Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | import math # Although not explicitly loaded via LOAD_GLOBAL, int(x**0.5) implies its potential use or similar calculation. # The bytecode uses BINARY_POWER with 0.5, which achieves the square root. def foo(max_number): """ This function identifies prime numbers up to max_number. For each prime found, it appends the prime to a list. If the prime is odd, it also appends the negative of the prime. """ # 5 0 BUILD_LIST 0 # 2 STORE_FAST 1 (primes) primes = [] # 6 4 LOAD_GLOBAL 0 (range) # 6 LOAD_CONST 1 (2) # 8 LOAD_FAST 0 (max_number) # 10 LOAD_CONST 2 (1) # 12 BINARY_ADD # 14 CALL_FUNCTION 2 # 16 GET_ITER # >> 18 FOR_ITER 94 (to 114) # 20 STORE_FAST 2 (possible_prime) for possible_prime in range(2, max_number + 1): # 7 22 LOAD_CONST 3 (True) # 24 STORE_FAST 3 (is_prime) is_prime = True # 9 26 LOAD_GLOBAL 0 (range) # 28 LOAD_CONST 1 (2) # 30 LOAD_GLOBAL 1 (int) # 32 LOAD_FAST 2 (possible_prime) # 34 LOAD_CONST 4 (0.5) # 36 BINARY_POWER # possible_prime ** 0.5 # 38 CALL_FUNCTION 1 # int(...) # 40 LOAD_CONST 2 (1) # 42 BINARY_ADD # int(...) + 1 # 44 CALL_FUNCTION 2 # range(2, ...) # 46 GET_ITER # >> 48 FOR_ITER 24 (to 74) # 50 STORE_FAST 4 (num) # Optimization: Check divisibility only up to sqrt(possible_prime) for num in range(2, int(possible_prime**0.5) + 1): # 10 52 LOAD_FAST 2 (possible_prime) # 54 LOAD_FAST 4 (num) # 56 BINARY_MODULO # 58 LOAD_CONST 5 (0) # 60 COMPARE_OP 2 (==) # 62 POP_JUMP_IF_FALSE 48 # If not divisible, continue inner loop if possible_prime % num == 0: # 11 64 LOAD_CONST 6 (False) # 66 STORE_FAST 3 (is_prime) is_prime = False # 12 68 POP_TOP # Discard comparison result (True) from stack # 70 JUMP_ABSOLUTE 74 # Break from inner loop # 72 JUMP_ABSOLUTE 48 # Unreachable code break # Found a factor, not prime # 13 >> 74 LOAD_FAST 3 (is_prime) # Reached after inner loop finishes or breaks # 76 POP_JUMP_IF_FALSE 18 # If not is_prime, continue outer loop if is_prime: # 14 78 LOAD_FAST 1 (primes) # 80 LOAD_METHOD 2 (append) # 82 LOAD_FAST 2 (possible_prime) # 84 CALL_METHOD 1 # 86 POP_TOP primes.append(possible_prime) # 16 88 LOAD_FAST 2 (possible_prime) # 90 LOAD_CONST 1 (2) # 92 BINARY_MODULO # 94 LOAD_CONST 5 (0) # 96 COMPARE_OP 3 (!=) # Check if possible_prime % 2 != 0 (is odd) # 98 POP_JUMP_IF_FALSE 18 # If even (prime is 2), continue outer loop if possible_prime % 2 != 0: # Check if the prime is odd # 17 100 LOAD_FAST 1 (primes) # 102 LOAD_METHOD 2 (append) # 104 LOAD_FAST 2 (possible_prime) # 106 UNARY_NEGATIVE # 108 CALL_METHOD 1 # 110 POP_TOP primes.append(-possible_prime) # Append the negative if odd # 112 JUMP_ABSOLUTE 18 # Continue outer loop # 18 >> 114 LOAD_FAST 1 (primes) # Reached after outer loop finishes # 116 RETURN_VALUE return primes # Example Usage: # result = foo(10) # print(result) # Output: [2, 3, -3, 5, -5, 7, -7] |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | import math # Although not