Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

Certainly! Based on the provided Python bytecode, we can reconstruct the original function named `foo`. This function appears to generate a list of prime numbers up to a specified `max_number`. Additionally, for each prime number that is odd, it appends both the prime and its negative counterpart to the `primes` list. Here's the reconstructed `foo` function:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
def foo(max_number):
    primes = []
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        # Check divisibility from 2 to sqrt(possible_prime)
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break  # Exit the inner loop early if not prime
        if is_prime:
            primes.append(possible_prime)
            if possible_prime % 2 != 0:
                primes.append(-possible_prime)
    return primes
### Explanation of the Function: 1. **Initialization:** - `primes = []`: Initializes an empty list to store prime numbers. 2. **Outer Loop (`for possible_prime in range(2, max_number + 1)`):** - Iterates through each number from `2` up to and including `max_number`. - `possible_prime` represents the current number being evaluated for primality. 3. **Primality Check:** - `is_prime = True`: Assumes the current number is prime until proven otherwise. - **Inner Loop (`for num in range(2, int(possible_prime ** 0.5) + 1)`):** - Checks divisibility from `2` up to the square root of `possible_prime`. - If `possible_prime` is divisible by any `num` in this range, it's not a prime: - `is_prime = False` - `break`: Exits the inner loop immediately since the number is not prime. 4. **Appending Primes:** - `if is_prime:`: If the number remains prime after the inner loop: - `primes.append(possible_prime)`: Adds the prime number to the list. - `if possible_prime % 2 != 0:`: If the prime number is odd: - `primes.append(-possible_prime)`: Adds the negative counterpart of the prime to the list. 5. **Return Statement:** - `return primes`: Returns the final list of primes (and negative primes for odd numbers). ### Example Usage:
1
2
3
# Example usage of the foo function
result = foo(10)
print(result)  # Output: [2, 3, -3, 5, -5, 7, -7]
In this example: - The function checks numbers from `2` to `10` for primality. - It appends each prime number to the `primes` list. - For each odd prime (like `3`, `5`, `7`), it also appends their negative counterparts (`-3`, `-5`, `-7`). This reconstructed function should closely match the behavior described by the provided bytecode.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
def foo(max_number):
    primes = []
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        # Check divisibility from 2 to sqrt(possible_prime)
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break  # Exit the inner loop early if not prime
        if is_prime:
            primes.append(possible_prime)
            if possible_prime % 2 != 0:
                primes.append(-possible_prime)
    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
def foo(max_number):
    primes = []
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        # Check divisibility from 2 to sqrt(possible_prime)
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break  # Exit the inner loop early if not prime
        if is_prime:
            primes.append(possible_prime)
            if possible_prime % 2 != 0:
                primes.append(-possible_prime)
    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

Certainly! Based on the provided Python bytecode, we can reconstruct the corresponding Python function named `foo`. This function appears to generate a list of prime numbers up to a given `max_number`. Additionally, for each prime number that is odd, it appends its negative counterpart to the list. Here's the reconstructed `foo` function:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
def foo(max_number):
    primes = []
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break
        if is_prime:
            primes.append(possible_prime)
            if possible_prime % 2 != 0:
                primes.append(-possible_prime)
    return primes
### Explanation of the Function: 1. **Initialization**: - `primes = []`: Initializes an empty list to store prime numbers. 2. **Outer Loop**: - `for possible_prime in range(2, max_number + 1)`: Iterates through each number from 2 up to and including `max_number` to check for primality. 3. **Primality Check**: - `is_prime = True`: Assumes the current number is prime until proven otherwise. - **Inner Loop**: - `for num in range(2, int(possible_prime ** 0.5) + 1)`: Iterates from 2 up to the square root of `possible_prime` to check for factors. - `if possible_prime % num == 0`: If a divisor is found, the number is not prime. - `is_prime = False`: Marks the number as not prime. - `break`: Exits the inner loop early since the number is already determined to be non-prime. 4. **Appending Primes and Their Negatives**: - `if is_prime`: If the number is prime: - `primes.append(possible_prime)`: Appends the prime number to the `primes` list. - `if possible_prime % 2 != 0`: Checks if the prime number is odd. - `primes.append(-possible_prime)`: Appends the negative of the odd prime number to the list. 5. **Return Statement**: - `return primes`: Returns the list of primes (and their negatives if they are odd). ### Example Usage:
1
2
result = foo(10)
print(result)  # Output: [2, 3, -3, 5, -5, 7, -7]
In this example, the function checks all numbers from 2 to 10. It identifies the prime numbers (2, 3, 5, 7) and appends their negative counterparts if they are odd, resulting in the final list `[2, 3, -3, 5, -5, 7, -7]`.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
def foo(max_number):
    primes = []
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break
        if is_prime:
            primes.append(possible_prime)
            if possible_prime % 2 != 0:
                primes.append(-possible_prime)
    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
def foo(max_number):
    primes = []
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break
        if is_prime:
            primes.append(possible_prime)
            if possible_prime % 2 != 0:
                primes.append(-possible_prime)
    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True