Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

Based on the Python bytecode provided, we can reconstruct the corresponding Python function as follows:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
def foo(max_number):
    primes = []  # Line 5: Initialize an empty list to store prime numbers.

    # Line 6: Iterate over numbers from 2 to max_number inclusive.
    for possible_prime in range(2, max_number + 1):
        is_prime = True  # Line 7: Assume the current number is prime.

        # Line 9: Check divisibility for numbers from 2 to sqrt(possible_prime) + 1.
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:  # Line 10: If divisible, it's not a prime.
                is_prime = False  # Line 11
                break  # Exit the inner loop if not prime.

        # Line 13: If the number is prime after checking all divisors, add it to the primes list.
        if is_prime:
            primes.append(possible_prime)  # Line 14
        
        # Lines 16-17: If the number is odd, append its negative to primes list.
        # However, this logic seems incorrect in a prime number finding context since:
        # 1. It's not a common operation for prime number algorithms.
        # 2. It performs an operation based on the parity of `possible_prime` just after checking if it's prime.
        # 3. The usual algorithm doesn't involve appending negative numbers to a list of primes.
        # It's more likely an error or specific custom logic not related to prime checking.
        # For a standard algorithm, these lines should be omitted, but they are included here as per the bytecode.
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes  # Line 18: Return the list of prime numbers.
This function takes an integer `max_number` as input and returns a list of prime numbers up to `max_number`. The function iterates over all integers from 2 to `max_number` (inclusive), checking if each number is prime. A number is considered prime if it is not divisible by any other number except 1 and itself. This is implemented by checking divisibility by all integers from 2 up to the square root of the number being checked. If a number is found to be prime, it is appended to the `primes` list. Please note, the operation in lines 16-17 where a negative of the possible prime is appended to the list if the possible prime is odd is atypical for prime number algorithms. It seems to be custom logic specific to the bytecode provided and not a standard part of prime number generation algorithms.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
def foo(max_number):
    primes = []  # Line 5: Initialize an empty list to store prime numbers.

    # Line 6: Iterate over numbers from 2 to max_number inclusive.
    for possible_prime in range(2, max_number + 1):
        is_prime = True  # Line 7: Assume the current number is prime.

        # Line 9: Check divisibility for numbers from 2 to sqrt(possible_prime) + 1.
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:  # Line 10: If divisible, it's not a prime.
                is_prime = False  # Line 11
                break  # Exit the inner loop if not prime.

        # Line 13: If the number is prime after checking all divisors, add it to the primes list.
        if is_prime:
            primes.append(possible_prime)  # Line 14
        
        # Lines 16-17: If the number is odd, append its negative to primes list.
        # However, this logic seems incorrect in a prime number finding context since:
        # 1. It's not a common operation for prime number algorithms.
        # 2. It performs an operation based on the parity of `possible_prime` just after checking if it's prime.
        # 3. The usual algorithm doesn't involve appending negative numbers to a list of primes.
        # It's more likely an error or specific custom logic not related to prime checking.
        # For a standard algorithm, these lines should be omitted, but they are included here as per the bytecode.
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes  # Line 18: Return the list of prime numbers.

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def foo(max_number):
    primes = []  # Line 5: Initialize an empty list to store prime numbers.

    # Line 6: Iterate over numbers from 2 to max_number inclusive.
    for possible_prime in range(2, max_number + 1):
        is_prime = True  # Line 7: Assume the current number is prime.

        # Line 9: Check divisibility for numbers from 2 to sqrt(possible_prime) + 1.
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:  # Line 10: If divisible, it's not a prime.
                is_prime = False  # Line 11
                break  # Exit the inner loop if not prime.

        # Line 13: If the number is prime after checking all divisors, add it to the primes list.
        if is_prime:
            primes.append(possible_prime)  # Line 14
        
        # Lines 16-17: If the number is odd, append its negative to primes list.
        # However, this logic seems incorrect in a prime number finding context since:
        # 1. It's not a common operation for prime number algorithms.
        # 2. It performs an operation based on the parity of `possible_prime` just after checking if it's prime.
        # 3. The usual algorithm doesn't involve appending negative numbers to a list of primes.
        # It's more likely an error or specific custom logic not related to prime checking.
        # For a standard algorithm, these lines should be omitted, but they are included here as per the bytecode.
        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes  # Line 18: Return the list of prime numbers.





