Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

The given bytecode appears to be from a Python function that generates a list of prime numbers and their negations up to a given maximum number. Let's disassemble the bytecode into a Python function called `foo`. Here's the corresponding Python function:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
def foo(max_number):
    primes = []
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break
        if is_prime:
            primes.append(possible_prime)
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)
    return primes
Here is a step-by-step explanation of the function: 1. **Initialization**: - `primes` is initialized as an empty list. 2. **Outer Loop**: - Iterate over each number `possible_prime` in the range from 2 to `max_number` (inclusive). 3. **Prime Check Initialization**: - For each `possible_prime`, assume it is a prime (`is_prime = True`). 4. **Inner Loop**: - Check divisibility of `possible_prime` by any number `num` from 2 up to the square root of `possible_prime` (inclusive). If `possible_prime` is divisible by any `num`, it is not a prime (`is_prime = False`) and break out of the loop. 5. **Appending Primes**: - If `possible_prime` is still considered a prime after the inner loop, append it to the `primes` list. 6. **Appending Negation of Odd Primes**: - If `possible_prime` is not even (i.e., it's odd), append its negation to the `primes` list. 7. **Return Primes**: - Finally, return the `primes` list. This function generates a list of prime numbers up to `max_number` and also includes the negations of the odd prime numbers in the list.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
def foo(max_number):
    primes = []
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break
        if is_prime:
            primes.append(possible_prime)
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)
    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
def foo(max_number):
    primes = []
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break
        if is_prime:
            primes.append(possible_prime)
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)
    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 22, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' AssertionError: Wrong answer; got [2, 3, -3, 5, -5, 7, -7, -9, 11, -11, 13, -13, -15, 17, -17, 19, -19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

The provided bytecode represents a function that appears to find prime numbers up to a certain maximum number and stores both the prime numbers and their negative counterparts in a list. Let's disassemble this bytecode into a Python function named `foo`. Here is the Python function `foo` based on the disassembled bytecode:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes
### Explanation: 1. **Initialization of Primes List:**
1
2
   primes = []
   
- Creates an empty list to store prime numbers and their negative counterparts. 2. **Outer Loop over Possible Primes:**
1
2
   for possible_prime in range(2, max_number + 1):
   
- Iterates over numbers starting from 2 up to the specified `max_number`. 3. **Assume Number is Prime:**
1
2
   is_prime = True
   
- Assumes the current number (`possible_prime`) is prime until proven otherwise. 4. **Inner Loop to Check for Primality:**
1
2
3
4
5
   for num in range(2, int(possible_prime ** 0.5) + 1):
       if possible_prime % num == 0:
           is_prime = False
           break
   
- Iterates from 2 up to the square root of `possible_prime` to check if it is divisible by any number in this range. - If it finds a divisor, it sets `is_prime` to `False` and breaks out of the loop. 5. **Append Prime Number:**
1
2
3
   if is_prime:
       primes.append(possible_prime)
   
- If `possible_prime` is still considered prime after the inner loop, it is appended to the `primes` list. 6. **Append Negative Prime if Odd:**
1
2
3
   if possible_prime % 2 != 0:
       primes.append(-possible_prime)
   
- If `possible_prime` is odd, appends its negative counterpart to the `primes` list. 7. **Return the Primes List:**
1
2
   return primes
   
- Returns the list of prime numbers and their negative counterparts. This reconstructed function `foo` should closely match the behavior described by the provided bytecode.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 27, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' AssertionError: Wrong answer; got [2, 3, -3, 5, -5, 7, -7, -9, 11, -11, 13, -13, -15, 17, -17, 19, -19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

To convert the given disassembled Python bytecode back into a function called `foo`, we need to interpret the bytecode and reconstruct the original Python code. Here's the disassembled code reassembled into a Python function:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []
    
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break
        
        if is_prime:
            primes.append(possible_prime)
        
