Here's a python program. Please rewrite it in c with the type signature float my_sqrt(float, float). def my_sqrt(number, precision=0.0001): guess = number / 2 # Start with an initial guess while abs(guess * guess - number) >= precision: guess = (guess + number / guess) / 2 # Improve the guess using the Babylonian method return guess
Here's a python program. Please rewrite it in c with the type signature float my_sqrt(float, float). def my_sqrt(number, precision=0.0001): guess = number / 2 # Start with an initial guess while abs(guess * guess - number) >= precision: guess = (guess + number / guess) / 2 # Improve the guess using the Babylonian method return guess
Okay, here is the C implementation of the `my_sqrt` function, matching the requested signature `float my_sqrt(float number, float precision)`.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | #include <math.h> // Required for fabs() (absolute value for floating-point) #include <stdio.h> // Optional: Used here for error messages or potential debugging /* * Calculates the square root of a non-negative number using the Babylonian method. * * Args: * number: The non-negative floating-point number to find the square root of. * precision: The desired precision. The iteration stops when the absolute * difference between (guess * guess) and the number is less than * this value. Must be positive. * * Returns: * The approximate square root as a float. * Returns NAN (Not a Number) if the input number is negative. * Returns 0.0f if the input number is 0.0f. */ float my_sqrt(float number, float precision) { // Handle edge case: square root of negative number is undefined in real numbers. // Return NAN (defined in math.h) if (number < 0.0f) { // Optional: Print an error message to standard error // fprintf(stderr, "Error: Cannot compute square root of a negative number (%f)\n", number); return NAN; } // Handle edge case: square root of 0 is 0 if (number == 0.0f) { return 0.0f; } // Ensure precision is positive. If not, the loop condition might behave unexpectedly. // You might want to return an error or use a default minimum precision here, // but for a direct translation, we assume valid input as Python did implicitly. if (precision <= 0.0f) { // Handle invalid precision - perhaps return NAN or use a default small positive value // fprintf(stderr, "Warning: Precision must be positive (%f provided).\n", precision); // For this example, we'll proceed, but be aware of potential infinite loops // if precision is zero and perfect accuracy isn't reached. // A safer approach might be: // if (precision <= 0.0f) precision = 0.0001f; } // Start with an initial guess // Using 2.0f ensures floating-point division float guess = number / 2.0f; // Avoid potential division by zero if the initial guess becomes zero // (e.g., for very small 'number' where number/2.0f underflows) // A guess of 0 only makes sense if number is 0, which is handled above. if (guess == 0.0f && number > 0.0f) { // If number is tiny but positive, number/2 might be 0. // Choose a different starting guess, e.g., 1.0f or number itself if number < 1? // A simple fix is to use 1.0f as a fallback guess. guess = 1.0f; } // Iteratively improve the guess using the Babylonian method // Loop while the difference between guess*guess and number is >= precision // Use fabs() from math.h for the absolute value of a float/double while (fabsf(guess * guess - number) >= precision) { // Check for division by zero inside the loop (highly unlikely for number > 0 // if the initial guess was non-zero, but good for robustness) if (guess == 0.0f) { // This state shouldn't be reached if number > 0. // fprintf(stderr, "Error: Division by zero encountered during iteration.\n"); return NAN; // Or another error indicator } // Improve the guess guess = (guess + number / guess) / 2.0f; } return guess; } // --- Example Usage (Optional) --- #include <stdio.h> // For printf int main() { float num1 = 25.0f; float prec = 0.0001f; float root1 = my_sqrt(num1, prec); printf("Square root of %.4f (precision %.4f) is approximately: %f\n", num1, prec, root1); float num2 = 2.0f; float root2 = my_sqrt(num2, prec); printf("Square root of %.4f (precision %.4f) is approximately: %f\n", num2, prec, root2); float num3 = 10000.0f; float root3 = my_sqrt(num3, 0.01f); // Different precision printf("Square root of %.4f (precision %.4f) is approximately: %f\n", num3, 0.01f, root3); float num4 = 0.0f; float root4 = my_sqrt(num4, prec); printf("Square root of %.4f (precision %.4f) is approximately: %f\n", num4, prec, root4); float num5 = -9.0f; float root5 = my_sqrt(num5, prec); printf("Square root of %.4f (precision %.4f) is approximately: %f\n", num5, prec, root5); // Should print nan // Test with very small number float num6 = 1.0e-10f; float root6 = my_sqrt(num6, 1.0e-12f); printf("Square root of %e (precision %e) is approximately: %e\n", num6, 1.0e-12f, root6); return 0; } |
1 2 3 | gcc your_program_name.c -o your_program_name -lm ./your_program_name |