explicitly loaded via LOAD_GLOBAL, int(x**0.5) implies its potential use or similar calculation. # The bytecode uses BINARY_POWER with 0.5, which achieves the square root. def foo(max_number): """ This function identifies prime numbers up to max_number. For each prime found, it appends the prime to a list. If the prime is odd, it also appends the negative of the prime. """ # 5 0 BUILD_LIST 0 # 2 STORE_FAST 1 (primes) primes = [] # 6 4 LOAD_GLOBAL 0 (range) # 6 LOAD_CONST 1 (2) # 8 LOAD_FAST 0 (max_number) # 10 LOAD_CONST 2 (1) # 12 BINARY_ADD # 14 CALL_FUNCTION 2 # 16 GET_ITER # >> 18 FOR_ITER 94 (to 114) # 20 STORE_FAST 2 (possible_prime) for possible_prime in range(2, max_number + 1): # 7 22 LOAD_CONST 3 (True) # 24 STORE_FAST 3 (is_prime) is_prime = True # 9 26 LOAD_GLOBAL 0 (range) # 28 LOAD_CONST 1 (2) # 30 LOAD_GLOBAL 1 (int) # 32 LOAD_FAST 2 (possible_prime) # 34 LOAD_CONST 4 (0.5) # 36 BINARY_POWER # possible_prime ** 0.5 # 38 CALL_FUNCTION 1 # int(...) # 40 LOAD_CONST 2 (1) # 42 BINARY_ADD # int(...) + 1 # 44 CALL_FUNCTION 2 # range(2, ...) # 46 GET_ITER # >> 48 FOR_ITER 24 (to 74) # 50 STORE_FAST 4 (num) # Optimization: Check divisibility only up to sqrt(possible_prime) for num in range(2, int(possible_prime**0.5) + 1): # 10 52 LOAD_FAST 2 (possible_prime) # 54 LOAD_FAST 4 (num) # 56 BINARY_MODULO # 58 LOAD_CONST 5 (0) # 60 COMPARE_OP 2 (==) # 62 POP_JUMP_IF_FALSE 48 # If not divisible, continue inner loop if possible_prime % num == 0: # 11 64 LOAD_CONST 6 (False) # 66 STORE_FAST 3 (is_prime) is_prime = False # 12 68 POP_TOP # Discard comparison result (True) from stack # 70 JUMP_ABSOLUTE 74 # Break from inner loop # 72 JUMP_ABSOLUTE 48 # Unreachable code break # Found a factor, not prime # 13 >> 74 LOAD_FAST 3 (is_prime) # Reached after inner loop finishes or breaks # 76 POP_JUMP_IF_FALSE 18 # If not is_prime, continue outer loop if is_prime: # 14 78 LOAD_FAST 1 (primes) # 80 LOAD_METHOD 2 (append) # 82 LOAD_FAST 2 (possible_prime) # 84 CALL_METHOD 1 # 86 POP_TOP primes.append(possible_prime) # 16 88 LOAD_FAST 2 (possible_prime) # 90 LOAD_CONST 1 (2) # 92 BINARY_MODULO # 94 LOAD_CONST 5 (0) # 96 COMPARE_OP 3 (!=) # Check if possible_prime % 2 != 0 (is odd) # 98 POP_JUMP_IF_FALSE 18 # If even (prime is 2), continue outer loop if possible_prime % 2 != 0: # Check if the prime is odd # 17 100 LOAD_FAST 1 (primes) # 102 LOAD_METHOD 2 (append) # 104 LOAD_FAST 2 (possible_prime) # 106 UNARY_NEGATIVE # 108 CALL_METHOD 1 # 110 POP_TOP primes.append(-possible_prime) # Append the negative if odd # 112 JUMP_ABSOLUTE 18 # Continue outer loop # 18 >> 114 LOAD_FAST 1 (primes) # Reached after outer loop finishes # 116 RETURN_VALUE return primes # Example Usage: # result = foo(10) # print(result) # Output: [2, 3, -3, 5, -5, 7, -7] |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | import math # Although not explicitly loaded via LOAD_GLOBAL, int(x**0.5) implies its potential use or similar