Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

Here's the disassembled code converted into a function called `foo`:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

            if possible_prime % 2 != 0:
                primes.append(-possible_prime)

    return primes
This function takes a `max_number` as input and returns a list `primes` containing all prime numbers up to `max_number`, as well as the negatives of odd prime numbers. Here's a breakdown of the function: 1. The function initializes an empty list `primes` to store the prime numbers. 2. It iterates over the range from 2 to `max_number + 1` using a `for` loop. 3. For each `possible_prime` number in the range, it initializes a boolean variable `is_prime` to `True`. 4. It then iterates over the range from 2 to the square root of `possible_prime` (rounded down) using another `for` loop. 5. If `possible_prime` is divisible by any number `num` in this range (i.e., `possible_prime % num == 0`), it sets `is_prime` to `False` and breaks out of the inner loop. 6. If `is_prime` is still `True` after the inner loop, it appends `possible_prime` to the `primes` list. 7. If `possible_prime` is odd (i.e., `possible_prime % 2 != 0`), it appends the negative of `possible_prime` to the `primes` list. 8. Finally, after the outer loop completes, the function returns the `primes` list. Note that this function not only finds prime numbers but also includes their negatives for odd prime numbers. If you only want the prime numbers, you can remove the line `primes.append(-possible_prime)`.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

            if possible_prime % 2 != 0:
                primes.append(-possible_prime)

    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

            if possible_prime % 2 != 0:
                primes.append(-possible_prime)

    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: All tests passed

Substring Evaluation

Testing if the previous output contains the string All tests passed: True

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

Here's the Python function `foo` disassembled from the given bytecode:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes
This function `foo` takes an integer `max_number` as an argument and returns a list of prime numbers up to `max_number`. It follows these steps: 1. Initialize an empty list `primes` to store the prime numbers. 2. Iterate through the range of numbers from 2 to `max_number + 1`. 3. For each `possible_prime` number, initialize `is_prime` as `True`. 4. Check if `possible_prime` is divisible by any number from 2 to the square root of `possible_prime`. 5. If a divisor is found, set `is_prime` to `False` and break out of the inner loop. 6. If `is_prime` is still `True`, append `possible_prime` to the `primes` list. 7. If `possible_prime` is odd, append the negative of `possible_prime` to the `primes` list. 8. After checking all numbers, return the `primes` list. The function uses the Sieve of Eratosthenes algorithm to find prime numbers, with an additional step to include the negatives of odd prime numbers.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 27, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [2, 3, -3, 5, -5, 7, -7, -9, 11, -11, 13, -13, -15, 17, -17, 19, -19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

Here's the function `foo` disassembled from the given bytecode:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes
This function takes a `max_number` as input and generates a list of prime numbers up to that number, including both positive and negative prime numbers. Here's a breakdown of what the function does: 1. It initializes an empty list `primes` to store the prime numbers. 2. It iterates over a range of numbers from 2 to `max_number + 1` using a `for` loop. 3. For each `possible_prime` number in the range, it initially assumes it's prime by setting `is_prime` to `True`. 4. It then checks if `possible_prime` is divisible by any number between 2 and the square root of `possible_prime` (inclusive). If it is divisible by any such number, it sets `is_prime` to `False` and breaks out of the inner loop. 5. If `is_prime` is still `True` after the inner loop, it appends `possible_prime` to the `primes` list. 6. If `possible_prime` is not divisible by 2 (i.e., odd), it also appends the negative value of `possible_prime` to the `primes` list. 7. After iterating through all the numbers, it returns the `primes` list containing both positive and negative prime numbers up to `max_number`. Note that this implementation includes both positive and negative prime numbers, which may or may not be desired behavior depending on the requirements.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 27, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [2, 3, -3, 5, -5, 7, -7, -9, 11, -11, 13, -13, -15, 17, -17, 19, -19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

Sure, here's the disassembled code converted into a function called `foo`:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes
This function takes a `max_number` as input and generates a list of prime numbers up to that number, as well as their negatives (except for 2 and -2). Here's a breakdown of what the function does: 1. It initializes an empty list called `primes` to store the prime numbers. 2. It iterates over a range of numbers from 2 to `max_number + 1` using a `for` loop. 3. For each `possible_prime` number, it initializes a boolean flag `is_prime` to `True`. 4. It checks if `possible_prime` is divisible by any number from 2 to the square root of `possible_prime` (inclusive) using another `for` loop. 5. If `possible_prime` is divisible by any number in the inner loop, `is_prime` is set to `False`, and the inner loop is broken out of using the `break` statement. 6. If `is_prime` is still `True` after the inner loop, `possible_prime` is appended to the `primes` list. 7. If `possible_prime` is odd, its negative value `-possible_prime` is also appended to the `primes` list. 8. After iterating through all numbers, the `primes` list containing all prime numbers and their negatives (except 2 and -2) is returned. Note that this implementation includes the negatives of prime numbers (except for 2 and -2) in the output list, which may or may not be intended behavior. If you only want to include positive prime numbers, you can remove the line `primes.append(-possible_prime)`.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 27, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [2, 3, -3, 5, -5, 7, -7, -9, 11, -11, 13, -13, -15, 17, -17, 19, -19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False