I extracted the following code from that output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | #include <math.h> // Required for fabs() (absolute value for floating-point) #include <stdio.h> // Optional: Used here for error messages or potential debugging /* * Calculates the square root of a non-negative number using the Babylonian method. * * Args: * number: The non-negative floating-point number to find the square root of. * precision: The desired precision. The iteration stops when the absolute * difference between (guess * guess) and the number is less than * this value. Must be positive. * * Returns: * The approximate square root as a float. * Returns NAN (Not a Number) if the input number is negative. * Returns 0.0f if the input number is 0.0f. */ float my_sqrt(float number, float precision) { // Handle edge case: square root of negative number is undefined in real numbers. // Return NAN (defined in math.h) if (number < 0.0f) { // Optional: Print an error message to standard error // fprintf(stderr, "Error: Cannot compute square root of a negative number (%f)\n", number); return NAN; } // Handle edge case: square root of 0 is 0 if (number == 0.0f) { return 0.0f; } // Ensure precision is positive. If not, the loop condition might behave unexpectedly. // You might want to return an error or use a default minimum precision here, // but for a direct translation, we assume valid input as Python did implicitly. if (precision <= 0.0f) { // Handle invalid precision - perhaps return NAN or use a default small positive value // fprintf(stderr, "Warning: Precision must be positive (%f provided).\n", precision); // For this example, we'll proceed, but be aware of potential infinite loops // if precision is zero and perfect accuracy isn't reached. // A safer approach might be: // if (precision <= 0.0f) precision = 0.0001f; } // Start with an initial guess // Using 2.0f ensures floating-point division float guess = number / 2.0f; // Avoid potential division by zero if the initial guess becomes zero // (e.g., for very small 'number' where number/2.0f underflows) // A guess of 0 only makes sense if number is 0, which is handled above. if (guess == 0.0f && number > 0.0f) { // If number is tiny but positive, number/2 might be 0. // Choose a different starting guess, e.g., 1.0f or number itself if number < 1? // A simple fix is to use 1.0f as a fallback guess. guess = 1.0f; } // Iteratively improve the guess using the Babylonian method // Loop while the difference between guess*guess and number is >= precision // Use fabsf() from math.h for the absolute value of a float/double while (fabsf(guess * guess - number) >= precision) { // Check for division by zero inside the loop (highly unlikely for number > 0 // if the initial guess was non-zero, but good for robustness) if (guess == 0.0f) { // This state shouldn't be reached if number > 0. // fprintf(stderr, "Error: Division by zero encountered during iteration.\n"); return NAN; // Or another error indicator } // Improve the guess guess = (guess + number / guess) / 2.0f; } return guess; } |
Running the following program:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | #include <math.h> // Required for fabs() (absolute value for floating-point) #include <stdio.h> // Optional: Used here for error messages or potential debugging /* * Calculates the square root of a non-negative number using the Babylonian method. * * Args: * number: The non-negative floating-point number to find the square root of. * precision: The desired precision. The iteration stops when the absolute * difference between (guess * guess) and the number is less than * this value. Must be positive. * * Returns: * The approximate square root as a float. * Returns NAN (Not a Number) if the input number is negative. * Returns 0.0f if the input number is 0.0f. */ float my_sqrt(float number, float precision) { // Handle edge case: square root of negative number is undefined in real numbers. // Return NAN (defined in math.h) if (number < 0.0f) { // Optional: Print an error message to standard error // fprintf(stderr, "Error: Cannot compute square root of a negative number (%f)\n", number); return NAN; } // Handle edge case: square root of 0 is 0 if (number == 0.0f) { return 0.0f; } // Ensure precision is positive. If not, the loop condition might behave unexpectedly. // You might want to return an error or use a default minimum precision here, // but for a direct translation, we assume valid input as Python did implicitly. if (precision <= 0.0f) { // Handle invalid precision - perhaps return NAN or use a default small positive value // fprintf(stderr, "Warning: Precision must be positive (%f provided).\n", precision); // For this example, we'll proceed, but be aware of potential infinite loops // if precision is zero and perfect accuracy isn't reached. // A safer approach might be: // if (precision <= 0.0f) precision = 0.0001f; } // Start with an initial guess // Using 2.0f ensures floating-point division float guess = number / 2.0f; // Avoid potential division by zero if the initial guess becomes zero // (e.g., for very small 'number' where number/2.0f underflows) // A guess of 0 only makes sense if number is 0, which is handled above. if (guess == 0.0f && number > 0.0f) { // If number is tiny but positive, number/2 might be 0. // Choose a different starting guess, e.g., 1.0f or number itself if number < 1? // A simple fix is to use 1.0f as a fallback guess. guess = 1.0f; } // Iteratively improve the guess using the Babylonian method // Loop while the difference between guess*guess and number is >= precision // Use fabsf() from math.h for the absolute value of a float/double while (fabsf(guess * guess - number) >= precision) { // Check for division by zero inside the loop (highly unlikely for number > 0 // if the initial guess was non-zero, but good for robustness) if (guess == 0.0f) { // This state shouldn't be reached if number > 0. // fprintf(stderr, "Error: Division by zero encountered during iteration.\n"); return NAN; // Or another error indicator } // Improve the guess guess = (guess + number / guess) / 2.0f; } return guess; } #include<stdio.h> #include<stdlib.h> int main() { int answer = (int)(my_sqrt(12345, .001)*10); int expected = 1111; if (answer != expected) { printf("Wrong answer; got %d instead of %d.\n", answer, expected); exit(1); } printf("All tests passed\n"); } |
All tests passed
Testing if the previous output contains the string All tests passed
: True