calculation. # The bytecode uses BINARY_POWER with 0.5, which achieves the square root. def foo(max_number): """ This function identifies prime numbers up to max_number. For each prime found, it appends the prime to a list. If the prime is odd, it also appends the negative of the prime. """ # 5 0 BUILD_LIST 0 # 2 STORE_FAST 1 (primes) primes = [] # 6 4 LOAD_GLOBAL 0 (range) # 6 LOAD_CONST 1 (2) # 8 LOAD_FAST 0 (max_number) # 10 LOAD_CONST 2 (1) # 12 BINARY_ADD # 14 CALL_FUNCTION 2 # 16 GET_ITER # >> 18 FOR_ITER 94 (to 114) # 20 STORE_FAST 2 (possible_prime) for possible_prime in range(2, max_number + 1): # 7 22 LOAD_CONST 3 (True) # 24 STORE_FAST 3 (is_prime) is_prime = True # 9 26 LOAD_GLOBAL 0 (range) # 28 LOAD_CONST 1 (2) # 30 LOAD_GLOBAL 1 (int) # 32 LOAD_FAST 2 (possible_prime) # 34 LOAD_CONST 4 (0.5) # 36 BINARY_POWER # possible_prime ** 0.5 # 38 CALL_FUNCTION 1 # int(...) # 40 LOAD_CONST 2 (1) # 42 BINARY_ADD # int(...) + 1 # 44 CALL_FUNCTION 2 # range(2, ...) # 46 GET_ITER # >> 48 FOR_ITER 24 (to 74) # 50 STORE_FAST 4 (num) # Optimization: Check divisibility only up to sqrt(possible_prime) for num in range(2, int(possible_prime**0.5) + 1): # 10 52 LOAD_FAST 2 (possible_prime) # 54 LOAD_FAST 4 (num) # 56 BINARY_MODULO # 58 LOAD_CONST 5 (0) # 60 COMPARE_OP 2 (==) # 62 POP_JUMP_IF_FALSE 48 # If not divisible, continue inner loop if possible_prime % num == 0: # 11 64 LOAD_CONST 6 (False) # 66 STORE_FAST 3 (is_prime) is_prime = False # 12 68 POP_TOP # Discard comparison result (True) from stack # 70 JUMP_ABSOLUTE 74 # Break from inner loop # 72 JUMP_ABSOLUTE 48 # Unreachable code break # Found a factor, not prime # 13 >> 74 LOAD_FAST 3 (is_prime) # Reached after inner loop finishes or breaks # 76 POP_JUMP_IF_FALSE 18 # If not is_prime, continue outer loop if is_prime: # 14 78 LOAD_FAST 1 (primes) # 80 LOAD_METHOD 2 (append) # 82 LOAD_FAST 2 (possible_prime) # 84 CALL_METHOD 1 # 86 POP_TOP primes.append(possible_prime) # 16 88 LOAD_FAST 2 (possible_prime) # 90 LOAD_CONST 1 (2) # 92 BINARY_MODULO # 94 LOAD_CONST 5 (0) # 96 COMPARE_OP 3 (!=) # Check if possible_prime % 2 != 0 (is odd) # 98 POP_JUMP_IF_FALSE 18 # If even (prime is 2), continue outer loop if possible_prime % 2 != 0: # Check if the prime is odd # 17 100 LOAD_FAST 1 (primes) # 102 LOAD_METHOD 2 (append) # 104 LOAD_FAST 2 (possible_prime) # 106 UNARY_NEGATIVE # 108 CALL_METHOD 1 # 110 POP_TOP primes.append(-possible_prime) # Append the negative if odd # 112 JUMP_ABSOLUTE 18 # Continue outer loop # 18 >> 114 LOAD_FAST 1 (primes) # Reached after outer loop finishes # 116 RETURN_VALUE return primes # Example Usage: # result = foo(10) # print(result) # Output: [2, 3, -3, 5, -5, 7, -7] answer = foo(20) expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19] assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' print('All tests passed') |
All tests passed
Testing if the previous output contains the string All tests passed
: True