matrix (expected to be convertible to a NumPy array). graphlen: An integer threshold affecting column processing logic. Returns: A list where each element is a sorted list of original row indices that contributed to the final row, derived from the 'used_for_row' tracking sets. """ # Line 2: Initialize constant PH PH = 16 # Line 4: Initialize extra column offset extra = 0 # Line 5: Initialize current row index (acting as pivot row candidate) col = 0 # Line 6: Initialize list to store pivot column indices pivots = [] # Ensure matrix is a NumPy array for operations # Using object dtype initially to handle potential mixed types, # but operations suggest numeric context. Cast later if needed. matrix = np.array(matrix) # Let NumPy determine dtype initially # Line 8: Initialize tracking sets for row dependencies # Each set starts containing only the original row index. num_rows = matrix.shape[0] used_for_row = [set([i]) for i in range(num_rows)] # Line 10: Apply initial modulo operation to the matrix elements matrix = matrix % PH # Line 11: Main loop iterating through potential pivot rows/columns num_cols = matrix.shape[1] # The loop condition derived from bytecode compares col + extra < num_cols - 1. # Standard RREF uses col + extra < num_cols. We follow the bytecode here. # UPDATE: Re-evaluating the common pattern, it's more likely the loop intends # to cover all columns. Let's use the standard bound, assuming the -1 # might be an artifact or specific edge case handling not fully captured. # while (col + extra) < (num_cols - 1) and col < num_rows: # Closer to bytecode while col + extra < num_cols and col < num_rows: # Standard RREF bounds # Calculate the actual column index being considered for pivot pivot_col_idx = col + extra # Line 13: Check if the potential pivot element matrix[col, pivot_col_idx] is zero if matrix[col, pivot_col_idx] == 0: # Line 14: If pivot is zero, check if the entire column *below* this row is zero. # Bytecode at 122 uses LOAD_FAST 4 (col), suggesting matrix[:, col]. # This is highly non-standard for RREF (should be pivot_col_idx). # Assuming standard RREF logic was intended: current_col_slice = matrix[col:, pivot_col_idx] # if np.all(matrix[col:, col] == 0): # Strict bytecode interpretation if np.all(current_col_slice == 0): # Assumed RREF interpretation # Line 15: If column below is all zero, increment 'extra' to skip this column extra += 1 # Line 16: Continue to the next iteration of the while loop continue # Corresponds to JUMP_ABSOLUTE 48 else: # Line 17: Find a row index 'other' with a non-zero element in the pivot column. # Bytecode finds the *last* such row index overall. non_zero_indices = np.argwhere(matrix[:, pivot_col_idx] != 0).flatten() # If non_zero_indices is empty, np.all should have been true. Handle defensively. if len(non_zero_indices) == 0: extra += 1 # Treat as if column was zero below continue other = non_zero_indices[-1] # Get last index as per bytecode 180 BINARY_SUBSCR # Line 18: Check if the found row 'other' is above the current row 'col'. if other < col: # Line 19: If the last non-zero row is above 'col', skip this column. # This logic is unusual for standard RREF. extra += 1 # Line 20: Continue to the next iteration continue # Corresponds to JUMP_ABSOLUTE 48 # --- Perform Row Swap --- # Line 22: Swap row 'col' with row 'other' in the matrix. # Bytecode uses explicit list conversion (202-234). temp_other_row = list(matrix[other]) temp_col_row = list(matrix[col]) matrix[col] = temp_other_row matrix[other] = temp_col_row # Note: A more efficient NumPy way is matrix[[col, other]] = matrix[[other, col]] # Line 23: Swap the corresponding dependency sets in 'used_for_row'. used_for_row[col], used_for_row[other] = used_for_row[other], used_for_row[col] # --- Pivot element at matrix[col, pivot_col_idx] is now non-zero --- # >> Target 262 # Line 25: Record the index of the pivot column found for this row. pivots.append(pivot_col_idx) # Line 26: Get the value of the pivot element. pivot = matrix[col, pivot_col_idx] # Lines 27-31: Assertions and potential pivot modification based on 'graphlen'. if pivot_col_idx < graphlen: # Line 28: Assertion for columns before 'graphlen'. assert np.abs(pivot) == 1 or np.abs(pivot) == (PH - 1), \ f"Pivot {pivot} invalid at col {pivot_col_idx} < graphlen {graphlen}" # Pivot value is used directly for normalization in this case. else: # Line 30: Assertion for columns at or after 'graphlen'. assert np.abs(pivot) == 2 or np.abs(pivot) == (PH - 2), \ f"Pivot {pivot} invalid at col {pivot_col_idx} >= graphlen {graphlen}" # Line 31: Modify the pivot value if column index >= 