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)
    
    return primes
### Explanation: 1. **Initialization**: - `primes` is initialized as an empty list. 2. **Outer Loop (Possible Primes)**: - The loop iterates from `2` to `max_number` (inclusive). 3. **Prime Check**: - For each `possible_prime`, it starts by assuming it is a prime (`is_prime = True`). - It then checks divisibility from `2` to the square root of `possible_prime` (rounded up). 4. **Inner Loop (Divisibility Check)**: - If `possible_prime` is divisible by any number in this range, it sets `is_prime` to `False` and breaks the loop. 5. **Appending Primes**: - If `possible_prime` is still marked as prime after the inner loop, it is appended to the `primes` list. - Additionally, if the `possible_prime` is odd (`possible_prime % 2 != 0`), it appends its negative value to the `primes` list. 6. **Return**: - Finally, the function returns the `primes` list. This function effectively builds a list of prime numbers up to `max_number` and also adds the negative values of odd primes to the list.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []
    
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break
        
        if is_prime:
            primes.append(possible_prime)
        
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)
    
    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def foo(max_number):
    primes = []
    
    for possible_prime in range(2, max_number + 1):
        is_prime = True
        
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break
        
        if is_prime:
            primes.append(possible_prime)
        
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)
    
    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 27, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' AssertionError: Wrong answer; got [2, 3, -3, 5, -5, 7, -7, -9, 11, -11, 13, -13, -15, 17, -17, 19, -19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

Certainly! The given disassembled code seems to be an algorithm for finding prime numbers up to a certain `max_number` and also appending the negative of the prime numbers that are odd. Below is the corresponding Python function `foo` that accomplishes this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)
        
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes
Here's a breakdown of the function: 1. **Initialization**: - An empty list `primes` is created to store the prime numbers. 2. **Outer Loop**: - The outer loop iterates over each number `possible_prime` in the range from 2 to `max_number` inclusive. 3. **Prime Check**: - For each `possible_prime`, a flag `is_prime` is set to `True`. - An inner loop checks whether the `possible_prime` can be divided evenly by any number from 2 up to the square root of `possible_prime` (inclusive). If it can, `is_prime` is set to `False` and the inner loop breaks. 4. **Appending Primes**: - If `is_prime` remains `True` after the inner loop, `possible_prime` is appended to the `primes` list. - Regardless of whether the number is prime or not, if `possible_prime` is odd (i.e., not divisible by 2), the negative of `possible_prime` is appended to the `primes` list. 5. **Return**: - Finally, the function returns the `primes` list. This function captures the behavior described by the bytecode provided.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)
        
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)
        
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 27, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' AssertionError: Wrong answer; got [2, 3, -3, 5, -5, 7, -7, -9, 11, -11, 13, -13, -15, 17, -17, 19, -19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

To disassemble the given Python code into a function called `foo`, we will follow the logic of the disassembled bytecode and convert it back into readable Python code. The disassembled code is essentially checking for prime numbers up to `max_number` and appending both the prime numbers and their negative counterparts to a list named `primes`. Here is the equivalent Python function:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)
        
        # The disassembled code appends the negative of the prime number if it is odd
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes
### Explanation: - **Line 5-6**: Initialize an empty list `primes`. - **Line 6**: Loop through each `possible_prime` number from 2 to `max_number`. - **Line 7**: Assume each `possible_prime` is prime by setting `is_prime` to `True`. - **Line 9-12**: Loop through each number `num` from 2 to the square root of `possible_prime` (inclusive). If `possible_prime` is divisible by `num`, it's not a prime number, so set `is_prime` to `False` and break out of the loop. - **Line 13**: If `is_prime` is still `True`, append `possible_prime` to the `primes` list. - **Line 16-17**: If `possible_prime` is odd, append its negative counterpart to the `primes` list. - **Line 18**: Return the `primes` list. This function effectively replicates the logic shown in the disassembled bytecode.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)
        
        # The disassembled code appends the negative of the prime number if it is odd
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)
        
        # The disassembled code appends the negative of the prime number if it is odd
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 28, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' AssertionError: Wrong answer; got [2, 3, -3, 5, -5, 7, -7, -9, 11, -11, 13, -13, -15, 17, -17, 19, -19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False