Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import math # Although not explicitly loaded via LOAD_GLOBAL, int(x**0.5) implies its potential use or similar calculation.
            # The bytecode uses BINARY_POWER with 0.5, which achieves the square root.

def foo(max_number):
  """
  This function identifies prime numbers up to max_number.
  For each prime found, it appends the prime to a list.
  If the prime is odd, it also appends the negative of the prime.
  """
  # 5           0 BUILD_LIST               0
  #             2 STORE_FAST               1 (primes)
  primes = []

  # 6           4 LOAD_GLOBAL              0 (range)
  #             6 LOAD_CONST               1 (2)
  #             8 LOAD_FAST                0 (max_number)
  #            10 LOAD_CONST               2 (1)
  #            12 BINARY_ADD
  #            14 CALL_FUNCTION            2
  #            16 GET_ITER
  #       >>   18 FOR_ITER                94 (to 114)
  #            20 STORE_FAST               2 (possible_prime)
  for possible_prime in range(2, max_number + 1):

    # 7          22 LOAD_CONST               3 (True)
    #            24 STORE_FAST               3 (is_prime)
    is_prime = True

    # 9          26 LOAD_GLOBAL              0 (range)
    #            28 LOAD_CONST               1 (2)
    #            30 LOAD_GLOBAL              1 (int)
    #            32 LOAD_FAST                2 (possible_prime)
    #            34 LOAD_CONST               4 (0.5)
    #            36 BINARY_POWER             # possible_prime ** 0.5
    #            38 CALL_FUNCTION            1 # int(...)
    #            40 LOAD_CONST               2 (1)
    #            42 BINARY_ADD               # int(...) + 1
    #            44 CALL_FUNCTION            2 # range(2, ...)
    #            46 GET_ITER
    #       >>   48 FOR_ITER                24 (to 74)
    #            50 STORE_FAST               4 (num)
    # Optimization: Check divisibility only up to sqrt(possible_prime)
    for num in range(2, int(possible_prime**0.5) + 1):

      # 10         52 LOAD_FAST                2 (possible_prime)
      #            54 LOAD_FAST                4 (num)
      #            56 BINARY_MODULO
      #            58 LOAD_CONST               5 (0)
      #            60 COMPARE_OP               2 (==)
      #            62 POP_JUMP_IF_FALSE       48 # If not divisible, continue inner loop
      if possible_prime % num == 0:
        # 11         64 LOAD_CONST               6 (False)
        #            66 STORE_FAST               3 (is_prime)
        is_prime = False
        # 12         68 POP_TOP                 # Discard comparison result (True) from stack
        #            70 JUMP_ABSOLUTE           74 # Break from inner loop
        #            72 JUMP_ABSOLUTE           48 # Unreachable code
        break # Found a factor, not prime

    # 13    >>   74 LOAD_FAST                3 (is_prime) # Reached after inner loop finishes or breaks
    #            76 POP_JUMP_IF_FALSE       18 # If not is_prime, continue outer loop
    if is_prime:
      # 14         78 LOAD_FAST                1 (primes)
      #            80 LOAD_METHOD              2 (append)
      #            82 LOAD_FAST                2 (possible_prime)
      #            84 CALL_METHOD              1
      #            86 POP_TOP
      primes.append(possible_prime)

      # 16         88 LOAD_FAST                2 (possible_prime)
      #            90 LOAD_CONST               1 (2)
      #            92 BINARY_MODULO
      #            94 LOAD_CONST               5 (0)
      #            96 COMPARE_OP               3 (!=) # Check if possible_prime % 2 != 0 (is odd)
      #            98 POP_JUMP_IF_FALSE       18 # If even (prime is 2), continue outer loop
      if possible_prime % 2 != 0: # Check if the prime is odd
        # 17        100 LOAD_FAST                1 (primes)
        #           102 LOAD_METHOD              2 (append)
        #           104 LOAD_FAST                2 (possible_prime)
        #           106 UNARY_NEGATIVE
        #           108 CALL_METHOD              1
        #           110 POP_TOP
        primes.append(-possible_prime) # Append the negative if odd
        #           112 JUMP_ABSOLUTE           18 # Continue outer loop

  # 18    >>  114 LOAD_FAST                1 (primes) # Reached after outer loop finishes
  #           116 RETURN_VALUE
  return primes