Initial Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

LLM Generation

Query

Disassemble the following python into a function called foo: 5 0 BUILD_LIST 0 2 STORE_FAST 1 (primes) 6 4 LOAD_GLOBAL 0 (range) 6 LOAD_CONST 1 (2) 8 LOAD_FAST 0 (max_number) 10 LOAD_CONST 2 (1) 12 BINARY_ADD 14 CALL_FUNCTION 2 16 GET_ITER >> 18 FOR_ITER 94 (to 114) 20 STORE_FAST 2 (possible_prime) 7 22 LOAD_CONST 3 (True) 24 STORE_FAST 3 (is_prime) 9 26 LOAD_GLOBAL 0 (range) 28 LOAD_CONST 1 (2) 30 LOAD_GLOBAL 1 (int) 32 LOAD_FAST 2 (possible_prime) 34 LOAD_CONST 4 (0.5) 36 BINARY_POWER 38 CALL_FUNCTION 1 40 LOAD_CONST 2 (1) 42 BINARY_ADD 44 CALL_FUNCTION 2 46 GET_ITER >> 48 FOR_ITER 24 (to 74) 50 STORE_FAST 4 (num) 10 52 LOAD_FAST 2 (possible_prime) 54 LOAD_FAST 4 (num) 56 BINARY_MODULO 58 LOAD_CONST 5 (0) 60 COMPARE_OP 2 (==) 62 POP_JUMP_IF_FALSE 48 11 64 LOAD_CONST 6 (False) 66 STORE_FAST 3 (is_prime) 12 68 POP_TOP 70 JUMP_ABSOLUTE 74 72 JUMP_ABSOLUTE 48 13 >> 74 LOAD_FAST 3 (is_prime) 76 POP_JUMP_IF_FALSE 18 14 78 LOAD_FAST 1 (primes) 80 LOAD_METHOD 2 (append) 82 LOAD_FAST 2 (possible_prime) 84 CALL_METHOD 1 86 POP_TOP 16 88 LOAD_FAST 2 (possible_prime) 90 LOAD_CONST 1 (2) 92 BINARY_MODULO 94 LOAD_CONST 5 (0) 96 COMPARE_OP 3 (!=) 98 POP_JUMP_IF_FALSE 18 17 100 LOAD_FAST 1 (primes) 102 LOAD_METHOD 2 (append) 104 LOAD_FAST 2 (possible_prime) 106 UNARY_NEGATIVE 108 CALL_METHOD 1 110 POP_TOP 112 JUMP_ABSOLUTE 18 18 >> 114 LOAD_FAST 1 (primes) 116 RETURN_VALUE

Output

Here's the function `foo` containing the disassembled Python code you provided:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes
This function takes a single argument `max_number` and returns a list of prime numbers up to that number, including both positive and negative primes. Here's a breakdown of what the function does: 1. It initializes an empty list `primes` to store the prime numbers. 2. It iterates over a range of numbers from 2 to `max_number + 1` using a `for` loop. 3. For each number `possible_prime` in the range, it initializes a boolean flag `is_prime` to `True`. 4. It then checks if `possible_prime` is divisible by any number between 2 and the square root of `possible_prime` using another `for` loop. 5. If `possible_prime` is divisible by any number in the inner loop, the `is_prime` flag is set to `False`, and the inner loop is terminated using a `break` statement. 6. If `is_prime` remains `True` after the inner loop, it means `possible_prime` is a prime number, so it is appended to the `primes` list. 7. If `possible_prime` is an odd number (i.e., not divisible by 2), the negative value of `possible_prime` is appended to the `primes` list. 8. Finally, after iterating through all numbers in the range, the `primes` list containing both positive and negative prime numbers is returned. Note that this implementation is not optimized for performance, especially for large values of `max_number`. There are more efficient algorithms for finding prime numbers, such as the Sieve of Eratosthenes.

Extract Code

I extracted the following code from that output:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes

Run Code Interpreter

Running the following program:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def foo(max_number):
    primes = []

    for possible_prime in range(2, max_number + 1):
        is_prime = True

        for num in range(2, int(possible_prime ** 0.5) + 1):
            if possible_prime % num == 0:
                is_prime = False
                break

        if is_prime:
            primes.append(possible_prime)

        if possible_prime % 2 != 0:
            primes.append(-possible_prime)

    return primes





answer = foo(20)
expected = [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]
assert answer == expected, f'Wrong answer; got {answer} instead of {expected}'
print('All tests passed')
And got the output: Traceback (most recent call last): File "/usr/src/app/main.py", line 27, in <module> assert answer == expected, f'Wrong answer; got {answer} instead of {expected}' ^^^^^^^^^^^^^^^^^^ AssertionError: Wrong answer; got [2, 3, -3, 5, -5, 7, -7, -9, 11, -11, 13, -13, -15, 17, -17, 19, -19] instead of [2, 3, -3, 5, -5, 7, -7, 11, -11, 13, -13, 17, -17, 19, -19]

Substring Evaluation

Testing if the previous output contains the string All tests passed: False