Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
Based on the Python bytecode provided, we can reconstruct the corresponding Python function as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | def foo(max_number): primes = [] # Line 5: Initialize an empty list to store prime numbers. # Line 6: Iterate over numbers from 2 to max_number inclusive. for possible_prime in range(2, max_number + 1): is_prime = True # Line 7: Assume the current number is prime. # Line 9: Check divisibility for numbers from 2 to sqrt(possible_prime) + 1. for num in range(2, int(possible_prime ** 0.5) + 1): if possible_prime % num == 0: # Line 10: If divisible, it's not a prime. is_prime = False # Line 11 break # Exit the inner loop if not prime. # Line 13: If the number is prime after checking all divisors, add it to the primes list. if is_prime: primes.append(possible_prime) # Line 14 # Lines 16-17: If the number is odd, append its negative to primes list. # However, this logic seems incorrect in a prime number finding context since: # 1. It's not a common operation for prime number algorithms. # 2. It performs an operation based on the parity of `possible_prime` just after checking if it's prime. # 3. The usual algorithm doesn't involve appending negative numbers to a list of primes. # It's more likely an error or specific custom logic not related to prime checking. # For a standard algorithm, these lines should be omitted, but they are included here as per the bytecode. if possible_prime % 2 != 0: primes.append(-possible_prime) return primes # Line 18: Return the list of prime numbers. |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | def foo(max_number): primes = [] # Line 5: Initialize an empty list to store prime numbers. # Line 6: Iterate over numbers from 2 to max_number inclusive. for possible_prime in range(2, max_number + 1): is_prime = True # Line 7: Assume the current number is prime. # Line 9: Check divisibility for numbers from 2 to sqrt(possible_prime) + 1. for num in range(2, int(possible_prime ** 0.5) + 1): if possible_prime % num == 0: # Line 10: If divisible, it's not a prime. is_prime = False # Line 11 break # Exit the inner loop if not prime. # Line 13: If the number is prime after checking all divisors, add it to the primes list. if is_prime: primes.append(possible_prime) # Line 14 # Lines 16-17: If the number is odd, append its negative to primes list. # However, this logic seems incorrect in a prime number finding context since: # 1. It's not a common operation for prime number algorithms. # 2. It performs an operation based on the parity of `possible_prime` just after checking if it's prime. # 3. The usual algorithm doesn't involve appending negative numbers to a list of primes. # It's more likely an error or specific custom logic not related to prime checking. # For a standard algorithm, these lines should be omitted, but they are included here as per the bytecode. if possible_prime % 2 != 0: primes.append(-possible_prime) return primes # Line 18: Return the list of prime numbers. |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | def foo(max_number): primes = [] # Line 5: Initialize an empty list to store prime numbers. # Line 6: Iterate over numbers from 2 to max_number inclusive. for possible_prime in range(2, max_number + 1): is_prime = True # Line 7: Assume the current number is prime. # Line 9: Check divisibility for numbers from 2 to sqrt(possible_prime) + 1. for num in range(2, int(possible_prime ** 0.5) + 1): if possible_prime % num == 0: # Line 10: If divisible, it's not a prime. is_prime = False # Line 11 break # Exit the inner loop if not prime. # Line 13: If the number is prime after checking all divisors, add it to the primes list. if is_prime: primes.append(possible_prime) # Line 14 # Lines 16-17: If the number is odd, append its negative to primes list. # However, this logic seems incorrect in a prime number finding context since: # 1. It's not a common operation for prime number algorithms. # 2. It performs an operation based on the parity of `possible_prime` just after checking if it's prime. # 3. The usual algorithm doesn't involve appending negative numbers to a list of primes. # It's more likely an error or specific custom logic not related to prime checking. # For a standard algorithm, these lines should be omitted, but they are included here as per the bytecode. if possible_prime % 2 != 0: primes.append(-possible_prime) return primes # Line 18: Return the list of prime numbers. answer = foo(20) expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 37, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got [2, 3, -3, 5, -5, 7, -7, -9, 11, -11, 13, -13, -15, 17, -17, 19, -19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