# Example Usage:
# result = foo(10)
# print(result) # Output: [2, 3, -3, 5, -5, 7, -7]
**Explanation of the Logic:** 1. **Initialization:** An empty list `primes` is created. 2. **Outer Loop:** The code iterates through numbers from 2 up to `max_number` (inclusive). Each number is a `possible_prime`. 3. **Primality Test Setup:** For each `possible_prime`, a flag `is_prime` is set to `True`. 4. **Inner Loop (Optimization):** It checks for factors of `possible_prime`. It iterates through `num` from 2 up to the integer part of the square root of `possible_prime` plus 1. This is a standard optimization for primality testing because if a number has a factor larger than its square root, it must also have a factor smaller than its square root. 5. **Divisibility Check:** Inside the inner loop, it checks if `possible_prime` is divisible by `num` (`possible_prime % num == 0`). 6. **Mark as Not Prime & Break:** If a factor is found, `is_prime` is set to `False`, and the inner loop is terminated using `break` (represented by `JUMP_ABSOLUTE 74`). 7. **Append Prime:** After the inner loop finishes (either by checking all potential factors or by breaking early), the code checks the `is_prime` flag. If it's still `True`, the `possible_prime` is appended to the `primes` list. 8. **Append Negative Odd Prime:** *After* appending a prime number, it checks if that prime is odd (`possible_prime % 2 != 0`). If it is odd, its negative value (`-possible_prime`) is *also* appended to the `primes` list. The only even prime is 2, so this step is skipped for `possible_prime = 2`. 9. **Continue Outer Loop:** The code then continues to the next `possible_prime` in the outer loop (controlled by `FOR_ITER` and the conditional jumps). 10. **Return:** Once the outer loop finishes checking all numbers up to `max_number`, the function returns the `primes` list.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import math # Although not explicitly loaded via LOAD_GLOBAL, int(x**0.5) implies its potential use or similar calculation.
            # The bytecode uses BINARY_POWER with 0.5, which achieves the square root.

def foo(max_number):
  """
  This function identifies prime numbers up to max_number.
  For each prime found, it appends the prime to a list.
  If the prime is odd, it also appends the negative of the prime.
  """
  # 5           0 BUILD_LIST               0
  #             2 STORE_FAST               1 (primes)
  primes = []

  # 6           4 LOAD_GLOBAL              0 (range)
  #             6 LOAD_CONST               1 (2)
  #             8 LOAD_FAST                0 (max_number)
  #            10 LOAD_CONST               2 (1)
  #            12 BINARY_ADD
  #            14 CALL_FUNCTION            2
  #            16 GET_ITER
  #       >>   18 FOR_ITER                94 (to 114)
  #            20 STORE_FAST               2 (possible_prime)
  for possible_prime in range(2, max_number + 1):

    # 7          22 LOAD_CONST               3 (True)
    #            24 STORE_FAST               3 (is_prime)
    is_prime = True

    # 9          26 LOAD_GLOBAL              0 (range)
    #            28 LOAD_CONST               1 (2)
    #            30 LOAD_GLOBAL              1 (int)
    #            32 LOAD_FAST                2 (possible_prime)
    #            34 LOAD_CONST               4 (0.5)
    #            36 BINARY_POWER             # possible_prime ** 0.5
    #            38 CALL_FUNCTION            1 # int(...)
    #            40 LOAD_CONST               2 (1)
    #            42 BINARY_ADD               # int(...) + 1
    #            44 CALL_FUNCTION            2 # range(2, ...)
    #            46 GET_ITER
    #       >>   48 FOR_ITER                24 (to 74)
    #            50 STORE_FAST               4 (num)
    # Optimization: Check divisibility only up to sqrt(possible_prime)
    for num in range(2, int(possible_prime**0.5) + 1):

      # 10         52 LOAD_FAST                2 (possible_prime)
      #            54 LOAD_FAST                4 (num)
      #            56 BINARY_MODULO
      #            58 LOAD_CONST               5 (0)
      #            60 COMPARE_OP               2 (==)
      #            62 POP_JUMP_IF_FALSE       48 # If not divisible, continue inner loop
      if possible_prime % num == 0:
        # 11         64 LOAD_CONST               6 (False)
        #            66 STORE_FAST               3 (is_prime)
        is_prime = False
        # 12         68 POP_TOP                 # Discard comparison result (True) from stack
        #            70 JUMP_ABSOLUTE           74 # Break from inner loop
        #            72 JUMP_ABSOLUTE           48 # Unreachable code
        break # Found a factor, not prime

    # 13    >>   74 LOAD_FAST                3 (is_prime) # Reached after inner loop finishes or breaks
    #            76 POP_JUMP_IF_FALSE       18 # If not is_prime, continue outer loop
    if is_prime:
      # 14         78 LOAD_FAST                1 (primes)
      #            80 LOAD_METHOD              2 (append)
      #            82 LOAD_FAST                2 (possible_prime)
      #            84 CALL_METHOD              1
      #            86 POP_TOP
      primes.append(possible_prime)

      # 16         88 LOAD_FAST                2 (possible_prime)
      #            90 LOAD_CONST               1 (2)
      #            92 BINARY_MODULO
      #            94 LOAD_CONST               5 (0)
      #            96 COMPARE_OP               3 (!=) # Check if possible_prime % 2 != 0 (is odd)
      #            98 POP_JUMP_IF_FALSE       18 # If even (prime is 2), continue outer loop
      if possible_prime % 2 != 0: # Check if the prime is odd
        # 17        100 LOAD_FAST                1 (primes)
        #           102 LOAD_METHOD              2 (append)
        #           104 LOAD_FAST                2 (possible_prime)
        #           106 UNARY_NEGATIVE
        #           108 CALL_METHOD              1
        #           110 POP_TOP
        primes.append(-possible_prime) # Append the negative if odd
        #           112 JUMP_ABSOLUTE           18 # Continue outer loop