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 37, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [2, 3, -3, 5, -5, 7, -7, -9, 11, -11, 13, -13, -15, 17, -17, 19, -19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

The disassembled Python bytecode you've provided is a sequence of instructions for a function that appears to create a list of prime numbers and their negative counterparts under some conditions, up to a specified number. This interpretation is reconstructed into a Python function as follows:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []  # Instruction at line 5: Initialize empty list for primes
    
    for possible_prime in range(2, max_number + 1):  # Instructions at lines 6-18: Iterate over numbers from 2 to max_number
        is_prime = True  # Assume number is prime initially
        
        for num in range(2, int(possible_prime ** 0.5) + 1):  # Check divisibility for factors up to the square root of the number
            if possible_prime % num == 0:  # If divisible, it's not a prime
                is_prime = False
                break  # Exit loop as prime status is determined
        
        if is_prime:  # If still true, number is prime
            primes.append(possible_prime)  # Add the prime number to the list
            
            if possible_prime % 2 != 0:  # If the prime number is odd
                primes.append(-possible_prime)  # Also add its negative counterpart
                
    return primes
A few key points were interpreted to make this function based on the bytecode: 1. **Initialization of the `primes` list:** This is straightforward, as the creation of an empty list is explicit in the bytecode. 2. **Loop through numbers starting from 2 up to `max_number`:** The bytecode iterates over this range, checking each number to see if it's a prime. 3. **Check if a number is prime:** This uses a nested loop to check divisibility by any number from 2 up to the square root of the possible prime number. If a divisor is found, the number is not prime. 4. **Appending primes to the list:** If a number is confirmed as prime, it is appended to the `primes` list. 5. **Special condition for odd primes:** There's an additional condition that checks if the prime number is odd (using modulo 2). If it is, the negative of that prime number is also appended to the list. This interpretation is drawn from the instructions at lines 88 to 112, particularly the condition to check if the number is not even (`!= 0`) and then appending its negative. 6. **Return the list of primes:** Finally, the list of primes (including the specified negative counterparts) is returned. This Python function reconstruction attempts to faithfully represent the logic implied by the provided bytecode.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []  # Instruction at line 5: Initialize empty list for primes
    
    for possible_prime in range(2, max_number + 1):  # Instructions at lines 6-18: Iterate over numbers from 2 to max_number
        is_prime = True  # Assume number is prime initially
        
        for num in range(2, int(possible_prime ** 0.5) + 1):  # Check divisibility for factors up to the square root of the number
            if possible_prime % num == 0:  # If divisible, it's not a prime
                is_prime = False
                break  # Exit loop as prime status is determined
        
        if is_prime:  # If still true, number is prime
            primes.append(possible_prime)  # Add the prime number to the list
            
            if possible_prime % 2 != 0:  # If the prime number is odd
                primes.append(-possible_prime)  # Also add its negative counterpart
                
    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def foo(max_number):
    primes = []  # Instruction at line 5: Initialize empty list for primes
    
    for possible_prime in range(2, max_number + 1):  # Instructions at lines 6-18: Iterate over numbers from 2 to max_number
        is_prime = True  # Assume number is prime initially
        
        for num in range(2, int(possible_prime ** 0.5) + 1):  # Check divisibility for factors up to the square root of the number
            if possible_prime % num == 0:  # If divisible, it's not a prime
                is_prime = False
                break  # Exit loop as prime status is determined
        
        if is_prime:  # If still true, number is prime
            primes.append(possible_prime)  # Add the prime number to the list
            
            if possible_prime % 2 != 0:  # If the prime number is odd
                primes.append(-possible_prime)  # Also add its negative counterpart
                
    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

Based on the provided bytecode, it looks like this Python function, `foo`, is designed to generate a list of prime numbers up to a given number `max_number`, with a twist towards the end involving negative values. Here is a reconstruction of the function into Python code:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
def foo(max_number):
    primes = []  # Initialize an empty list to store prime numbers

    for possible_prime in range(2, max_number + 1):  # Iterate over numbers from 2 to max_number
        is_prime = True  # Assume the number is prime until proven otherwise

        for num in range(2, int(possible_prime ** 0.5) + 1):  # Iterate over potential factors
            if possible_prime % num == 0:  # If num is a factor of possible_prime
                is_prime = False  # possible_prime is not a prime number
                break  # Exit the loop early

        if is_prime:  # If possible_prime is indeed prime
            primes.append(possible_prime)  # Add it to the list of primes
        elif possible_prime % 2 != 0:  # If possible_prime is odd (and not prime)
            primes.append(-possible_prime)  # Add its negative value to the list

    return primes
The function starts by initializing an empty list, `primes`, to store prime numbers. It then iterates over all numbers from 2 to `max_number` (inclusive), checking each number (`possible_prime`) to see if it is prime. This is done by attempting to divide `possible_prime` by all numbers from 2 up to the square root of `possible_prime` (rounded down). If `possible_prime` is divisible by any of these numbers, it is not prime. If `possible_prime` is found to be prime, it is added to the `primes` list. However, if `possible_prime` is not prime and it is odd (i.e., `possible_prime` % 2 != 0), the negative of `possible_prime` is added to the list instead. Finally, the function returns the `primes` list. Note: The bytecode seems to imply an additional operation that adds the negative of a non-prime, odd number to the list, which is a bit unusual for a prime number generator. Please ensure this behavior is what you intended, as it does not align with standard practices for generating prime numbers.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
def foo(max_number):
    primes = []  # Initialize an empty list to store prime numbers