Testing if the previous output contains the string All tests passed
: False
Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
The disassembled Python bytecode you've provided is a sequence of instructions for a function that appears to create a list of prime numbers and their negative counterparts under some conditions, up to a specified number. This interpretation is reconstructed into a Python function as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | def foo(max_number): primes = [] # Instruction at line 5: Initialize empty list for primes for possible_prime in range(2, max_number + 1): # Instructions at lines 6-18: Iterate over numbers from 2 to max_number is_prime = True # Assume number is prime initially for num in range(2, int(possible_prime ** 0.5) + 1): # Check divisibility for factors up to the square root of the number if possible_prime % num == 0: # If divisible, it's not a prime is_prime = False break # Exit loop as prime status is determined if is_prime: # If still true, number is prime primes.append(possible_prime) # Add the prime number to the list if possible_prime % 2 != 0: # If the prime number is odd primes.append(-possible_prime) # Also add its negative counterpart return primes |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | def foo(max_number): primes = [] # Instruction at line 5: Initialize empty list for primes for possible_prime in range(2, max_number + 1): # Instructions at lines 6-18: Iterate over numbers from 2 to max_number is_prime = True # Assume number is prime initially for num in range(2, int(possible_prime ** 0.5) + 1): # Check divisibility for factors up to the square root of the number if possible_prime % num == 0: # If divisible, it's not a prime is_prime = False break # Exit loop as prime status is determined if is_prime: # If still true, number is prime primes.append(possible_prime) # Add the prime number to the list if possible_prime % 2 != 0: # If the prime number is odd primes.append(-possible_prime) # Also add its negative counterpart return primes |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | def foo(max_number): primes = [] # Instruction at line 5: Initialize empty list for primes for possible_prime in range(2, max_number + 1): # Instructions at lines 6-18: Iterate over numbers from 2 to max_number is_prime = True # Assume number is prime initially for num in range(2, int(possible_prime ** 0.5) + 1): # Check divisibility for factors up to the square root of the number if possible_prime % num == 0: # If divisible, it's not a prime is_prime = False break # Exit loop as prime status is determined if is_prime: # If still true, number is prime primes.append(possible_prime) # Add the prime number to the list if possible_prime % 2 != 0: # If the prime number is odd primes.append(-possible_prime) # Also add its negative counterpart return primes answer = foo(20) expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True
Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
Based on the provided bytecode, it looks like this Python function, `foo`, is designed to generate a list of prime numbers up to a given number `max_number`, with a twist towards the end involving negative values. Here is a reconstruction of the function into Python code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | def foo(max_number): primes = [] # Initialize an empty list to store prime numbers for possible_prime in range(2, max_number + 1): # Iterate over numbers from 2 to max_number is_prime = True # Assume the number is prime until proven otherwise for num in range(2, int(possible_prime ** 0.5) + 1): # Iterate over potential factors if possible_prime % num == 0: # If num is a factor of possible_prime is_prime = False # possible_prime is not a prime number break # Exit the loop early if is_prime: # If possible_prime is indeed prime primes.append(possible_prime) # Add it to the list of primes elif possible_prime % 2 != 0: # If possible_prime is odd (and not prime) primes.append(-possible_prime) # Add its negative value to the list return primes |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | def foo(max_number): primes = [] # Initialize an empty list to store prime numbers for possible_prime in range(2, max_number + 1): # Iterate over numbers from 2 to max_number is_prime = True # Assume the number is prime until proven otherwise for num in range(2, int(possible_prime ** 0.5) + 1): # Iterate over potential factors if possible_prime % num == 0: # If num is a factor of possible_prime is_prime = False # possible_prime is not a prime number break # Exit the loop early if is_prime: # If