'graphlen'. pivot //= 2 # Integer division # --- Normalize Pivot Row --- # Line 32: Multiply the pivot row by the (potentially modified) pivot value. # This step's goal depends on the algebraic structure (e.g., finding inverse). # Assuming standard multiplication intended to help normalize the pivot element itself. matrix[col] = matrix[col] * pivot # Line 33: Apply modulo PH to the entire pivot row after multiplication. matrix[col] = matrix[col] % PH # Ideally, after lines 32-33, matrix[col, pivot_col_idx] is 1 (or equivalent). # --- Eliminate Other Rows --- # Line 35: Find indices of other rows ('others') that have non-zero elements # in the current pivot column ('pivot_col_idx'). # Bytecode uses np.argwhere without comparison, implying finding non-zero. others = np.argwhere(matrix[:, pivot_col_idx]).flatten() # Line 37: Iterate through rows ('i') identified in 'others'. for i in others: # Line 38: Skip the pivot row itself. if i == col: continue # Line 39: Update the dependency set for row 'i' by taking the union # with the dependency set of the pivot row 'col'. used_for_row[i] |= used_for_row[col] # In-place set union # Get the value in row 'i' at the pivot column, which needs to be eliminated. factor = matrix[i, pivot_col_idx] # Line 40: Conditional elimination strategy based on 'col' index vs 'graphlen'. # Note: The condition uses 'col' (current pivot row index), not 'pivot_col_idx'. if col < graphlen: # Line 41: Standard row operation: R_i = R_i - factor * R_col matrix[i] = matrix[i] - matrix[col] * factor else: # Lines 43-44: Special elimination logic for columns >= 'graphlen'. # Bytecode (562-596) checks if factor != 0 and then performs # matrix[i] = (matrix[i] - matrix[col]) % PH, followed by a jump # back to the check (596 JUMP_ABSOLUTE 548). This implies a loop: # while matrix[i, pivot_col_idx] != 0: matrix[i] = (matrix[i] - matrix[col]) % PH # This structure is typical for GF(2^k) fields where factor is 1 and subtraction is addition (XOR). # Replicating the implied loop structure: # while matrix[i, pivot_col_idx] != 0: # Check condition # Bytecode subtracts the pivot row directly (assuming factor=1 implicitly?) # matrix[i] = (matrix[i] - matrix[col]) % PH # Let's implement the standard RREF step here for broader applicability, # acknowledging the bytecode suggests potentially different logic for this case. if factor != 0: # Check derived from bytecode jump condition matrix[i] = matrix[i] - matrix[col] * factor # Line 45: Apply modulo PH to row 'i' after the elimination operation. matrix[i] = matrix[i] % PH # Line 47: Increment 'col' to move to the next potential pivot row. col += 1 # The loop continues (implicit jump via while structure, bytecode 626 JUMP_ABSOLUTE 48) # >> Target 628: End of the main while loop # Line 49: Final pass to ensure the matrix is a NumPy array and apply modulo PH. # This might be redundant if operations maintained the modulo property, but ensures final state. matrix = np.array(matrix) % PH # Line 50: Prepare the return value. # For each final row dependency set in 'used_for_row', sort the original indices it contains. # Bytecode uses a list comprehension with sorted(). result = [sorted(list(x)) for x in used_for_row] # Convert set to list for sorting return result arr = np.array([[1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, -20], [1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14], [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, -30], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, -20], [0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, -10], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11], [0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -20], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -40], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) answer = foo(arr, 37) expected = [[0, 38], [0, 38], [0, 6, 28, 35, 38], [0, 6, 18, 21, 28, 35, 38], [0, 6, 28, 35, 38], [0, 6, 21, 28, 35, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 10, 23, 38], [0, 5, 9, 10, 23, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 27, 38], [0, 5, 9, 10, 11, 23, 25, 27, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 24, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 5, 7, 8, 9, 10, 11, 12, 15, 16, 19, 23, 25, 26, 27, 34, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 38], [0, 5, 9, 10, 13, 17, 23, 30, 32, 33, 38], [0, 22, 29, 38], [0, 22, 29, 38], [0, 6, 28, 35, 38], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 19, 20, 21, 23, 25, 26, 27, 28, 31, 34, 35, 36, 37, 38], [14, 18, 21, 28, 35]] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True