    for possible_prime in range(2, max_number + 1):  # Iterate over numbers from 2 to max_number
        is_prime = True  # Assume the number is prime until proven otherwise

        for num in range(2, int(possible_prime ** 0.5) + 1):  # Iterate over potential factors
            if possible_prime % num == 0:  # If num is a factor of possible_prime
                is_prime = False  # possible_prime is not a prime number
                break  # Exit the loop early

        if is_prime:  # If possible_prime is indeed prime
            primes.append(possible_prime)  # Add it to the list of primes
        elif possible_prime % 2 != 0:  # If possible_prime is odd (and not prime)
            primes.append(-possible_prime)  # Add its negative value to the list

    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
def foo(max_number):
    primes = []  # Initialize an empty list to store prime numbers

    for possible_prime in range(2, max_number + 1):  # Iterate over numbers from 2 to max_number
        is_prime = True  # Assume the number is prime until proven otherwise

        for num in range(2, int(possible_prime ** 0.5) + 1):  # Iterate over potential factors
            if possible_prime % num == 0:  # If num is a factor of possible_prime
                is_prime = False  # possible_prime is not a prime number
                break  # Exit the loop early

        if is_prime:  # If possible_prime is indeed prime
            primes.append(possible_prime)  # Add it to the list of primes
        elif possible_prime % 2 != 0:  # If possible_prime is odd (and not prime)
            primes.append(-possible_prime)  # Add its negative value to the list

    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 26, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [2, 3, 5, 7, -9, 11, 13, -15, 17, 19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

Based on the disassembled Python bytecode you provided, it appears to be a function that generates a list of prime numbers up to a specified number (`max_number`), with a twist toward the end involving the negation of certain numbers before adding them to the list of primes. Here is a possible reconstruction of the function in Python code, which I'll name `foo` as you requested:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
def foo(max_number):
    primes = []  # Line 5: Initializes an empty list for prime numbers.

    for possible_prime in range(2, max_number + 1):  # Line 6: Iterates from 2 to max_number inclusive.
        is_prime = True  # Line 7: Assumes possible_prime is a prime unless proven otherwise.

        for num in range(2, int(possible_prime ** 0.5) + 1):  # Line 9: Checks factors up to the square root of possible_prime.
            if possible_prime % num == 0:  # Line 10: If possible_prime is divisible by num, it's not a prime.
                is_prime = False  # Line 11: Sets is_prime to False if a divisor is found.
                break  # Exits the inner loop if possible_prime is not prime.

        if is_prime:  # Line 13: If possible_prime is still considered prime after checking all possible divisors.
            primes.append(possible_prime)  # Line 14: Adds the prime number to the list.

        # The following conditional seems to perform an additional, peculiar check:
        elif possible_prime % 2 != 0:  # Line 16: Checks if possible_prime is odd (since it's not prime and not even).
            primes.append(-possible_prime)  # Line 17: Appends the negated possible_prime to primes if it's odd and not prime.

    return primes  # Line 18: Returns the list of primes (and possibly negated non-prime odd numbers).
This function appears to collect prime numbers within the range `[2, max_number]`. Additionally, for non-prime, odd numbers, it negates them and adds them to the list of primes. This latter behavior is unusual for prime number generation and might be specific to the requirements you're working with or could be an artifact of the decompilation process.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
def foo(max_number):
    primes = []  # Line 5: Initializes an empty list for prime numbers.

    for possible_prime in range(2, max_number + 1):  # Line 6: Iterates from 2 to max_number inclusive.
        is_prime = True  # Line 7: Assumes possible_prime is a prime unless proven otherwise.

        for num in range(2, int(possible_prime ** 0.5) + 1):  # Line 9: Checks factors up to the square root of possible_prime.
            if possible_prime % num == 0:  # Line 10: If possible_prime is divisible by num, it's not a prime.
                is_prime = False  # Line 11: Sets is_prime to False if a divisor is found.
                break  # Exits the inner loop if possible_prime is not prime.

        if is_prime:  # Line 13: If possible_prime is still considered prime after checking all possible divisors.
            primes.append(possible_prime)  # Line 14: Adds the prime number to the list.

        # The following conditional seems to perform an additional, peculiar check:
        elif possible_prime % 2 != 0:  # Line 16: Checks if possible_prime is odd (since it's not prime and not even).
            primes.append(-possible_prime)  # Line 17: Appends the negated possible_prime to primes if it's odd and not prime.

    return primes  # Line 18: Returns the list of primes (and possibly negated non-prime odd numbers).