  # 18    >>  114 LOAD_FAST                1 (primes) # Reached after outer loop finishes
  #           116 RETURN_VALUE
  return primes

# Example Usage:
# result = foo(10)
# print(result) # Output: [2, 3, -3, 5, -5, 7, -7]

Run Code Interpreter

Running the following program:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
import math # Although not explicitly loaded via LOAD_GLOBAL, int(x**0.5) implies its potential use or similar calculation.
            # The bytecode uses BINARY_POWER with 0.5, which achieves the square root.

def foo(max_number):
  """
  This function identifies prime numbers up to max_number.
  For each prime found, it appends the prime to a list.
  If the prime is odd, it also appends the negative of the prime.
  """
  # 5           0 BUILD_LIST               0
  #             2 STORE_FAST               1 (primes)
  primes = []

  # 6           4 LOAD_GLOBAL              0 (range)
  #             6 LOAD_CONST               1 (2)
  #             8 LOAD_FAST                0 (max_number)
  #            10 LOAD_CONST               2 (1)
  #            12 BINARY_ADD
  #            14 CALL_FUNCTION            2
  #            16 GET_ITER
  #       >>   18 FOR_ITER                94 (to 114)
  #            20 STORE_FAST               2 (possible_prime)
  for possible_prime in range(2, max_number + 1):

    # 7          22 LOAD_CONST               3 (True)
    #            24 STORE_FAST               3 (is_prime)
    is_prime = True

    # 9          26 LOAD_GLOBAL              0 (range)
    #            28 LOAD_CONST               1 (2)
    #            30 LOAD_GLOBAL              1 (int)
    #            32 LOAD_FAST                2 (possible_prime)
    #            34 LOAD_CONST               4 (0.5)
    #            36 BINARY_POWER             # possible_prime ** 0.5
    #            38 CALL_FUNCTION            1 # int(...)
    #            40 LOAD_CONST               2 (1)
    #            42 BINARY_ADD               # int(...) + 1
    #            44 CALL_FUNCTION            2 # range(2, ...)
    #            46 GET_ITER
    #       >>   48 FOR_ITER                24 (to 74)
    #            50 STORE_FAST               4 (num)
    # Optimization: Check divisibility only up to sqrt(possible_prime)
    for num in range(2, int(possible_prime**0.5) + 1):

      # 10         52 LOAD_FAST                2 (possible_prime)
      #            54 LOAD_FAST                4 (num)
      #            56 BINARY_MODULO
      #            58 LOAD_CONST               5 (0)
      #            60 COMPARE_OP               2 (==)
      #            62 POP_JUMP_IF_FALSE       48 # If not divisible, continue inner loop
      if possible_prime % num == 0:
        # 11         64 LOAD_CONST               6 (False)
        #            66 STORE_FAST               3 (is_prime)
        is_prime = False
        # 12         68 POP_TOP                 # Discard comparison result (True) from stack
        #            70 JUMP_ABSOLUTE           74 # Break from inner loop
        #            72 JUMP_ABSOLUTE           48 # Unreachable code
        break # Found a factor, not prime

    # 13    >>   74 LOAD_FAST                3 (is_prime) # Reached after inner loop finishes or breaks
    #            76 POP_JUMP_IF_FALSE       18 # If not is_prime, continue outer loop
    if is_prime:
      # 14         78 LOAD_FAST                1 (primes)
      #            80 LOAD_METHOD              2 (append)
      #            82 LOAD_FAST                2 (possible_prime)
      #            84 CALL_METHOD              1
      #            86 POP_TOP
      primes.append(possible_prime)

      # 16         88 LOAD_FAST                2 (possible_prime)
      #            90 LOAD_CONST               1 (2)
      #            92 BINARY_MODULO
      #            94 LOAD_CONST               5 (0)
      #            96 COMPARE_OP               3 (!=) # Check if possible_prime % 2 != 0 (is odd)
      #            98 POP_JUMP_IF_FALSE       18 # If even (prime is 2), continue outer loop
      if possible_prime % 2 != 0: # Check if the prime is odd
        # 17        100 LOAD_FAST                1 (primes)
        #           102 LOAD_METHOD              2 (append)
        #           104 LOAD_FAST                2 (possible_prime)
        #           106 UNARY_NEGATIVE
        #           108 CALL_METHOD              1
        #           110 POP_TOP
        primes.append(-possible_prime) # Append the negative if odd
        #           112 JUMP_ABSOLUTE           18 # Continue outer loop

  # 18    >>  114 LOAD_FAST                1 (primes) # Reached after outer loop finishes
  #           116 RETURN_VALUE
  return primes

# Example Usage:
# result = foo(10)
# print(result) # Output: [2, 3, -3, 5, -5, 7, -7]





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True