possible_prime is indeed prime primes.append(possible_prime) # Add it to the list of primes elif possible_prime % 2 != 0: # If possible_prime is odd (and not prime) primes.append(-possible_prime) # Add its negative value to the list return primes |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | def foo(max_number): primes = [] # Initialize an empty list to store prime numbers for possible_prime in range(2, max_number + 1): # Iterate over numbers from 2 to max_number is_prime = True # Assume the number is prime until proven otherwise for num in range(2, int(possible_prime ** 0.5) + 1): # Iterate over potential factors if possible_prime % num == 0: # If num is a factor of possible_prime is_prime = False # possible_prime is not a prime number break # Exit the loop early if is_prime: # If possible_prime is indeed prime primes.append(possible_prime) # Add it to the list of primes elif possible_prime % 2 != 0: # If possible_prime is odd (and not prime) primes.append(-possible_prime) # Add its negative value to the list return primes answer = foo(20) expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 26, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got [2, 3, 5, 7, -9, 11, 13, -15, 17, 19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
Testing if the previous output contains the string All tests passed
: False
Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
Based on the disassembled Python bytecode you provided, it appears to be a function that generates a list of prime numbers up to a specified number (`max_number`), with a twist toward the end involving the negation of certain numbers before adding them to the list of primes. Here is a possible reconstruction of the function in Python code, which I'll name `foo` as you requested:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | def foo(max_number): primes = [] # Line 5: Initializes an empty list for prime numbers. for possible_prime in range(2, max_number + 1): # Line 6: Iterates from 2 to max_number inclusive. is_prime = True # Line 7: Assumes possible_prime is a prime unless proven otherwise. for num in range(2, int(possible_prime ** 0.5) + 1): # Line 9: Checks factors up to the square root of possible_prime. if possible_prime % num == 0: # Line 10: If possible_prime is divisible by num, it's not a prime. is_prime = False # Line 11: Sets is_prime to False if a divisor is found. break # Exits the inner loop if possible_prime is not prime. if is_prime: # Line 13: If possible_prime is still considered prime after checking all possible divisors. primes.append(possible_prime) # Line 14: Adds the prime number to the list. # The following conditional seems to perform an additional, peculiar check: elif possible_prime % 2 != 0: # Line 16: Checks if possible_prime is odd (since it's not prime and not even). primes.append(-possible_prime) # Line 17: Appends the negated possible_prime to primes if it's odd and not prime. return primes # Line 18: Returns the list of primes (and possibly negated non-prime odd numbers). |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | def foo(max_number): primes = [] # Line 5: Initializes an empty list for prime numbers. for possible_prime in range(2, max_number + 1): # Line 6: Iterates from 2 to max_number inclusive. is_prime = True # Line 7: Assumes possible_prime is a prime unless proven otherwise. for num in range(2, int(possible_prime ** 0.5) + 1): # Line 9: Checks factors up to the square root of possible_prime. if possible_prime % num == 0: # Line 10: If possible_prime is divisible by num, it's not a prime. is_prime = False # Line 11: Sets is_prime to False if a divisor is found. break # Exits the inner loop if possible_prime is not prime. if is_prime: # Line 13: If possible_prime is still considered prime after checking all possible divisors. primes.append(possible_prime) # Line 14: Adds the prime number to the list. # The following conditional seems to perform an additional, peculiar check: elif possible_prime % 2 != 0: # Line 16: Checks if possible_prime is odd (since it's not prime and not even). primes.append(-possible_prime) # Line 17: Appends the negated possible_prime to primes if it's odd and not prime. return primes # Line 18: Returns the list of primes (and possibly negated non-prime odd numbers). |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | def foo(max_number): primes = [] # Line 5: Initializes an empty list for prime numbers. for possible_prime in range(2, max_number + 1): # Line 6: Iterates from 2 to max_number inclusive. is_prime = True # Line 7: Assumes possible_prime is a prime unless proven otherwise. for num in range(2, int(possible_prime ** 0.5) + 1): # Line 9: Checks factors up to the square root of possible_prime. if possible_prime % num == 0: # Line 10: If possible_prime is divisible by num, it's not a prime. is_prime = False # Line 11: Sets is_prime to False if a divisor is found. break # Exits the inner loop if possible_prime is not prime. if is_prime: # Line 13: If possible_prime is still considered prime after checking all possible divisors. primes.append(possible_prime) # Line 14: Adds the prime number to the list. # The following conditional seems to perform an additional, peculiar check: elif possible_prime % 2 != 0: # Line 16: Checks if possible_prime is odd (since it's not prime and not even). primes.append(-possible_prime) # Line 17: Appends the negated possible_prime to primes if it's odd and not prime. return primes # Line 18: Returns the list of primes (and possibly negated non-prime odd numbers). answer = foo(20) expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 28, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got [2, 3, 5, 7, -9, 11, 13, -15, 17, 19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
Testing if the previous output contains the string All tests passed
: False
Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
To convert the provided Python bytecode into a high-level Python function named `foo`, we need to understand what each bytecode operation does and translate that back into Python code. The bytecode describes a function that generates a list of prime numbers and, under certain conditions, their negatives, up to a given number. Here's how the function can be reconstructed based on the bytecode:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | def foo(max_number): primes = [] # Line 5: Initialize an empty list for primes for possible_prime in range(2, max_number + 1): # Lines 6-16: Iterate over numbers from 2 to max_number is_prime = True # Line 7: Assume the number is prime until proven otherwise # Line 9-46: Check if number is prime for num in range(2, int(possible_prime ** 0.5) + 1): if possible_prime % num == 0: # If number divides evenly, it's not prime is_prime = False break # Exit the loop early if not prime if is_prime: # Line 74: If the number is prime, add it to the list primes.append(possible_prime) elif possible_prime % 2 != 0: # Lines 88-98: Additional condition for odd numbers primes.append(-possible_prime) # Add the negative of the number if condition is met return primes # Line 114: Return the list of primes (and possibly some negatives) |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | def foo(max_number): primes = [] # Line 5: Initialize an empty list for primes for possible_prime in range(2, max_number + 1): # Lines 6-16: Iterate over numbers from 2 to max_number is_prime = True # Line 7: Assume the number is prime until proven otherwise # Line 9-46: Check if number is prime for num in range(2, int(possible_prime ** 0.5) + 1): if possible_prime % num == 0: # If number divides evenly, it's not prime is_prime = False break # Exit the loop early if not prime if is_prime: # Line 74: If the number is prime, add it to the list primes.append(possible_prime) elif possible_prime % 2 != 0: # Lines 88-98: Additional condition for odd numbers primes.append(-possible_prime) # Add the negative of the number if condition is met return primes # Line 114: Return the list of primes (and possibly some negatives) |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | def foo(max_number): primes = [] # Line 5: Initialize an empty list for primes for possible_prime in range(2, max_number + 1): # Lines 6-16: Iterate over numbers from 2 to max_number is_prime = True # Line 7: Assume the number is prime until proven otherwise # Line 9-46: Check if number is prime for num in range(2, int(possible_prime ** 0.5) + 1): if possible_prime % num == 0: # If number divides evenly, it's not prime is_prime = False break # Exit the loop early if not prime if is_prime: # Line 74: If the number is prime, add it to the list primes.append(possible_prime) elif possible_prime % 2 != 0: # Lines 88-98: Additional condition for odd numbers primes.append(-possible_prime) # Add the negative of the number if condition is met return primes # Line 114: Return the list of primes (and possibly some negatives) answer = foo(20) expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
Traceback (most recent call last):
File "/usr/src/app/main.py", line 27, in <module>
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
^^^^^^^^^^^^^^^^^^
AssertionError: Wrong answer; got [2, 3, 5, 7, -9, 11, 13, -15, 17, 19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
Testing if the previous output contains the string All tests passed
: False