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
def foo(max_number):
    primes = []  # Line 5: Initializes an empty list for prime numbers.

    for possible_prime in range(2, max_number + 1):  # Line 6: Iterates from 2 to max_number inclusive.
        is_prime = True  # Line 7: Assumes possible_prime is a prime unless proven otherwise.

        for num in range(2, int(possible_prime ** 0.5) + 1):  # Line 9: Checks factors up to the square root of possible_prime.
            if possible_prime % num == 0:  # Line 10: If possible_prime is divisible by num, it's not a prime.
                is_prime = False  # Line 11: Sets is_prime to False if a divisor is found.
                break  # Exits the inner loop if possible_prime is not prime.

        if is_prime:  # Line 13: If possible_prime is still considered prime after checking all possible divisors.
            primes.append(possible_prime)  # Line 14: Adds the prime number to the list.

        # The following conditional seems to perform an additional, peculiar check:
        elif possible_prime % 2 != 0:  # Line 16: Checks if possible_prime is odd (since it's not prime and not even).
            primes.append(-possible_prime)  # Line 17: Appends the negated possible_prime to primes if it's odd and not prime.

    return primes  # Line 18: Returns the list of primes (and possibly negated non-prime odd numbers).





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 28, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [2, 3, 5, 7, -9, 11, 13, -15, 17, 19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

To convert the provided Python bytecode into a high-level Python function named `foo`, we need to understand what each bytecode operation does and translate that back into Python code. The bytecode describes a function that generates a list of prime numbers and, under certain conditions, their negatives, up to a given number. Here's how the function can be reconstructed based on the bytecode:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []  # Line 5: Initialize an empty list for primes

    for possible_prime in range(2, max_number + 1):  # Lines 6-16: Iterate over numbers from 2 to max_number
        is_prime = True  # Line 7: Assume the number is prime until proven otherwise

        # Line 9-46: Check if number is prime
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:  # If number divides evenly, it's not prime
                is_prime = False
                break  # Exit the loop early if not prime

        if is_prime:  # Line 74: If the number is prime, add it to the list
            primes.append(possible_prime)
        elif possible_prime % 2 != 0:  # Lines 88-98: Additional condition for odd numbers
            primes.append(-possible_prime)  # Add the negative of the number if condition is met

    return primes  # Line 114: Return the list of primes (and possibly some negatives)
This function starts by creating an empty list named `primes` to store prime numbers. It then iterates over each number from 2 up to `max_number` (inclusive) to check if it's a prime number. This check is done by attempting to divide the number (`possible_prime`) by all numbers up to its square root. If any division has a remainder of zero, the number is not prime. If the number is found to be prime, it is added to the `primes` list. Additionally, there's a peculiar condition that checks if the number is odd (using modulo 2), and if so, it adds the negative of that number to the `primes` list. This is a non-standard behavior for generating prime numbers, but it matches the logic presented in the bytecode. Finally, the function returns the list of prime numbers (and possibly some negative numbers if the conditions are met).

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []  # Line 5: Initialize an empty list for primes

    for possible_prime in range(2, max_number + 1):  # Lines 6-16: Iterate over numbers from 2 to max_number
        is_prime = True  # Line 7: Assume the number is prime until proven otherwise

        # Line 9-46: Check if number is prime
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:  # If number divides evenly, it's not prime
                is_prime = False
                break  # Exit the loop early if not prime

        if is_prime:  # Line 74: If the number is prime, add it to the list
            primes.append(possible_prime)
        elif possible_prime % 2 != 0:  # Lines 88-98: Additional condition for odd numbers
            primes.append(-possible_prime)  # Add the negative of the number if condition is met

    return primes  # Line 114: Return the list of primes (and possibly some negatives)

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def foo(max_number):
    primes = []  # Line 5: Initialize an empty list for primes

    for possible_prime in range(2, max_number + 1):  # Lines 6-16: Iterate over numbers from 2 to max_number
        is_prime = True  # Line 7: Assume the number is prime until proven otherwise

        # Line 9-46: Check if number is prime
        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:  # If number divides evenly, it's not prime
                is_prime = False
                break  # Exit the loop early if not prime

        if is_prime:  # Line 74: If the number is prime, add it to the list
            primes.append(possible_prime)
        elif possible_prime % 2 != 0:  # Lines 88-98: Additional condition for odd numbers
            primes.append(-possible_prime)  # Add the negative of the number if condition is met

    return primes  # Line 114: Return the list of primes (and possibly some negatives)





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 27, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [2, 3, 5, 7, -9, 11, 13, -15, 17, 19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False